mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-24 00:46:28 +03:00
Update textcat example
This commit is contained in:
parent
4eb5bd02e7
commit
b61866a2e4
|
@ -1,58 +1,119 @@
|
|||
'''Train a multi-label convolutional neural network text classifier,
|
||||
using the spacy.pipeline.TextCategorizer component. The model is then added
|
||||
to spacy.pipeline, and predictions are available at `doc.cats`.
|
||||
'''
|
||||
from __future__ import unicode_literals
|
||||
#!/usr/bin/env python
|
||||
# coding: utf8
|
||||
"""Train a multi-label convolutional neural network text classifier on the
|
||||
IMDB dataset, using the TextCategorizer component. The dataset will be loaded
|
||||
automatically via Thinc's built-in dataset loader. The model is then added to
|
||||
spacy.pipeline, and predictions are available via `doc.cats`.
|
||||
|
||||
For more details, see the documentation:
|
||||
* Training: https://alpha.spacy.io/usage/training
|
||||
* Text classification: https://alpha.spacy.io/usage/text-classification
|
||||
|
||||
Developed for: spaCy 2.0.0a18
|
||||
Last updated for: spaCy 2.0.0a18
|
||||
"""
|
||||
from __future__ import unicode_literals, print_function
|
||||
import plac
|
||||
import random
|
||||
import tqdm
|
||||
|
||||
from thinc.neural.optimizers import Adam
|
||||
from thinc.neural.ops import NumpyOps
|
||||
from pathlib import Path
|
||||
import thinc.extra.datasets
|
||||
|
||||
import spacy.lang.en
|
||||
import spacy
|
||||
from spacy.gold import GoldParse, minibatch
|
||||
from spacy.util import compounding
|
||||
from spacy.pipeline import TextCategorizer
|
||||
|
||||
# TODO: Remove this once we're not supporting models trained with thinc <6.9.0
|
||||
import thinc.neural._classes.layernorm
|
||||
thinc.neural._classes.layernorm.set_compat_six_eight(False)
|
||||
|
||||
@plac.annotations(
|
||||
model=("Model name. Defaults to blank 'en' model.", "option", "m", str),
|
||||
output_dir=("Optional output directory", "option", "o", Path),
|
||||
n_iter=("Number of training iterations", "option", "n", int))
|
||||
def main(model=None, output_dir=None, n_iter=20):
|
||||
if model is not None:
|
||||
nlp = spacy.load(model) # load existing spaCy model
|
||||
print("Loaded model '%s'" % model)
|
||||
else:
|
||||
nlp = spacy.blank('en') # create blank Language class
|
||||
print("Created blank 'en' model")
|
||||
|
||||
def train_textcat(tokenizer, textcat,
|
||||
train_texts, train_cats, dev_texts, dev_cats,
|
||||
n_iter=20):
|
||||
'''
|
||||
Train the TextCategorizer without associated pipeline.
|
||||
'''
|
||||
textcat.begin_training()
|
||||
optimizer = Adam(NumpyOps(), 0.001)
|
||||
train_docs = [tokenizer(text) for text in train_texts]
|
||||
# add the text classifier to the pipeline if it doesn't exist
|
||||
# nlp.create_pipe works for built-ins that are registered with spaCy
|
||||
if 'textcat' not in nlp.pipe_names:
|
||||
# textcat = nlp.create_pipe('textcat')
|
||||
textcat = TextCategorizer(nlp.vocab, labels=['POSITIVE'])
|
||||
nlp.add_pipe(textcat, first=True)
|
||||
# otherwise, get it, so we can add labels to it
|
||||
else:
|
||||
textcat = nlp.get_pipe('textcat')
|
||||
|
||||
# add label to text classifier
|
||||
# textcat.add_label('POSITIVE')
|
||||
|
||||
# load the IMBD dataset
|
||||
print("Loading IMDB data...")
|
||||
(train_texts, train_cats), (dev_texts, dev_cats) = load_data(limit=2000)
|
||||
train_docs = [nlp.tokenizer(text) for text in train_texts]
|
||||
train_gold = [GoldParse(doc, cats=cats) for doc, cats in
|
||||
zip(train_docs, train_cats)]
|
||||
train_data = list(zip(train_docs, train_gold))
|
||||
batch_sizes = compounding(4., 128., 1.001)
|
||||
for i in range(n_iter):
|
||||
losses = {}
|
||||
# Progress bar and minibatching
|
||||
batches = minibatch(tqdm.tqdm(train_data, leave=False), size=batch_sizes)
|
||||
for batch in batches:
|
||||
docs, golds = zip(*batch)
|
||||
textcat.update(docs, golds, sgd=optimizer, drop=0.2,
|
||||
losses=losses)
|
||||
with textcat.model.use_params(optimizer.averages):
|
||||
scores = evaluate(tokenizer, textcat, dev_texts, dev_cats)
|
||||
yield losses['textcat'], scores
|
||||
|
||||
# get names of other pipes to disable them during training
|
||||
other_pipes = [pipe for pipe in nlp.pipe_names if pipe != 'textcat']
|
||||
with nlp.disable_pipes(*other_pipes): # only train textcat
|
||||
optimizer = nlp.begin_training(lambda: [])
|
||||
print("Training the model...")
|
||||
print('{:^5}\t{:^5}\t{:^5}\t{:^5}'.format('LOSS', 'P', 'R', 'F'))
|
||||
for i in range(n_iter):
|
||||
losses = {}
|
||||
# batch up the examples using spaCy's minibatch
|
||||
batches = minibatch(train_data, size=compounding(4., 128., 1.001))
|
||||
for batch in batches:
|
||||
docs, golds = zip(*batch)
|
||||
nlp.update(docs, golds, sgd=optimizer, drop=0.2, losses=losses)
|
||||
with textcat.model.use_params(optimizer.averages):
|
||||
# evaluate on the dev data split off in load_data()
|
||||
scores = evaluate(nlp.tokenizer, textcat, dev_texts, dev_cats)
|
||||
print('{0:.3f}\t{0:.3f}\t{0:.3f}\t{0:.3f}' # print a simple table
|
||||
.format(losses['textcat'], scores['textcat_p'],
|
||||
scores['textcat_r'], scores['textcat_f']))
|
||||
|
||||
# test the trained model
|
||||
test_text = "This movie sucked"
|
||||
doc = nlp(test_text)
|
||||
print(test_text, doc.cats)
|
||||
|
||||
if output_dir is not None:
|
||||
output_dir = Path(output_dir)
|
||||
if not output_dir.exists():
|
||||
output_dir.mkdir()
|
||||
nlp.to_disk(output_dir)
|
||||
print("Saved model to", output_dir)
|
||||
|
||||
# test the saved model
|
||||
print("Loading from", output_dir)
|
||||
nlp2 = spacy.load(output_dir)
|
||||
doc2 = nlp2(test_text)
|
||||
print(test_text, doc2.cats)
|
||||
|
||||
|
||||
def load_data(limit=0, split=0.8):
|
||||
"""Load data from the IMDB dataset."""
|
||||
# Partition off part of the train data for evaluation
|
||||
train_data, _ = thinc.extra.datasets.imdb()
|
||||
random.shuffle(train_data)
|
||||
train_data = train_data[-limit:]
|
||||
texts, labels = zip(*train_data)
|
||||
cats = [{'POSITIVE': bool(y)} for y in labels]
|
||||
split = int(len(train_data) * split)
|
||||
return (texts[:split], cats[:split]), (texts[split:], cats[split:])
|
||||
|
||||
|
||||
def evaluate(tokenizer, textcat, texts, cats):
|
||||
docs = (tokenizer(text) for text in texts)
|
||||
tp = 1e-8 # True positives
|
||||
fp = 1e-8 # False positives
|
||||
fn = 1e-8 # False negatives
|
||||
tn = 1e-8 # True negatives
|
||||
tp = 1e-8 # True positives
|
||||
fp = 1e-8 # False positives
|
||||
fn = 1e-8 # False negatives
|
||||
tn = 1e-8 # True negatives
|
||||
for i, doc in enumerate(textcat.pipe(docs)):
|
||||
gold = cats[i]
|
||||
for label, score in doc.cats.items():
|
||||
|
@ -66,55 +127,10 @@ def evaluate(tokenizer, textcat, texts, cats):
|
|||
tn += 1
|
||||
elif score < 0.5 and gold[label] >= 0.5:
|
||||
fn += 1
|
||||
precis = tp / (tp + fp)
|
||||
precision = tp / (tp + fp)
|
||||
recall = tp / (tp + fn)
|
||||
fscore = 2 * (precis * recall) / (precis + recall)
|
||||
return {'textcat_p': precis, 'textcat_r': recall, 'textcat_f': fscore}
|
||||
|
||||
|
||||
def load_data(limit=0):
|
||||
# Partition off part of the train data --- avoid running experiments
|
||||
# against test.
|
||||
train_data, _ = thinc.extra.datasets.imdb()
|
||||
|
||||
random.shuffle(train_data)
|
||||
train_data = train_data[-limit:]
|
||||
|
||||
texts, labels = zip(*train_data)
|
||||
cats = [{'POSITIVE': bool(y)} for y in labels]
|
||||
|
||||
split = int(len(train_data) * 0.8)
|
||||
|
||||
train_texts = texts[:split]
|
||||
train_cats = cats[:split]
|
||||
dev_texts = texts[split:]
|
||||
dev_cats = cats[split:]
|
||||
return (train_texts, train_cats), (dev_texts, dev_cats)
|
||||
|
||||
|
||||
def main(model_loc=None):
|
||||
nlp = spacy.lang.en.English()
|
||||
tokenizer = nlp.tokenizer
|
||||
textcat = TextCategorizer(tokenizer.vocab, labels=['POSITIVE'])
|
||||
|
||||
print("Load IMDB data")
|
||||
(train_texts, train_cats), (dev_texts, dev_cats) = load_data(limit=2000)
|
||||
|
||||
print("Itn.\tLoss\tP\tR\tF")
|
||||
progress = '{i:d} {loss:.3f} {textcat_p:.3f} {textcat_r:.3f} {textcat_f:.3f}'
|
||||
|
||||
for i, (loss, scores) in enumerate(train_textcat(tokenizer, textcat,
|
||||
train_texts, train_cats,
|
||||
dev_texts, dev_cats, n_iter=20)):
|
||||
print(progress.format(i=i, loss=loss, **scores))
|
||||
# How to save, load and use
|
||||
nlp.pipeline.append(textcat)
|
||||
if model_loc is not None:
|
||||
nlp.to_disk(model_loc)
|
||||
|
||||
nlp = spacy.load(model_loc)
|
||||
doc = nlp(u'This movie sucked!')
|
||||
print(doc.cats)
|
||||
f_score = 2 * (precision * recall) / (precision + recall)
|
||||
return {'textcat_p': precision, 'textcat_r': recall, 'textcat_f': f_score}
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
|
Loading…
Reference in New Issue
Block a user