mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 18:26:30 +03:00
Fix memory issues in Language.evaluate (#6386)
* Fix memory issues in Language.evaluate Reset annotation in predicted docs before evaluating and store all data in `examples`. * Minor refactor to docs generator init * Fix generator expression * Fix final generator check * Refactor pipeline loop * Handle examples generator in Language.evaluate * Add test with generator * Use make_doc
This commit is contained in:
parent
5ca57d8221
commit
b57be94c78
|
@ -1290,6 +1290,7 @@ class Language:
|
||||||
|
|
||||||
DOCS: https://nightly.spacy.io/api/language#evaluate
|
DOCS: https://nightly.spacy.io/api/language#evaluate
|
||||||
"""
|
"""
|
||||||
|
examples = list(examples)
|
||||||
validate_examples(examples, "Language.evaluate")
|
validate_examples(examples, "Language.evaluate")
|
||||||
if batch_size is None:
|
if batch_size is None:
|
||||||
batch_size = self.batch_size
|
batch_size = self.batch_size
|
||||||
|
@ -1301,27 +1302,21 @@ class Language:
|
||||||
kwargs = dict(scorer_cfg)
|
kwargs = dict(scorer_cfg)
|
||||||
kwargs.setdefault("nlp", self)
|
kwargs.setdefault("nlp", self)
|
||||||
scorer = Scorer(**kwargs)
|
scorer = Scorer(**kwargs)
|
||||||
texts = [eg.reference.text for eg in examples]
|
# reset annotation in predicted docs and time tokenization
|
||||||
docs = [eg.predicted for eg in examples]
|
|
||||||
start_time = timer()
|
start_time = timer()
|
||||||
# tokenize the texts only for timing purposes
|
for eg in examples:
|
||||||
if not hasattr(self.tokenizer, "pipe"):
|
eg.predicted = self.make_doc(eg.reference.text)
|
||||||
_ = [self.tokenizer(text) for text in texts] # noqa: F841
|
# apply all pipeline components
|
||||||
else:
|
|
||||||
_ = list(self.tokenizer.pipe(texts)) # noqa: F841
|
|
||||||
for name, pipe in self.pipeline:
|
for name, pipe in self.pipeline:
|
||||||
kwargs = component_cfg.get(name, {})
|
kwargs = component_cfg.get(name, {})
|
||||||
kwargs.setdefault("batch_size", batch_size)
|
kwargs.setdefault("batch_size", batch_size)
|
||||||
docs = _pipe(docs, pipe, kwargs)
|
for doc, eg in zip(
|
||||||
# iterate over the final generator
|
_pipe((eg.predicted for eg in examples), pipe, kwargs), examples
|
||||||
if len(self.pipeline):
|
):
|
||||||
docs = list(docs)
|
eg.predicted = doc
|
||||||
end_time = timer()
|
end_time = timer()
|
||||||
for i, (doc, eg) in enumerate(zip(docs, examples)):
|
|
||||||
util.logger.debug(doc)
|
|
||||||
eg.predicted = doc
|
|
||||||
results = scorer.score(examples)
|
results = scorer.score(examples)
|
||||||
n_words = sum(len(doc) for doc in docs)
|
n_words = sum(len(eg.predicted) for eg in examples)
|
||||||
results["speed"] = n_words / (end_time - start_time)
|
results["speed"] = n_words / (end_time - start_time)
|
||||||
return results
|
return results
|
||||||
|
|
||||||
|
|
|
@ -53,7 +53,12 @@ def test_language_evaluate(nlp):
|
||||||
annots = {"doc_annotation": {"cats": {"POSITIVE": 1.0, "NEGATIVE": 0.0}}}
|
annots = {"doc_annotation": {"cats": {"POSITIVE": 1.0, "NEGATIVE": 0.0}}}
|
||||||
doc = Doc(nlp.vocab, words=text.split(" "))
|
doc = Doc(nlp.vocab, words=text.split(" "))
|
||||||
example = Example.from_dict(doc, annots)
|
example = Example.from_dict(doc, annots)
|
||||||
nlp.evaluate([example])
|
scores = nlp.evaluate([example])
|
||||||
|
assert scores["speed"] > 0
|
||||||
|
|
||||||
|
# test with generator
|
||||||
|
scores = nlp.evaluate(eg for eg in [example])
|
||||||
|
assert scores["speed"] > 0
|
||||||
|
|
||||||
# Not allowed to call with just one Example
|
# Not allowed to call with just one Example
|
||||||
with pytest.raises(TypeError):
|
with pytest.raises(TypeError):
|
||||||
|
|
|
@ -249,9 +249,8 @@ def create_evaluation_callback(
|
||||||
weights = {key: value for key, value in weights.items() if value is not None}
|
weights = {key: value for key, value in weights.items() if value is not None}
|
||||||
|
|
||||||
def evaluate() -> Tuple[float, Dict[str, float]]:
|
def evaluate() -> Tuple[float, Dict[str, float]]:
|
||||||
dev_examples = list(dev_corpus(nlp))
|
|
||||||
try:
|
try:
|
||||||
scores = nlp.evaluate(dev_examples)
|
scores = nlp.evaluate(dev_corpus(nlp))
|
||||||
except KeyError as e:
|
except KeyError as e:
|
||||||
raise KeyError(Errors.E900.format(pipeline=nlp.pipe_names)) from e
|
raise KeyError(Errors.E900.format(pipeline=nlp.pipe_names)) from e
|
||||||
# Calculate a weighted sum based on score_weights for the main score.
|
# Calculate a weighted sum based on score_weights for the main score.
|
||||||
|
|
Loading…
Reference in New Issue
Block a user