mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-27 10:26:35 +03:00
Update parser training example
This commit is contained in:
parent
586b9047fd
commit
b5c74dbb34
|
@ -1,75 +1,112 @@
|
||||||
|
#!/usr/bin/env python
|
||||||
|
# coding: utf8
|
||||||
|
"""
|
||||||
|
Example of training spaCy dependency parser, starting off with an existing model
|
||||||
|
or a blank model.
|
||||||
|
|
||||||
|
For more details, see the documentation:
|
||||||
|
* Training: https://alpha.spacy.io/usage/training
|
||||||
|
* Dependency Parse: https://alpha.spacy.io/usage/linguistic-features#dependency-parse
|
||||||
|
|
||||||
|
Developed for: spaCy 2.0.0a18
|
||||||
|
Last updated for: spaCy 2.0.0a18
|
||||||
|
"""
|
||||||
from __future__ import unicode_literals, print_function
|
from __future__ import unicode_literals, print_function
|
||||||
import json
|
|
||||||
import pathlib
|
|
||||||
import random
|
import random
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
import spacy
|
import spacy
|
||||||
from spacy.pipeline import DependencyParser
|
|
||||||
from spacy.gold import GoldParse
|
from spacy.gold import GoldParse
|
||||||
from spacy.tokens import Doc
|
from spacy.tokens import Doc
|
||||||
|
|
||||||
|
|
||||||
def train_parser(nlp, train_data, left_labels, right_labels):
|
# training data
|
||||||
parser = DependencyParser(
|
TRAIN_DATA = [
|
||||||
nlp.vocab,
|
(
|
||||||
left_labels=left_labels,
|
['They', 'trade', 'mortgage', '-', 'backed', 'securities', '.'],
|
||||||
right_labels=right_labels)
|
[1, 1, 4, 4, 5, 1, 1],
|
||||||
for itn in range(1000):
|
['nsubj', 'ROOT', 'compound', 'punct', 'nmod', 'dobj', 'punct']
|
||||||
random.shuffle(train_data)
|
),
|
||||||
loss = 0
|
(
|
||||||
for words, heads, deps in train_data:
|
['I', 'like', 'London', 'and', 'Berlin', '.'],
|
||||||
doc = Doc(nlp.vocab, words=words)
|
[1, 1, 1, 2, 2, 1],
|
||||||
gold = GoldParse(doc, heads=heads, deps=deps)
|
['nsubj', 'ROOT', 'dobj', 'cc', 'conj', 'punct']
|
||||||
loss += parser.update(doc, gold)
|
)
|
||||||
parser.model.end_training()
|
]
|
||||||
return parser
|
|
||||||
|
|
||||||
|
|
||||||
def main(model_dir=None):
|
def main(model=None, output_dir=None, n_iter=1000):
|
||||||
if model_dir is not None:
|
"""Load the model, set up the pipeline and train the parser.
|
||||||
model_dir = pathlib.Path(model_dir)
|
|
||||||
if not model_dir.exists():
|
|
||||||
model_dir.mkdir()
|
|
||||||
assert model_dir.is_dir()
|
|
||||||
|
|
||||||
nlp = spacy.load('en', tagger=False, parser=False, entity=False, add_vectors=False)
|
model (unicode): Model name to start off with. If None, a blank English
|
||||||
|
Language class is created.
|
||||||
|
output_dir (unicode / Path): Optional output directory. If None, no model
|
||||||
|
will be saved.
|
||||||
|
n_iter (int): Number of iterations during training.
|
||||||
|
"""
|
||||||
|
if model is not None:
|
||||||
|
nlp = spacy.load(model) # load existing spaCy model
|
||||||
|
print("Loaded model '%s'" % model)
|
||||||
|
else:
|
||||||
|
nlp = spacy.blank('en') # create blank Language class
|
||||||
|
print("Created blank 'en' model")
|
||||||
|
|
||||||
train_data = [
|
# add the parser to the pipeline if it doesn't exist
|
||||||
(
|
# nlp.create_pipe works for built-ins that are registered with spaCy
|
||||||
['They', 'trade', 'mortgage', '-', 'backed', 'securities', '.'],
|
if 'parser' not in nlp.pipe_names:
|
||||||
[1, 1, 4, 4, 5, 1, 1],
|
parser = nlp.create_pipe('parser')
|
||||||
['nsubj', 'ROOT', 'compound', 'punct', 'nmod', 'dobj', 'punct']
|
nlp.add_pipe(parser, first=True)
|
||||||
),
|
# otherwise, get it, so we can add labels to it
|
||||||
(
|
else:
|
||||||
['I', 'like', 'London', 'and', 'Berlin', '.'],
|
parser = nlp.get_pipe('parser')
|
||||||
[1, 1, 1, 2, 2, 1],
|
|
||||||
['nsubj', 'ROOT', 'dobj', 'cc', 'conj', 'punct']
|
|
||||||
)
|
|
||||||
]
|
|
||||||
left_labels = set()
|
|
||||||
right_labels = set()
|
|
||||||
for _, heads, deps in train_data:
|
|
||||||
for i, (head, dep) in enumerate(zip(heads, deps)):
|
|
||||||
if i < head:
|
|
||||||
left_labels.add(dep)
|
|
||||||
elif i > head:
|
|
||||||
right_labels.add(dep)
|
|
||||||
parser = train_parser(nlp, train_data, sorted(left_labels), sorted(right_labels))
|
|
||||||
|
|
||||||
doc = Doc(nlp.vocab, words=['I', 'like', 'securities', '.'])
|
# add labels to the parser
|
||||||
parser(doc)
|
for _, heads, deps in TRAIN_DATA:
|
||||||
for word in doc:
|
for dep in deps:
|
||||||
print(word.text, word.dep_, word.head.text)
|
parser.add_label(dep)
|
||||||
|
|
||||||
if model_dir is not None:
|
# get names of other pipes to disable them during training
|
||||||
with (model_dir / 'config.json').open('w') as file_:
|
other_pipes = [pipe for pipe in nlp.pipe_names if pipe != 'parser']
|
||||||
json.dump(parser.cfg, file_)
|
with nlp.disable_pipes(*other_pipes) as disabled: # only train parser
|
||||||
parser.model.dump(str(model_dir / 'model'))
|
optimizer = nlp.begin_training(lambda: [])
|
||||||
|
for itn in range(n_iter):
|
||||||
|
random.shuffle(TRAIN_DATA)
|
||||||
|
losses = {}
|
||||||
|
for words, heads, deps in TRAIN_DATA:
|
||||||
|
doc = Doc(nlp.vocab, words=words)
|
||||||
|
gold = GoldParse(doc, heads=heads, deps=deps)
|
||||||
|
nlp.update([doc], [gold], sgd=optimizer, losses=losses)
|
||||||
|
print(losses)
|
||||||
|
|
||||||
|
# test the trained model
|
||||||
|
test_text = "I like securities."
|
||||||
|
doc = nlp(test_text)
|
||||||
|
print('Dependencies', [(t.text, t.dep_, t.head.text) for t in doc])
|
||||||
|
|
||||||
|
# save model to output directory
|
||||||
|
if output_dir is not None:
|
||||||
|
output_dir = Path(output_dir)
|
||||||
|
if not output_dir.exists():
|
||||||
|
output_dir.mkdir()
|
||||||
|
nlp.to_disk(output_dir)
|
||||||
|
print("Saved model to", output_dir)
|
||||||
|
|
||||||
|
# test the save model
|
||||||
|
print("Loading from", output_dir)
|
||||||
|
nlp2 = spacy.load(output_dir)
|
||||||
|
doc = nlp2(test_text)
|
||||||
|
print('Dependencies', [(t.text, t.dep_, t.head.text) for t in doc])
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
main()
|
import plac
|
||||||
# I nsubj like
|
plac.call(main)
|
||||||
# like ROOT like
|
|
||||||
# securities dobj like
|
# expected result:
|
||||||
# . cc securities
|
# [
|
||||||
|
# ('I', 'nsubj', 'like'),
|
||||||
|
# ('like', 'ROOT', 'like'),
|
||||||
|
# ('securities', 'dobj', 'like'),
|
||||||
|
# ('.', 'punct', 'like')
|
||||||
|
# ]
|
||||||
|
|
Loading…
Reference in New Issue
Block a user