mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	Sentence transformers added to spaCy universe (#5814)
* fix details for spacy-universal-sentence-encoder * added sentence-transformers
This commit is contained in:
		
							parent
							
								
									1bfc177b10
								
							
						
					
					
						commit
						b57b994d38
					
				| 
						 | 
				
			
			@ -1,5 +1,30 @@
 | 
			
		|||
{
 | 
			
		||||
    "resources": [
 | 
			
		||||
        {
 | 
			
		||||
            "id": "spacy-sentence-bert",
 | 
			
		||||
            "title": "SpaCy - sentence-transformers",
 | 
			
		||||
            "slogan": "Pipelines for pretrained sentence-transformers (BERT, RoBERTa, XLM-RoBERTa & Co.) directly within SpaCy",
 | 
			
		||||
            "description": "This library lets you use the embeddings from [sentence-transformers](https://github.com/UKPLab/sentence-transformers) of Docs, Spans and Tokens directly from spaCy. Most models are for the english language but three of them are multilingual.",
 | 
			
		||||
            "github": "MartinoMensio/spacy-sentence-bert",
 | 
			
		||||
            "pip": "spacy-sentence-bert",
 | 
			
		||||
            "code_example": [
 | 
			
		||||
                "import spacy_sentence_bert",
 | 
			
		||||
                "# load one of the models listed at https://github.com/MartinoMensio/spacy-sentence-bert/",
 | 
			
		||||
                "nlp = spacy_sentence_bert.load_model('en_roberta_large_nli_stsb_mean_tokens')",
 | 
			
		||||
                "# get two documents",
 | 
			
		||||
                "doc_1 = nlp('Hi there, how are you?')",
 | 
			
		||||
                "doc_2 = nlp('Hello there, how are you doing today?')",
 | 
			
		||||
                "# use the similarity method that is based on the vectors, on Doc, Span or Token",
 | 
			
		||||
                "print(doc_1.similarity(doc_2[0:7]))"
 | 
			
		||||
            ],
 | 
			
		||||
            "category": ["models", "pipeline"],
 | 
			
		||||
            "author": "Martino Mensio",
 | 
			
		||||
            "author_links": {
 | 
			
		||||
                "twitter": "MartinoMensio",
 | 
			
		||||
                "github": "MartinoMensio",
 | 
			
		||||
                "website": "https://martinomensio.github.io"
 | 
			
		||||
            }
 | 
			
		||||
        },
 | 
			
		||||
        {
 | 
			
		||||
            "id": "spacy-streamlit",
 | 
			
		||||
            "title": "spacy-streamlit",
 | 
			
		||||
| 
						 | 
				
			
			@ -58,10 +83,11 @@
 | 
			
		|||
            "title": "SpaCy - Universal Sentence Encoder",
 | 
			
		||||
            "slogan": "Make use of Google's Universal Sentence Encoder directly within SpaCy",
 | 
			
		||||
            "description": "This library lets you use Universal Sentence Encoder embeddings of Docs, Spans and Tokens directly from TensorFlow Hub",
 | 
			
		||||
            "github": "MartinoMensio/spacy-universal-sentence-encoder-tfhub",
 | 
			
		||||
            "github": "MartinoMensio/spacy-universal-sentence-encoder",
 | 
			
		||||
            "pip": "spacy-universal-sentence-encoder",
 | 
			
		||||
            "code_example": [
 | 
			
		||||
                "import spacy_universal_sentence_encoder",
 | 
			
		||||
                "load one of the models: ['en_use_md', 'en_use_lg', 'xx_use_md', 'xx_use_lg']",
 | 
			
		||||
                "# load one of the models: ['en_use_md', 'en_use_lg', 'xx_use_md', 'xx_use_lg']",
 | 
			
		||||
                "nlp = spacy_universal_sentence_encoder.load_model('en_use_lg')",
 | 
			
		||||
                "# get two documents",
 | 
			
		||||
                "doc_1 = nlp('Hi there, how are you?')",
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in New Issue
	
	Block a user