Keep working through errors

This commit is contained in:
Matthew Honnibal 2021-10-27 17:10:33 +02:00
parent c538eaf1c8
commit b67dd0cf89
3 changed files with 17 additions and 28 deletions

View File

@ -133,13 +133,14 @@ def forward(model, docs_moves: Tuple[List[Doc], TransitionSystem], is_train: boo
next_states = [s for s in states if not s.is_final()] next_states = [s for s in states if not s.is_final()]
unseen_mask = _get_unseen_mask(model) unseen_mask = _get_unseen_mask(model)
ids = numpy.zeros((len(states), nF), dtype="i") ids = numpy.zeros((len(states), nF), dtype="i")
arange = model.ops.xp.arange(nF)
while next_states: while next_states:
ids = ids[: len(next_states)] ids = ids[: len(next_states)]
for i, state in enumerate(next_states): for i, state in enumerate(next_states):
state.set_context_tokens(ids, i, nF) state.set_context_tokens(ids, i, nF)
# Sum the state features, add the bias and apply the activation (maxout) # Sum the state features, add the bias and apply the activation (maxout)
# to create the state vectors. # to create the state vectors.
preacts = _sum_state_features(ops, feats, ids) preacts = feats[ids, arange].sum(axis=1) # type: ignore
preacts += lower_b preacts += lower_b
statevecs, which = ops.maxout(preacts) statevecs, which = ops.maxout(preacts)
# Multiply the state-vector by the scores weights and add the bias, # Multiply the state-vector by the scores weights and add the bias,
@ -152,7 +153,7 @@ def forward(model, docs_moves: Tuple[List[Doc], TransitionSystem], is_train: boo
all_scores.append(scores) all_scores.append(scores)
if is_train: if is_train:
# Remember intermediate results for the backprop. # Remember intermediate results for the backprop.
all_ids.append(ids) all_ids.append(ids.copy())
all_statevecs.append(statevecs) all_statevecs.append(statevecs)
all_which.append(which) all_which.append(which)
@ -175,7 +176,7 @@ def forward(model, docs_moves: Tuple[List[Doc], TransitionSystem], is_train: boo
# Now calculate d_statevecs, by backproping through the upper linear layer. # Now calculate d_statevecs, by backproping through the upper linear layer.
d_statevecs = model.ops.gemm(d_scores, upper_W) d_statevecs = model.ops.gemm(d_scores, upper_W)
# Backprop through the maxout activation # Backprop through the maxout activation
d_preacts = model.ops.backprop_maxount(d_statevecs, which, model.get_dim("nP")) d_preacts = model.ops.backprop_maxout(d_statevecs, which, model.get_dim("nP"))
# We don't need to backprop the summation, because we pass back the IDs instead # We don't need to backprop the summation, because we pass back the IDs instead
d_tokvecs = backprop_feats((d_preacts, ids)) d_tokvecs = backprop_feats((d_preacts, ids))
return (backprop_tok2vec(d_tokvecs), None) return (backprop_tok2vec(d_tokvecs), None)
@ -191,23 +192,6 @@ def _get_unseen_mask(model: Model) -> Floats1d:
return mask return mask
def _sum_state_features(ops: Ops, feats: Floats3d, ids: Ints2d, _arange=[]) -> Floats2d:
# Here's what we're trying to implement here:
#
# for i in range(ids.shape[0]):
# for j in range(ids.shape[1]):
# output[i] += feats[ids[i, j], j]
#
# The arange thingy here is highly weird to me, but apparently
# it's how it works. If you squint a bit at the loop above I guess
# it makes sense?
if not _arange:
_arange.append(ops.xp.arange(ids.shape[1]))
if _arange[0].size != ids.shape[1]:
_arange[0] = ops.xp.arange(ids.shape[1])
return feats[ids, _arange[0]].sum(axis=1) # type: ignore
def _forward_precomputable_affine(model, X: Floats2d, is_train: bool): def _forward_precomputable_affine(model, X: Floats2d, is_train: bool):
W: Floats4d = model.get_param("lower_W") W: Floats4d = model.get_param("lower_W")
@ -265,7 +249,7 @@ def _backprop_precomputable_affine_padding(model, dY, ids):
nB = dY.shape[0] nB = dY.shape[0]
nF = model.get_dim("nF") nF = model.get_dim("nF")
nP = model.get_dim("nP") nP = model.get_dim("nP")
nO = model.get_dim("nO") nH = model.get_dim("nH")
# Backprop the "padding", used as a filler for missing values. # Backprop the "padding", used as a filler for missing values.
# Values that are missing are set to -1, and each state vector could # Values that are missing are set to -1, and each state vector could
# have multiple missing values. The padding has different values for # have multiple missing values. The padding has different values for
@ -280,8 +264,8 @@ def _backprop_precomputable_affine_padding(model, dY, ids):
# #
# (ids < 0).T @ dY # (ids < 0).T @ dY
mask = model.ops.asarray(ids < 0, dtype="f") mask = model.ops.asarray(ids < 0, dtype="f")
d_pad = model.ops.gemm(mask, dY.reshape(nB, nO * nP), trans1=True) d_pad = model.ops.gemm(mask, dY.reshape(nB, nH * nP), trans1=True)
return d_pad.reshape((1, nF, nO, nP)) return d_pad.reshape((1, nF, nH, nP))
def _infer_nO(Y: Optional[Tuple[List[State], List[Floats2d]]]) -> Optional[int]: def _infer_nO(Y: Optional[Tuple[List[State], List[Floats2d]]]) -> Optional[int]:

View File

@ -279,6 +279,7 @@ cdef void c_transition_batch(TransitionSystem moves, StateC** states, const floa
else: else:
action = moves.c[guess] action = moves.c[guess]
action.do(states[i], action.label) action.do(states[i], action.label)
states[i].history.push_back(guess)
free(is_valid) free(is_valid)

View File

@ -239,8 +239,10 @@ class Parser(TrainablePipe):
set_dropout_rate(self.model, drop) set_dropout_rate(self.model, drop)
docs = [eg.x for eg in examples] docs = [eg.x for eg in examples]
(states, scores), backprop_scores = self.model.begin_update((docs, self.moves)) (states, scores), backprop_scores = self.model.begin_update((docs, self.moves))
if sum(s.shape[0] for s in scores) == 0:
return losses
d_scores = self.get_loss((states, scores), examples) d_scores = self.get_loss((states, scores), examples)
backprop_scores(d_scores) backprop_scores((states, d_scores))
if sgd not in (None, False): if sgd not in (None, False):
self.finish_update(sgd) self.finish_update(sgd)
losses[self.name] += (d_scores**2).sum() losses[self.name] += (d_scores**2).sum()
@ -252,22 +254,24 @@ class Parser(TrainablePipe):
def get_loss(self, states_scores, examples): def get_loss(self, states_scores, examples):
states, scores = states_scores states, scores = states_scores
scores = self.model.ops.xp.vstack(scores)
costs = self._get_costs_from_histories( costs = self._get_costs_from_histories(
examples, examples,
[list(state.history) for state in states] [list(state.history) for state in states]
) )
xp = get_array_module(scores) xp = get_array_module(scores)
best_costs = costs.min(axis=1, keepdims=True) best_costs = costs.min(axis=1, keepdims=True)
is_gold = costs <= costs.min(axis=1, keepdims=True) gscores = scores.copy()
gscores = scores[is_gold] min_score = scores.min()
max_ = scores.max(axis=1) gscores[costs > best_costs] = min_score
max_ = scores.max(axis=1, keepdims=True)
gmax = gscores.max(axis=1, keepdims=True) gmax = gscores.max(axis=1, keepdims=True)
exp_scores = xp.exp(scores - max_) exp_scores = xp.exp(scores - max_)
exp_gscores = xp.exp(gscores - gmax) exp_gscores = xp.exp(gscores - gmax)
Z = exp_scores.sum(axis=1, keepdims=True) Z = exp_scores.sum(axis=1, keepdims=True)
gZ = exp_gscores.sum(axis=1, keepdims=True) gZ = exp_gscores.sum(axis=1, keepdims=True)
d_scores = exp_scores / Z d_scores = exp_scores / Z
d_scores[is_gold] -= exp_gscores / gZ d_scores -= (costs <= best_costs) * (exp_gscores / gZ)
return d_scores return d_scores
def _get_costs_from_histories(self, examples, histories): def _get_costs_from_histories(self, examples, histories):