mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-13 02:36:32 +03:00
Merge pull request #6523 from adrianeboyd/bugfix/remove-use-chars
Remove non-working --use-chars from train CLI
This commit is contained in:
commit
b87793a89a
|
@ -38,7 +38,6 @@ from .. import about
|
||||||
conv_depth=("Depth of CNN layers of Tok2Vec component", "option", "cd", int),
|
conv_depth=("Depth of CNN layers of Tok2Vec component", "option", "cd", int),
|
||||||
cnn_window=("Window size for CNN layers of Tok2Vec component", "option", "cW", int),
|
cnn_window=("Window size for CNN layers of Tok2Vec component", "option", "cW", int),
|
||||||
cnn_pieces=("Maxout size for CNN layers of Tok2Vec component. 1 for Mish", "option", "cP", int),
|
cnn_pieces=("Maxout size for CNN layers of Tok2Vec component. 1 for Mish", "option", "cP", int),
|
||||||
use_chars=("Whether to use character-based embedding of Tok2Vec component", "flag", "chr", bool),
|
|
||||||
bilstm_depth=("Depth of BiLSTM layers of Tok2Vec component (requires PyTorch)", "option", "lstm", int),
|
bilstm_depth=("Depth of BiLSTM layers of Tok2Vec component (requires PyTorch)", "option", "lstm", int),
|
||||||
embed_rows=("Number of embedding rows of Tok2Vec component", "option", "er", int),
|
embed_rows=("Number of embedding rows of Tok2Vec component", "option", "er", int),
|
||||||
n_iter=("Number of iterations", "option", "n", int),
|
n_iter=("Number of iterations", "option", "n", int),
|
||||||
|
@ -78,7 +77,6 @@ def train(
|
||||||
conv_depth=4,
|
conv_depth=4,
|
||||||
cnn_window=1,
|
cnn_window=1,
|
||||||
cnn_pieces=3,
|
cnn_pieces=3,
|
||||||
use_chars=False,
|
|
||||||
bilstm_depth=0,
|
bilstm_depth=0,
|
||||||
embed_rows=2000,
|
embed_rows=2000,
|
||||||
n_iter=30,
|
n_iter=30,
|
||||||
|
@ -294,7 +292,6 @@ def train(
|
||||||
cfg["cnn_maxout_pieces"] = cnn_pieces
|
cfg["cnn_maxout_pieces"] = cnn_pieces
|
||||||
cfg["embed_size"] = embed_rows
|
cfg["embed_size"] = embed_rows
|
||||||
cfg["conv_window"] = cnn_window
|
cfg["conv_window"] = cnn_window
|
||||||
cfg["subword_features"] = not use_chars
|
|
||||||
optimizer = nlp.begin_training(lambda: corpus.train_tuples, **cfg)
|
optimizer = nlp.begin_training(lambda: corpus.train_tuples, **cfg)
|
||||||
|
|
||||||
nlp._optimizer = None
|
nlp._optimizer = None
|
||||||
|
|
|
@ -384,7 +384,6 @@ $ python -m spacy train [lang] [output_path] [train_path] [dev_path]
|
||||||
| `--conv-depth`, `-cd` <Tag variant="new">2.2.4</Tag> | option | Depth of CNN layers of `Tok2Vec` component. |
|
| `--conv-depth`, `-cd` <Tag variant="new">2.2.4</Tag> | option | Depth of CNN layers of `Tok2Vec` component. |
|
||||||
| `--cnn-window`, `-cW` <Tag variant="new">2.2.4</Tag> | option | Window size for CNN layers of `Tok2Vec` component. |
|
| `--cnn-window`, `-cW` <Tag variant="new">2.2.4</Tag> | option | Window size for CNN layers of `Tok2Vec` component. |
|
||||||
| `--cnn-pieces`, `-cP` <Tag variant="new">2.2.4</Tag> | option | Maxout size for CNN layers of `Tok2Vec` component. |
|
| `--cnn-pieces`, `-cP` <Tag variant="new">2.2.4</Tag> | option | Maxout size for CNN layers of `Tok2Vec` component. |
|
||||||
| `--use-chars`, `-chr` <Tag variant="new">2.2.4</Tag> | flag | Whether to use character-based embedding of `Tok2Vec` component. |
|
|
||||||
| `--bilstm-depth`, `-lstm` <Tag variant="new">2.2.4</Tag> | option | Depth of BiLSTM layers of `Tok2Vec` component (requires PyTorch). |
|
| `--bilstm-depth`, `-lstm` <Tag variant="new">2.2.4</Tag> | option | Depth of BiLSTM layers of `Tok2Vec` component (requires PyTorch). |
|
||||||
| `--embed-rows`, `-er` <Tag variant="new">2.2.4</Tag> | option | Number of embedding rows of `Tok2Vec` component. |
|
| `--embed-rows`, `-er` <Tag variant="new">2.2.4</Tag> | option | Number of embedding rows of `Tok2Vec` component. |
|
||||||
| `--noise-level`, `-nl` | option | Float indicating the amount of corruption for data augmentation. |
|
| `--noise-level`, `-nl` | option | Float indicating the amount of corruption for data augmentation. |
|
||||||
|
|
Loading…
Reference in New Issue
Block a user