Update parser training example

This commit is contained in:
ines 2017-10-26 15:15:37 +02:00
parent 586b9047fd
commit b5c74dbb34

View File

@ -1,40 +1,28 @@
#!/usr/bin/env python
# coding: utf8
"""
Example of training spaCy dependency parser, starting off with an existing model
or a blank model.
For more details, see the documentation:
* Training: https://alpha.spacy.io/usage/training
* Dependency Parse: https://alpha.spacy.io/usage/linguistic-features#dependency-parse
Developed for: spaCy 2.0.0a18
Last updated for: spaCy 2.0.0a18
"""
from __future__ import unicode_literals, print_function
import json
import pathlib
import random
from pathlib import Path
import spacy
from spacy.pipeline import DependencyParser
from spacy.gold import GoldParse
from spacy.tokens import Doc
def train_parser(nlp, train_data, left_labels, right_labels):
parser = DependencyParser(
nlp.vocab,
left_labels=left_labels,
right_labels=right_labels)
for itn in range(1000):
random.shuffle(train_data)
loss = 0
for words, heads, deps in train_data:
doc = Doc(nlp.vocab, words=words)
gold = GoldParse(doc, heads=heads, deps=deps)
loss += parser.update(doc, gold)
parser.model.end_training()
return parser
def main(model_dir=None):
if model_dir is not None:
model_dir = pathlib.Path(model_dir)
if not model_dir.exists():
model_dir.mkdir()
assert model_dir.is_dir()
nlp = spacy.load('en', tagger=False, parser=False, entity=False, add_vectors=False)
train_data = [
# training data
TRAIN_DATA = [
(
['They', 'trade', 'mortgage', '-', 'backed', 'securities', '.'],
[1, 1, 4, 4, 5, 1, 1],
@ -46,30 +34,79 @@ def main(model_dir=None):
['nsubj', 'ROOT', 'dobj', 'cc', 'conj', 'punct']
)
]
left_labels = set()
right_labels = set()
for _, heads, deps in train_data:
for i, (head, dep) in enumerate(zip(heads, deps)):
if i < head:
left_labels.add(dep)
elif i > head:
right_labels.add(dep)
parser = train_parser(nlp, train_data, sorted(left_labels), sorted(right_labels))
doc = Doc(nlp.vocab, words=['I', 'like', 'securities', '.'])
parser(doc)
for word in doc:
print(word.text, word.dep_, word.head.text)
if model_dir is not None:
with (model_dir / 'config.json').open('w') as file_:
json.dump(parser.cfg, file_)
parser.model.dump(str(model_dir / 'model'))
def main(model=None, output_dir=None, n_iter=1000):
"""Load the model, set up the pipeline and train the parser.
model (unicode): Model name to start off with. If None, a blank English
Language class is created.
output_dir (unicode / Path): Optional output directory. If None, no model
will be saved.
n_iter (int): Number of iterations during training.
"""
if model is not None:
nlp = spacy.load(model) # load existing spaCy model
print("Loaded model '%s'" % model)
else:
nlp = spacy.blank('en') # create blank Language class
print("Created blank 'en' model")
# add the parser to the pipeline if it doesn't exist
# nlp.create_pipe works for built-ins that are registered with spaCy
if 'parser' not in nlp.pipe_names:
parser = nlp.create_pipe('parser')
nlp.add_pipe(parser, first=True)
# otherwise, get it, so we can add labels to it
else:
parser = nlp.get_pipe('parser')
# add labels to the parser
for _, heads, deps in TRAIN_DATA:
for dep in deps:
parser.add_label(dep)
# get names of other pipes to disable them during training
other_pipes = [pipe for pipe in nlp.pipe_names if pipe != 'parser']
with nlp.disable_pipes(*other_pipes) as disabled: # only train parser
optimizer = nlp.begin_training(lambda: [])
for itn in range(n_iter):
random.shuffle(TRAIN_DATA)
losses = {}
for words, heads, deps in TRAIN_DATA:
doc = Doc(nlp.vocab, words=words)
gold = GoldParse(doc, heads=heads, deps=deps)
nlp.update([doc], [gold], sgd=optimizer, losses=losses)
print(losses)
# test the trained model
test_text = "I like securities."
doc = nlp(test_text)
print('Dependencies', [(t.text, t.dep_, t.head.text) for t in doc])
# save model to output directory
if output_dir is not None:
output_dir = Path(output_dir)
if not output_dir.exists():
output_dir.mkdir()
nlp.to_disk(output_dir)
print("Saved model to", output_dir)
# test the save model
print("Loading from", output_dir)
nlp2 = spacy.load(output_dir)
doc = nlp2(test_text)
print('Dependencies', [(t.text, t.dep_, t.head.text) for t in doc])
if __name__ == '__main__':
main()
# I nsubj like
# like ROOT like
# securities dobj like
# . cc securities
import plac
plac.call(main)
# expected result:
# [
# ('I', 'nsubj', 'like'),
# ('like', 'ROOT', 'like'),
# ('securities', 'dobj', 'like'),
# ('.', 'punct', 'like')
# ]