mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 10:16:27 +03:00
Update textcat example
This commit is contained in:
parent
4eb5bd02e7
commit
b61866a2e4
|
@ -1,50 +1,111 @@
|
||||||
'''Train a multi-label convolutional neural network text classifier,
|
#!/usr/bin/env python
|
||||||
using the spacy.pipeline.TextCategorizer component. The model is then added
|
# coding: utf8
|
||||||
to spacy.pipeline, and predictions are available at `doc.cats`.
|
"""Train a multi-label convolutional neural network text classifier on the
|
||||||
'''
|
IMDB dataset, using the TextCategorizer component. The dataset will be loaded
|
||||||
from __future__ import unicode_literals
|
automatically via Thinc's built-in dataset loader. The model is then added to
|
||||||
|
spacy.pipeline, and predictions are available via `doc.cats`.
|
||||||
|
|
||||||
|
For more details, see the documentation:
|
||||||
|
* Training: https://alpha.spacy.io/usage/training
|
||||||
|
* Text classification: https://alpha.spacy.io/usage/text-classification
|
||||||
|
|
||||||
|
Developed for: spaCy 2.0.0a18
|
||||||
|
Last updated for: spaCy 2.0.0a18
|
||||||
|
"""
|
||||||
|
from __future__ import unicode_literals, print_function
|
||||||
import plac
|
import plac
|
||||||
import random
|
import random
|
||||||
import tqdm
|
from pathlib import Path
|
||||||
|
|
||||||
from thinc.neural.optimizers import Adam
|
|
||||||
from thinc.neural.ops import NumpyOps
|
|
||||||
import thinc.extra.datasets
|
import thinc.extra.datasets
|
||||||
|
|
||||||
import spacy.lang.en
|
import spacy
|
||||||
from spacy.gold import GoldParse, minibatch
|
from spacy.gold import GoldParse, minibatch
|
||||||
from spacy.util import compounding
|
from spacy.util import compounding
|
||||||
from spacy.pipeline import TextCategorizer
|
from spacy.pipeline import TextCategorizer
|
||||||
|
|
||||||
# TODO: Remove this once we're not supporting models trained with thinc <6.9.0
|
|
||||||
import thinc.neural._classes.layernorm
|
|
||||||
thinc.neural._classes.layernorm.set_compat_six_eight(False)
|
|
||||||
|
|
||||||
|
@plac.annotations(
|
||||||
|
model=("Model name. Defaults to blank 'en' model.", "option", "m", str),
|
||||||
|
output_dir=("Optional output directory", "option", "o", Path),
|
||||||
|
n_iter=("Number of training iterations", "option", "n", int))
|
||||||
|
def main(model=None, output_dir=None, n_iter=20):
|
||||||
|
if model is not None:
|
||||||
|
nlp = spacy.load(model) # load existing spaCy model
|
||||||
|
print("Loaded model '%s'" % model)
|
||||||
|
else:
|
||||||
|
nlp = spacy.blank('en') # create blank Language class
|
||||||
|
print("Created blank 'en' model")
|
||||||
|
|
||||||
def train_textcat(tokenizer, textcat,
|
# add the text classifier to the pipeline if it doesn't exist
|
||||||
train_texts, train_cats, dev_texts, dev_cats,
|
# nlp.create_pipe works for built-ins that are registered with spaCy
|
||||||
n_iter=20):
|
if 'textcat' not in nlp.pipe_names:
|
||||||
'''
|
# textcat = nlp.create_pipe('textcat')
|
||||||
Train the TextCategorizer without associated pipeline.
|
textcat = TextCategorizer(nlp.vocab, labels=['POSITIVE'])
|
||||||
'''
|
nlp.add_pipe(textcat, first=True)
|
||||||
textcat.begin_training()
|
# otherwise, get it, so we can add labels to it
|
||||||
optimizer = Adam(NumpyOps(), 0.001)
|
else:
|
||||||
train_docs = [tokenizer(text) for text in train_texts]
|
textcat = nlp.get_pipe('textcat')
|
||||||
|
|
||||||
|
# add label to text classifier
|
||||||
|
# textcat.add_label('POSITIVE')
|
||||||
|
|
||||||
|
# load the IMBD dataset
|
||||||
|
print("Loading IMDB data...")
|
||||||
|
(train_texts, train_cats), (dev_texts, dev_cats) = load_data(limit=2000)
|
||||||
|
train_docs = [nlp.tokenizer(text) for text in train_texts]
|
||||||
train_gold = [GoldParse(doc, cats=cats) for doc, cats in
|
train_gold = [GoldParse(doc, cats=cats) for doc, cats in
|
||||||
zip(train_docs, train_cats)]
|
zip(train_docs, train_cats)]
|
||||||
train_data = list(zip(train_docs, train_gold))
|
train_data = list(zip(train_docs, train_gold))
|
||||||
batch_sizes = compounding(4., 128., 1.001)
|
|
||||||
|
# get names of other pipes to disable them during training
|
||||||
|
other_pipes = [pipe for pipe in nlp.pipe_names if pipe != 'textcat']
|
||||||
|
with nlp.disable_pipes(*other_pipes): # only train textcat
|
||||||
|
optimizer = nlp.begin_training(lambda: [])
|
||||||
|
print("Training the model...")
|
||||||
|
print('{:^5}\t{:^5}\t{:^5}\t{:^5}'.format('LOSS', 'P', 'R', 'F'))
|
||||||
for i in range(n_iter):
|
for i in range(n_iter):
|
||||||
losses = {}
|
losses = {}
|
||||||
# Progress bar and minibatching
|
# batch up the examples using spaCy's minibatch
|
||||||
batches = minibatch(tqdm.tqdm(train_data, leave=False), size=batch_sizes)
|
batches = minibatch(train_data, size=compounding(4., 128., 1.001))
|
||||||
for batch in batches:
|
for batch in batches:
|
||||||
docs, golds = zip(*batch)
|
docs, golds = zip(*batch)
|
||||||
textcat.update(docs, golds, sgd=optimizer, drop=0.2,
|
nlp.update(docs, golds, sgd=optimizer, drop=0.2, losses=losses)
|
||||||
losses=losses)
|
|
||||||
with textcat.model.use_params(optimizer.averages):
|
with textcat.model.use_params(optimizer.averages):
|
||||||
scores = evaluate(tokenizer, textcat, dev_texts, dev_cats)
|
# evaluate on the dev data split off in load_data()
|
||||||
yield losses['textcat'], scores
|
scores = evaluate(nlp.tokenizer, textcat, dev_texts, dev_cats)
|
||||||
|
print('{0:.3f}\t{0:.3f}\t{0:.3f}\t{0:.3f}' # print a simple table
|
||||||
|
.format(losses['textcat'], scores['textcat_p'],
|
||||||
|
scores['textcat_r'], scores['textcat_f']))
|
||||||
|
|
||||||
|
# test the trained model
|
||||||
|
test_text = "This movie sucked"
|
||||||
|
doc = nlp(test_text)
|
||||||
|
print(test_text, doc.cats)
|
||||||
|
|
||||||
|
if output_dir is not None:
|
||||||
|
output_dir = Path(output_dir)
|
||||||
|
if not output_dir.exists():
|
||||||
|
output_dir.mkdir()
|
||||||
|
nlp.to_disk(output_dir)
|
||||||
|
print("Saved model to", output_dir)
|
||||||
|
|
||||||
|
# test the saved model
|
||||||
|
print("Loading from", output_dir)
|
||||||
|
nlp2 = spacy.load(output_dir)
|
||||||
|
doc2 = nlp2(test_text)
|
||||||
|
print(test_text, doc2.cats)
|
||||||
|
|
||||||
|
|
||||||
|
def load_data(limit=0, split=0.8):
|
||||||
|
"""Load data from the IMDB dataset."""
|
||||||
|
# Partition off part of the train data for evaluation
|
||||||
|
train_data, _ = thinc.extra.datasets.imdb()
|
||||||
|
random.shuffle(train_data)
|
||||||
|
train_data = train_data[-limit:]
|
||||||
|
texts, labels = zip(*train_data)
|
||||||
|
cats = [{'POSITIVE': bool(y)} for y in labels]
|
||||||
|
split = int(len(train_data) * split)
|
||||||
|
return (texts[:split], cats[:split]), (texts[split:], cats[split:])
|
||||||
|
|
||||||
|
|
||||||
def evaluate(tokenizer, textcat, texts, cats):
|
def evaluate(tokenizer, textcat, texts, cats):
|
||||||
|
@ -66,55 +127,10 @@ def evaluate(tokenizer, textcat, texts, cats):
|
||||||
tn += 1
|
tn += 1
|
||||||
elif score < 0.5 and gold[label] >= 0.5:
|
elif score < 0.5 and gold[label] >= 0.5:
|
||||||
fn += 1
|
fn += 1
|
||||||
precis = tp / (tp + fp)
|
precision = tp / (tp + fp)
|
||||||
recall = tp / (tp + fn)
|
recall = tp / (tp + fn)
|
||||||
fscore = 2 * (precis * recall) / (precis + recall)
|
f_score = 2 * (precision * recall) / (precision + recall)
|
||||||
return {'textcat_p': precis, 'textcat_r': recall, 'textcat_f': fscore}
|
return {'textcat_p': precision, 'textcat_r': recall, 'textcat_f': f_score}
|
||||||
|
|
||||||
|
|
||||||
def load_data(limit=0):
|
|
||||||
# Partition off part of the train data --- avoid running experiments
|
|
||||||
# against test.
|
|
||||||
train_data, _ = thinc.extra.datasets.imdb()
|
|
||||||
|
|
||||||
random.shuffle(train_data)
|
|
||||||
train_data = train_data[-limit:]
|
|
||||||
|
|
||||||
texts, labels = zip(*train_data)
|
|
||||||
cats = [{'POSITIVE': bool(y)} for y in labels]
|
|
||||||
|
|
||||||
split = int(len(train_data) * 0.8)
|
|
||||||
|
|
||||||
train_texts = texts[:split]
|
|
||||||
train_cats = cats[:split]
|
|
||||||
dev_texts = texts[split:]
|
|
||||||
dev_cats = cats[split:]
|
|
||||||
return (train_texts, train_cats), (dev_texts, dev_cats)
|
|
||||||
|
|
||||||
|
|
||||||
def main(model_loc=None):
|
|
||||||
nlp = spacy.lang.en.English()
|
|
||||||
tokenizer = nlp.tokenizer
|
|
||||||
textcat = TextCategorizer(tokenizer.vocab, labels=['POSITIVE'])
|
|
||||||
|
|
||||||
print("Load IMDB data")
|
|
||||||
(train_texts, train_cats), (dev_texts, dev_cats) = load_data(limit=2000)
|
|
||||||
|
|
||||||
print("Itn.\tLoss\tP\tR\tF")
|
|
||||||
progress = '{i:d} {loss:.3f} {textcat_p:.3f} {textcat_r:.3f} {textcat_f:.3f}'
|
|
||||||
|
|
||||||
for i, (loss, scores) in enumerate(train_textcat(tokenizer, textcat,
|
|
||||||
train_texts, train_cats,
|
|
||||||
dev_texts, dev_cats, n_iter=20)):
|
|
||||||
print(progress.format(i=i, loss=loss, **scores))
|
|
||||||
# How to save, load and use
|
|
||||||
nlp.pipeline.append(textcat)
|
|
||||||
if model_loc is not None:
|
|
||||||
nlp.to_disk(model_loc)
|
|
||||||
|
|
||||||
nlp = spacy.load(model_loc)
|
|
||||||
doc = nlp(u'This movie sucked!')
|
|
||||||
print(doc.cats)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
|
|
Loading…
Reference in New Issue
Block a user