mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-28 02:04:07 +03:00
Update morphologizer (#5766)
* update `Morphologizer.begin_training` for use with `Example` * make init and begin_training more consistent * add `Morphology.normalize_features` to normalize outside of `Morphology.add` * make sure `get_loss` doesn't create unknown labels when the POS and morph alignments differ
This commit is contained in:
parent
38b59d728d
commit
b81a89f0a9
|
@ -58,7 +58,7 @@ cdef class Morphology:
|
||||||
FEATURE_SEP = "|"
|
FEATURE_SEP = "|"
|
||||||
FIELD_SEP = "="
|
FIELD_SEP = "="
|
||||||
VALUE_SEP = ","
|
VALUE_SEP = ","
|
||||||
EMPTY_MORPH = "_"
|
EMPTY_MORPH = "_" # not an empty string so that the PreshMap key is not 0
|
||||||
|
|
||||||
def __init__(self, StringStore strings, tag_map, lemmatizer, exc=None):
|
def __init__(self, StringStore strings, tag_map, lemmatizer, exc=None):
|
||||||
self.mem = Pool()
|
self.mem = Pool()
|
||||||
|
@ -117,13 +117,7 @@ cdef class Morphology:
|
||||||
if not isinstance(features, dict):
|
if not isinstance(features, dict):
|
||||||
warnings.warn(Warnings.W100.format(feature=features))
|
warnings.warn(Warnings.W100.format(feature=features))
|
||||||
features = {}
|
features = {}
|
||||||
features = _normalize_props(features)
|
|
||||||
string_features = {self.strings.as_string(field): self.strings.as_string(values) for field, values in features.items()}
|
string_features = {self.strings.as_string(field): self.strings.as_string(values) for field, values in features.items()}
|
||||||
# normalized UFEATS string with sorted fields and values
|
|
||||||
norm_feats_string = self.FEATURE_SEP.join(sorted([
|
|
||||||
self.FIELD_SEP.join([field, values])
|
|
||||||
for field, values in string_features.items()
|
|
||||||
]))
|
|
||||||
# intified ("Field", "Field=Value") pairs
|
# intified ("Field", "Field=Value") pairs
|
||||||
field_feature_pairs = []
|
field_feature_pairs = []
|
||||||
for field in sorted(string_features):
|
for field in sorted(string_features):
|
||||||
|
@ -137,6 +131,7 @@ cdef class Morphology:
|
||||||
# the hash key for the tag is either the hash of the normalized UFEATS
|
# the hash key for the tag is either the hash of the normalized UFEATS
|
||||||
# string or the hash of an empty placeholder (using the empty string
|
# string or the hash of an empty placeholder (using the empty string
|
||||||
# would give a hash key of 0, which is not good for PreshMap)
|
# would give a hash key of 0, which is not good for PreshMap)
|
||||||
|
norm_feats_string = self.normalize_features(features)
|
||||||
if norm_feats_string:
|
if norm_feats_string:
|
||||||
tag.key = self.strings.add(norm_feats_string)
|
tag.key = self.strings.add(norm_feats_string)
|
||||||
else:
|
else:
|
||||||
|
@ -144,6 +139,26 @@ cdef class Morphology:
|
||||||
self.insert(tag)
|
self.insert(tag)
|
||||||
return tag.key
|
return tag.key
|
||||||
|
|
||||||
|
def normalize_features(self, features):
|
||||||
|
"""Create a normalized UFEATS string from a features string or dict.
|
||||||
|
|
||||||
|
features (Union[dict, str]): Features as dict or UFEATS string.
|
||||||
|
RETURNS (str): Features as normalized UFEATS string.
|
||||||
|
"""
|
||||||
|
if isinstance(features, str):
|
||||||
|
features = self.feats_to_dict(features)
|
||||||
|
if not isinstance(features, dict):
|
||||||
|
warnings.warn(Warnings.W100.format(feature=features))
|
||||||
|
features = {}
|
||||||
|
features = _normalize_props(features)
|
||||||
|
string_features = {self.strings.as_string(field): self.strings.as_string(values) for field, values in features.items()}
|
||||||
|
# normalized UFEATS string with sorted fields and values
|
||||||
|
norm_feats_string = self.FEATURE_SEP.join(sorted([
|
||||||
|
self.FIELD_SEP.join([field, values])
|
||||||
|
for field, values in string_features.items()
|
||||||
|
]))
|
||||||
|
return norm_feats_string or self.EMPTY_MORPH
|
||||||
|
|
||||||
cdef MorphAnalysisC create_morph_tag(self, field_feature_pairs) except *:
|
cdef MorphAnalysisC create_morph_tag(self, field_feature_pairs) except *:
|
||||||
"""Creates a MorphAnalysisC from a list of intified
|
"""Creates a MorphAnalysisC from a list of intified
|
||||||
("Field", "Field=Value") tuples where fields with multiple values have
|
("Field", "Field=Value") tuples where fields with multiple values have
|
||||||
|
|
|
@ -23,29 +23,45 @@ from .defaults import default_morphologizer
|
||||||
@component("morphologizer", assigns=["token.morph", "token.pos"], default_model=default_morphologizer)
|
@component("morphologizer", assigns=["token.morph", "token.pos"], default_model=default_morphologizer)
|
||||||
class Morphologizer(Tagger):
|
class Morphologizer(Tagger):
|
||||||
|
|
||||||
|
POS_FEAT = "POS"
|
||||||
|
|
||||||
def __init__(self, vocab, model, **cfg):
|
def __init__(self, vocab, model, **cfg):
|
||||||
self.vocab = vocab
|
self.vocab = vocab
|
||||||
self.model = model
|
self.model = model
|
||||||
self._rehearsal_model = None
|
self._rehearsal_model = None
|
||||||
self.cfg = dict(sorted(cfg.items()))
|
self.cfg = dict(sorted(cfg.items()))
|
||||||
self.cfg.setdefault("labels", {})
|
# to be able to set annotations without string operations on labels,
|
||||||
self.cfg.setdefault("morph_pos", {})
|
# store mappings from morph+POS labels to token-level annotations:
|
||||||
|
# 1) labels_morph stores a mapping from morph+POS->morph
|
||||||
|
self.cfg.setdefault("labels_morph", {})
|
||||||
|
# 2) labels_pos stores a mapping from morph+POS->POS
|
||||||
|
self.cfg.setdefault("labels_pos", {})
|
||||||
|
# add mappings for empty morph
|
||||||
|
self.cfg["labels_morph"][Morphology.EMPTY_MORPH] = Morphology.EMPTY_MORPH
|
||||||
|
self.cfg["labels_pos"][Morphology.EMPTY_MORPH] = POS_IDS[""]
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def labels(self):
|
def labels(self):
|
||||||
return tuple(self.cfg["labels"].keys())
|
return tuple(self.cfg["labels_morph"].keys())
|
||||||
|
|
||||||
def add_label(self, label):
|
def add_label(self, label):
|
||||||
if not isinstance(label, str):
|
if not isinstance(label, str):
|
||||||
raise ValueError(Errors.E187)
|
raise ValueError(Errors.E187)
|
||||||
if label in self.labels:
|
if label in self.labels:
|
||||||
return 0
|
return 0
|
||||||
morph = Morphology.feats_to_dict(label)
|
# normalize label
|
||||||
norm_morph_pos = self.vocab.strings[self.vocab.morphology.add(morph)]
|
norm_label = self.vocab.morphology.normalize_features(label)
|
||||||
pos = morph.get("POS", "")
|
# extract separate POS and morph tags
|
||||||
if norm_morph_pos not in self.cfg["labels"]:
|
label_dict = Morphology.feats_to_dict(label)
|
||||||
self.cfg["labels"][norm_morph_pos] = norm_morph_pos
|
pos = label_dict.get(self.POS_FEAT, "")
|
||||||
self.cfg["morph_pos"][norm_morph_pos] = POS_IDS[pos]
|
if self.POS_FEAT in label_dict:
|
||||||
|
label_dict.pop(self.POS_FEAT)
|
||||||
|
# normalize morph string and add to morphology table
|
||||||
|
norm_morph = self.vocab.strings[self.vocab.morphology.add(label_dict)]
|
||||||
|
# add label mappings
|
||||||
|
if norm_label not in self.cfg["labels_morph"]:
|
||||||
|
self.cfg["labels_morph"][norm_label] = norm_morph
|
||||||
|
self.cfg["labels_pos"][norm_label] = POS_IDS[pos]
|
||||||
return 1
|
return 1
|
||||||
|
|
||||||
def begin_training(self, get_examples=lambda: [], pipeline=None, sgd=None,
|
def begin_training(self, get_examples=lambda: [], pipeline=None, sgd=None,
|
||||||
|
@ -53,14 +69,16 @@ class Morphologizer(Tagger):
|
||||||
for example in get_examples():
|
for example in get_examples():
|
||||||
for i, token in enumerate(example.reference):
|
for i, token in enumerate(example.reference):
|
||||||
pos = token.pos_
|
pos = token.pos_
|
||||||
morph = token.morph
|
morph = token.morph_
|
||||||
norm_morph = self.vocab.strings[self.vocab.morphology.add(morph)]
|
# create and add the combined morph+POS label
|
||||||
|
morph_dict = Morphology.feats_to_dict(morph)
|
||||||
if pos:
|
if pos:
|
||||||
morph["POS"] = pos
|
morph_dict[self.POS_FEAT] = pos
|
||||||
norm_morph_pos = self.vocab.strings[self.vocab.morphology.add(morph)]
|
norm_label = self.vocab.strings[self.vocab.morphology.add(morph_dict)]
|
||||||
if norm_morph_pos not in self.cfg["labels"]:
|
# add label->morph and label->POS mappings
|
||||||
self.cfg["labels"][norm_morph_pos] = norm_morph
|
if norm_label not in self.cfg["labels_morph"]:
|
||||||
self.cfg["morph_pos"][norm_morph_pos] = POS_IDS[pos]
|
self.cfg["labels_morph"][norm_label] = morph
|
||||||
|
self.cfg["labels_pos"][norm_label] = POS_IDS[pos]
|
||||||
self.set_output(len(self.labels))
|
self.set_output(len(self.labels))
|
||||||
self.model.initialize()
|
self.model.initialize()
|
||||||
link_vectors_to_models(self.vocab)
|
link_vectors_to_models(self.vocab)
|
||||||
|
@ -79,8 +97,8 @@ class Morphologizer(Tagger):
|
||||||
doc_tag_ids = doc_tag_ids.get()
|
doc_tag_ids = doc_tag_ids.get()
|
||||||
for j, tag_id in enumerate(doc_tag_ids):
|
for j, tag_id in enumerate(doc_tag_ids):
|
||||||
morph = self.labels[tag_id]
|
morph = self.labels[tag_id]
|
||||||
doc.c[j].morph = self.vocab.morphology.add(self.cfg["labels"][morph])
|
doc.c[j].morph = self.vocab.morphology.add(self.cfg["labels_morph"][morph])
|
||||||
doc.c[j].pos = self.cfg["morph_pos"][morph]
|
doc.c[j].pos = self.cfg["labels_pos"][morph]
|
||||||
|
|
||||||
doc.is_morphed = True
|
doc.is_morphed = True
|
||||||
|
|
||||||
|
@ -94,14 +112,17 @@ class Morphologizer(Tagger):
|
||||||
for i in range(len(morphs)):
|
for i in range(len(morphs)):
|
||||||
pos = pos_tags[i]
|
pos = pos_tags[i]
|
||||||
morph = morphs[i]
|
morph = morphs[i]
|
||||||
feats = Morphology.feats_to_dict(morph)
|
# POS may align (same value for multiple tokens) when morph
|
||||||
|
# doesn't, so if either is None, treat both as None here so that
|
||||||
|
# truths doesn't end up with an unknown morph+POS combination
|
||||||
|
if pos is None or morph is None:
|
||||||
|
pos = None
|
||||||
|
morph = None
|
||||||
|
label_dict = Morphology.feats_to_dict(morph)
|
||||||
if pos:
|
if pos:
|
||||||
feats["POS"] = pos
|
label_dict[self.POS_FEAT] = pos
|
||||||
if len(feats) > 0:
|
label = self.vocab.strings[self.vocab.morphology.add(label_dict)]
|
||||||
morph = self.vocab.strings[self.vocab.morphology.add(feats)]
|
eg_truths.append(label)
|
||||||
if morph == "":
|
|
||||||
morph = Morphology.EMPTY_MORPH
|
|
||||||
eg_truths.append(morph)
|
|
||||||
truths.append(eg_truths)
|
truths.append(eg_truths)
|
||||||
d_scores, loss = loss_func(scores, truths)
|
d_scores, loss = loss_func(scores, truths)
|
||||||
if self.model.ops.xp.isnan(loss):
|
if self.model.ops.xp.isnan(loss):
|
||||||
|
|
|
@ -5,6 +5,7 @@ from spacy.gold import Example
|
||||||
from spacy.lang.en import English
|
from spacy.lang.en import English
|
||||||
from spacy.language import Language
|
from spacy.language import Language
|
||||||
from spacy.tests.util import make_tempdir
|
from spacy.tests.util import make_tempdir
|
||||||
|
from spacy.morphology import Morphology
|
||||||
|
|
||||||
|
|
||||||
def test_label_types():
|
def test_label_types():
|
||||||
|
@ -23,9 +24,10 @@ TRAIN_DATA = [
|
||||||
"pos": ["NOUN", "VERB", "ADJ", "NOUN"],
|
"pos": ["NOUN", "VERB", "ADJ", "NOUN"],
|
||||||
},
|
},
|
||||||
),
|
),
|
||||||
|
# test combinations of morph+POS
|
||||||
(
|
(
|
||||||
"Eat blue ham",
|
"Eat blue ham",
|
||||||
{"morphs": ["Feat=V", "Feat=J", "Feat=N"], "pos": ["VERB", "ADJ", "NOUN"]},
|
{"morphs": ["Feat=V", "", ""], "pos": ["", "ADJ", ""]},
|
||||||
),
|
),
|
||||||
]
|
]
|
||||||
|
|
||||||
|
@ -38,7 +40,12 @@ def test_overfitting_IO():
|
||||||
for inst in TRAIN_DATA:
|
for inst in TRAIN_DATA:
|
||||||
train_examples.append(Example.from_dict(nlp.make_doc(inst[0]), inst[1]))
|
train_examples.append(Example.from_dict(nlp.make_doc(inst[0]), inst[1]))
|
||||||
for morph, pos in zip(inst[1]["morphs"], inst[1]["pos"]):
|
for morph, pos in zip(inst[1]["morphs"], inst[1]["pos"]):
|
||||||
morphologizer.add_label(morph + "|POS=" + pos)
|
if morph and pos:
|
||||||
|
morphologizer.add_label(morph + Morphology.FEATURE_SEP + "POS" + Morphology.FIELD_SEP + pos)
|
||||||
|
elif pos:
|
||||||
|
morphologizer.add_label("POS" + Morphology.FIELD_SEP + pos)
|
||||||
|
elif morph:
|
||||||
|
morphologizer.add_label(morph)
|
||||||
nlp.add_pipe(morphologizer)
|
nlp.add_pipe(morphologizer)
|
||||||
optimizer = nlp.begin_training()
|
optimizer = nlp.begin_training()
|
||||||
|
|
||||||
|
@ -48,19 +55,27 @@ def test_overfitting_IO():
|
||||||
assert losses["morphologizer"] < 0.00001
|
assert losses["morphologizer"] < 0.00001
|
||||||
|
|
||||||
# test the trained model
|
# test the trained model
|
||||||
test_text = "I like blue eggs"
|
test_text = "I like blue ham"
|
||||||
doc = nlp(test_text)
|
doc = nlp(test_text)
|
||||||
gold_morphs = [
|
gold_morphs = [
|
||||||
"Feat=N|POS=NOUN",
|
"Feat=N",
|
||||||
"Feat=V|POS=VERB",
|
"Feat=V",
|
||||||
"Feat=J|POS=ADJ",
|
"",
|
||||||
"Feat=N|POS=NOUN",
|
"",
|
||||||
|
]
|
||||||
|
gold_pos_tags = [
|
||||||
|
"NOUN",
|
||||||
|
"VERB",
|
||||||
|
"ADJ",
|
||||||
|
"",
|
||||||
]
|
]
|
||||||
assert [t.morph_ for t in doc] == gold_morphs
|
assert [t.morph_ for t in doc] == gold_morphs
|
||||||
|
assert [t.pos_ for t in doc] == gold_pos_tags
|
||||||
|
|
||||||
# Also test the results are still the same after IO
|
# Also test the results are still the same after IO
|
||||||
with make_tempdir() as tmp_dir:
|
with make_tempdir() as tmp_dir:
|
||||||
nlp.to_disk(tmp_dir)
|
nlp.to_disk(tmp_dir)
|
||||||
nlp2 = util.load_model_from_path(tmp_dir)
|
nlp2 = util.load_model_from_path(tmp_dir)
|
||||||
doc2 = nlp2(test_text)
|
doc2 = nlp2(test_text)
|
||||||
assert gold_morphs == [t.morph_ for t in doc2]
|
assert [t.morph_ for t in doc2] == gold_morphs
|
||||||
|
assert [t.pos_ for t in doc2] == gold_pos_tags
|
||||||
|
|
Loading…
Reference in New Issue
Block a user