mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 17:24:41 +03:00
Make parser_maxout_pieces hyper-param work
This commit is contained in:
parent
03a215c5fd
commit
b54b4b8a97
|
@ -153,7 +153,7 @@ cdef class precompute_hiddens:
|
|||
if bp_nonlinearity is not None:
|
||||
d_state_vector = bp_nonlinearity(d_state_vector, sgd)
|
||||
# This will usually be on GPU
|
||||
if isinstance(d_state_vector, numpy.ndarray):
|
||||
if not isinstance(d_state_vector, self.ops.xp.ndarray):
|
||||
d_state_vector = self.ops.xp.array(d_state_vector)
|
||||
d_tokens = bp_hiddens((d_state_vector, token_ids), sgd)
|
||||
return d_tokens
|
||||
|
@ -244,8 +244,8 @@ cdef class Parser:
|
|||
if depth != 1:
|
||||
raise ValueError("Currently parser depth is hard-coded to 1.")
|
||||
parser_maxout_pieces = util.env_opt('parser_maxout_pieces', cfg.get('maxout_pieces', 2))
|
||||
if parser_maxout_pieces != 2:
|
||||
raise ValueError("Currently parser_maxout_pieces is hard-coded to 2")
|
||||
#if parser_maxout_pieces != 2:
|
||||
# raise ValueError("Currently parser_maxout_pieces is hard-coded to 2")
|
||||
token_vector_width = util.env_opt('token_vector_width', cfg.get('token_vector_width', 128))
|
||||
hidden_width = util.env_opt('hidden_width', cfg.get('hidden_width', 200))
|
||||
embed_size = util.env_opt('embed_size', cfg.get('embed_size', 7000))
|
||||
|
@ -258,9 +258,13 @@ cdef class Parser:
|
|||
tok2vec = Tok2Vec(token_vector_width, embed_size,
|
||||
pretrained_dims=cfg.get('pretrained_dims', 0))
|
||||
tok2vec = chain(tok2vec, flatten)
|
||||
lower = PrecomputableMaxouts(hidden_width if depth >= 1 else nr_class,
|
||||
nF=cls.nr_feature, nP=parser_maxout_pieces,
|
||||
nI=token_vector_width)
|
||||
if parser_maxout_pieces >= 2:
|
||||
lower = PrecomputableMaxouts(hidden_width if depth >= 1 else nr_class,
|
||||
nF=cls.nr_feature, nP=parser_maxout_pieces,
|
||||
nI=token_vector_width)
|
||||
else:
|
||||
lower = PrecomputableAffine(hidden_width if depth >= 1 else nr_class,
|
||||
nF=cls.nr_feature, nI=token_vector_width)
|
||||
|
||||
with Model.use_device('cpu'):
|
||||
upper = chain(
|
||||
|
@ -413,7 +417,7 @@ cdef class Parser:
|
|||
for stcls in state_objs:
|
||||
if not stcls.c.is_final():
|
||||
states.push_back(stcls.c)
|
||||
|
||||
|
||||
feat_weights = state2vec.get_feat_weights()
|
||||
cdef int i
|
||||
cdef np.ndarray hidden_weights = numpy.ascontiguousarray(vec2scores._layers[-1].W.T)
|
||||
|
@ -438,7 +442,7 @@ cdef class Parser:
|
|||
is_valid = <int*>calloc(nr_class, sizeof(int))
|
||||
vectors = <float*>calloc(nr_hidden * nr_piece, sizeof(float))
|
||||
scores = <float*>calloc(nr_class, sizeof(float))
|
||||
|
||||
|
||||
while not state.is_final():
|
||||
state.set_context_tokens(token_ids, nr_feat)
|
||||
memset(vectors, 0, nr_hidden * nr_piece * sizeof(float))
|
||||
|
@ -448,7 +452,12 @@ cdef class Parser:
|
|||
V = vectors
|
||||
W = hW
|
||||
for i in range(nr_hidden):
|
||||
feature = V[0] if V[0] >= V[1] else V[1]
|
||||
if nr_piece == 1:
|
||||
feature = V[0]
|
||||
elif nr_piece == 2:
|
||||
feature = V[0] if V[0] >= V[1] else V[1]
|
||||
else:
|
||||
feature = Vec.max(V, nr_piece)
|
||||
for j in range(nr_class):
|
||||
scores[j] += feature * W[j]
|
||||
W += nr_class
|
||||
|
|
Loading…
Reference in New Issue
Block a user