mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-27 01:34:30 +03:00
some first experiments with different architectures and metrics
This commit is contained in:
parent
9d089c0410
commit
b6d788064a
|
@ -4,17 +4,17 @@ from __future__ import unicode_literals
|
|||
import os
|
||||
import datetime
|
||||
from os import listdir
|
||||
import numpy as np
|
||||
|
||||
from examples.pipeline.wiki_entity_linking import run_el, training_set_creator, kb_creator
|
||||
|
||||
from spacy._ml import SpacyVectors, create_default_optimizer, zero_init, cosine
|
||||
from spacy._ml import SpacyVectors, create_default_optimizer, zero_init
|
||||
|
||||
from thinc.api import chain
|
||||
from thinc.api import chain, flatten_add_lengths, with_getitem, clone, with_flatten
|
||||
from thinc.v2v import Model, Maxout, Softmax, Affine, ReLu
|
||||
from thinc.api import flatten_add_lengths
|
||||
from thinc.t2v import Pooling, sum_pool, mean_pool
|
||||
from thinc.t2t import ExtractWindow, ParametricAttention
|
||||
from thinc.misc import Residual
|
||||
from thinc.misc import Residual, LayerNorm as LN
|
||||
|
||||
""" TODO: this code needs to be implemented in pipes.pyx"""
|
||||
|
||||
|
@ -29,8 +29,8 @@ class EL_Model():
|
|||
self.nlp = nlp
|
||||
self.kb = kb
|
||||
|
||||
self.entity_encoder = self._simple_encoder(width=300)
|
||||
self.article_encoder = self._simple_encoder(width=300)
|
||||
self.entity_encoder = self._simple_encoder(in_width=300, out_width=96)
|
||||
self.article_encoder = self._simple_encoder(in_width=300, out_width=96)
|
||||
|
||||
def train_model(self, training_dir, entity_descr_output, limit=None, to_print=True):
|
||||
instances, pos_entities, neg_entities, doc_by_article = self._get_training_data(training_dir,
|
||||
|
@ -61,13 +61,36 @@ class EL_Model():
|
|||
# elif not neg_exs:
|
||||
# print("Weird. Couldn't find neg examples for", inst_cluster)
|
||||
|
||||
def _simple_encoder(self, width):
|
||||
with Model.define_operators({">>": chain}):
|
||||
def _simple_encoder(self, in_width, out_width):
|
||||
conv_depth = 1
|
||||
cnn_maxout_pieces = 3
|
||||
with Model.define_operators({">>": chain, "**": clone}):
|
||||
# encoder = SpacyVectors \
|
||||
# >> flatten_add_lengths \
|
||||
# >> ParametricAttention(in_width)\
|
||||
# >> Pooling(mean_pool) \
|
||||
# >> Residual(zero_init(Maxout(in_width, in_width))) \
|
||||
# >> zero_init(Affine(out_width, in_width, drop_factor=0.0))
|
||||
encoder = SpacyVectors \
|
||||
>> flatten_add_lengths \
|
||||
>> ParametricAttention(width)\
|
||||
>> Pooling(sum_pool) \
|
||||
>> Residual(zero_init(Maxout(width, width)))
|
||||
>> flatten_add_lengths \
|
||||
>> with_getitem(0, Affine(in_width, in_width)) \
|
||||
>> ParametricAttention(in_width) \
|
||||
>> Pooling(sum_pool) \
|
||||
>> Residual(ReLu(in_width, in_width)) ** conv_depth \
|
||||
>> zero_init(Affine(out_width, in_width, drop_factor=0.0))
|
||||
|
||||
# >> zero_init(Affine(nr_class, width, drop_factor=0.0))
|
||||
# >> logistic
|
||||
|
||||
# convolution = Residual(
|
||||
# ExtractWindow(nW=1)
|
||||
# >> LN(Maxout(width, width * 3, pieces=cnn_maxout_pieces))
|
||||
# )
|
||||
|
||||
# embed = SpacyVectors >> LN(Maxout(width, width, pieces=3))
|
||||
|
||||
# encoder = SpacyVectors >> flatten_add_lengths >> convolution ** conv_depth
|
||||
# encoder = with_flatten(embed >> convolution ** conv_depth, pad=conv_depth)
|
||||
|
||||
return encoder
|
||||
|
||||
|
@ -80,25 +103,56 @@ class EL_Model():
|
|||
doc_encoding, article_bp = self.article_encoder.begin_update([article_doc], drop=drop)
|
||||
|
||||
true_entity_encoding, true_entity_bp = self.entity_encoder.begin_update([true_entity], drop=drop)
|
||||
# true_similarity = cosine(true_entity_encoding, doc_encoding)
|
||||
# print("true_similarity", true_similarity)
|
||||
# print("encoding dim", len(true_entity_encoding[0]))
|
||||
|
||||
# for false_entity in false_entities:
|
||||
# false_entity_encoding, false_entity_bp = self.entity_encoder.begin_update([false_entity], drop=drop)
|
||||
# false_similarity = cosine(false_entity_encoding, doc_encoding)
|
||||
# print("false_similarity", false_similarity)
|
||||
consensus_encoding = self._calculate_consensus(doc_encoding, true_entity_encoding)
|
||||
consensus_encoding_t = consensus_encoding.transpose()
|
||||
|
||||
# print("entity/article output dim", len(entity_encoding[0]), len(doc_encoding[0]))
|
||||
doc_mse, doc_diffs = self._calculate_similarity(doc_encoding, consensus_encoding)
|
||||
|
||||
mse, diffs = self._calculate_similarity(true_entity_encoding, doc_encoding)
|
||||
entity_mses = list()
|
||||
|
||||
true_mse, true_diffs = self._calculate_similarity(true_entity_encoding, consensus_encoding)
|
||||
# print("true_mse", true_mse)
|
||||
# print("true_diffs", true_diffs)
|
||||
entity_mses.append(true_mse)
|
||||
# true_exp = np.exp(true_entity_encoding.dot(consensus_encoding_t))
|
||||
# print("true_exp", true_exp)
|
||||
|
||||
# false_exp_sum = 0
|
||||
|
||||
for false_entity in false_entities:
|
||||
false_entity_encoding, false_entity_bp = self.entity_encoder.begin_update([false_entity], drop=drop)
|
||||
false_mse, false_diffs = self._calculate_similarity(false_entity_encoding, consensus_encoding)
|
||||
# print("false_mse", false_mse)
|
||||
# false_exp = np.exp(false_entity_encoding.dot(consensus_encoding_t))
|
||||
# print("false_exp", false_exp)
|
||||
# print("false_diffs", false_diffs)
|
||||
entity_mses.append(false_mse)
|
||||
# if false_mse > true_mse:
|
||||
# true_diffs = true_diffs - false_diffs ???
|
||||
# false_exp_sum += false_exp
|
||||
|
||||
# prob = true_exp / false_exp_sum
|
||||
# print("prob", prob)
|
||||
|
||||
entity_mses = sorted(entity_mses)
|
||||
# mse_sum = sum(entity_mses)
|
||||
# entity_probs = [1 - x/mse_sum for x in entity_mses]
|
||||
# print("entity_mses", entity_mses)
|
||||
# print("entity_probs", entity_probs)
|
||||
true_index = entity_mses.index(true_mse)
|
||||
# print("true index", true_index)
|
||||
# print("true prob", entity_probs[true_index])
|
||||
|
||||
print(true_mse)
|
||||
|
||||
# print()
|
||||
|
||||
# TODO: proper backpropagation taking ranking of elements into account ?
|
||||
# TODO backpropagation also for negative examples
|
||||
true_entity_bp(diffs, sgd=self.sgd_entity)
|
||||
article_bp(diffs, sgd=self.sgd_article)
|
||||
print(mse)
|
||||
true_entity_bp(true_diffs, sgd=self.sgd_entity)
|
||||
article_bp(doc_diffs, sgd=self.sgd_article)
|
||||
|
||||
|
||||
# TODO delete ?
|
||||
|
@ -124,11 +178,19 @@ class EL_Model():
|
|||
|
||||
return mse
|
||||
|
||||
# TODO: expand to more than 2 vectors
|
||||
def _calculate_consensus(self, vector1, vector2):
|
||||
if len(vector1) != len(vector2):
|
||||
raise ValueError("To calculate consenus, both vectors should be of equal length")
|
||||
|
||||
avg = (vector2 + vector1) / 2
|
||||
return avg
|
||||
|
||||
def _calculate_similarity(self, vector1, vector2):
|
||||
if len(vector1) != len(vector2):
|
||||
raise ValueError("To calculate similarity, both vectors should be of equal length")
|
||||
|
||||
diffs = (vector2 - vector1)
|
||||
diffs = (vector1 - vector2)
|
||||
error_sum = (diffs ** 2).sum()
|
||||
mean_square_error = error_sum / len(vector1)
|
||||
return float(mean_square_error), diffs
|
||||
|
|
Loading…
Reference in New Issue
Block a user