mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-13 13:17:06 +03:00
Sentence transformers added to spaCy universe (#5814)
* fix details for spacy-universal-sentence-encoder * added sentence-transformers
This commit is contained in:
parent
1bfc177b10
commit
b57b994d38
|
@ -1,5 +1,30 @@
|
||||||
{
|
{
|
||||||
"resources": [
|
"resources": [
|
||||||
|
{
|
||||||
|
"id": "spacy-sentence-bert",
|
||||||
|
"title": "SpaCy - sentence-transformers",
|
||||||
|
"slogan": "Pipelines for pretrained sentence-transformers (BERT, RoBERTa, XLM-RoBERTa & Co.) directly within SpaCy",
|
||||||
|
"description": "This library lets you use the embeddings from [sentence-transformers](https://github.com/UKPLab/sentence-transformers) of Docs, Spans and Tokens directly from spaCy. Most models are for the english language but three of them are multilingual.",
|
||||||
|
"github": "MartinoMensio/spacy-sentence-bert",
|
||||||
|
"pip": "spacy-sentence-bert",
|
||||||
|
"code_example": [
|
||||||
|
"import spacy_sentence_bert",
|
||||||
|
"# load one of the models listed at https://github.com/MartinoMensio/spacy-sentence-bert/",
|
||||||
|
"nlp = spacy_sentence_bert.load_model('en_roberta_large_nli_stsb_mean_tokens')",
|
||||||
|
"# get two documents",
|
||||||
|
"doc_1 = nlp('Hi there, how are you?')",
|
||||||
|
"doc_2 = nlp('Hello there, how are you doing today?')",
|
||||||
|
"# use the similarity method that is based on the vectors, on Doc, Span or Token",
|
||||||
|
"print(doc_1.similarity(doc_2[0:7]))"
|
||||||
|
],
|
||||||
|
"category": ["models", "pipeline"],
|
||||||
|
"author": "Martino Mensio",
|
||||||
|
"author_links": {
|
||||||
|
"twitter": "MartinoMensio",
|
||||||
|
"github": "MartinoMensio",
|
||||||
|
"website": "https://martinomensio.github.io"
|
||||||
|
}
|
||||||
|
},
|
||||||
{
|
{
|
||||||
"id": "spacy-streamlit",
|
"id": "spacy-streamlit",
|
||||||
"title": "spacy-streamlit",
|
"title": "spacy-streamlit",
|
||||||
|
@ -58,10 +83,11 @@
|
||||||
"title": "SpaCy - Universal Sentence Encoder",
|
"title": "SpaCy - Universal Sentence Encoder",
|
||||||
"slogan": "Make use of Google's Universal Sentence Encoder directly within SpaCy",
|
"slogan": "Make use of Google's Universal Sentence Encoder directly within SpaCy",
|
||||||
"description": "This library lets you use Universal Sentence Encoder embeddings of Docs, Spans and Tokens directly from TensorFlow Hub",
|
"description": "This library lets you use Universal Sentence Encoder embeddings of Docs, Spans and Tokens directly from TensorFlow Hub",
|
||||||
"github": "MartinoMensio/spacy-universal-sentence-encoder-tfhub",
|
"github": "MartinoMensio/spacy-universal-sentence-encoder",
|
||||||
|
"pip": "spacy-universal-sentence-encoder",
|
||||||
"code_example": [
|
"code_example": [
|
||||||
"import spacy_universal_sentence_encoder",
|
"import spacy_universal_sentence_encoder",
|
||||||
"load one of the models: ['en_use_md', 'en_use_lg', 'xx_use_md', 'xx_use_lg']",
|
"# load one of the models: ['en_use_md', 'en_use_lg', 'xx_use_md', 'xx_use_lg']",
|
||||||
"nlp = spacy_universal_sentence_encoder.load_model('en_use_lg')",
|
"nlp = spacy_universal_sentence_encoder.load_model('en_use_lg')",
|
||||||
"# get two documents",
|
"# get two documents",
|
||||||
"doc_1 = nlp('Hi there, how are you?')",
|
"doc_1 = nlp('Hi there, how are you?')",
|
||||||
|
|
Loading…
Reference in New Issue
Block a user