mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	Merge pull request #6523 from adrianeboyd/bugfix/remove-use-chars
Remove non-working --use-chars from train CLI
This commit is contained in:
		
						commit
						b87793a89a
					
				| 
						 | 
					@ -38,7 +38,6 @@ from .. import about
 | 
				
			||||||
    conv_depth=("Depth of CNN layers of Tok2Vec component", "option", "cd", int),
 | 
					    conv_depth=("Depth of CNN layers of Tok2Vec component", "option", "cd", int),
 | 
				
			||||||
    cnn_window=("Window size for CNN layers of Tok2Vec component", "option", "cW", int),
 | 
					    cnn_window=("Window size for CNN layers of Tok2Vec component", "option", "cW", int),
 | 
				
			||||||
    cnn_pieces=("Maxout size for CNN layers of Tok2Vec component. 1 for Mish", "option", "cP", int),
 | 
					    cnn_pieces=("Maxout size for CNN layers of Tok2Vec component. 1 for Mish", "option", "cP", int),
 | 
				
			||||||
    use_chars=("Whether to use character-based embedding of Tok2Vec component", "flag", "chr", bool),
 | 
					 | 
				
			||||||
    bilstm_depth=("Depth of BiLSTM layers of Tok2Vec component (requires PyTorch)", "option", "lstm", int),
 | 
					    bilstm_depth=("Depth of BiLSTM layers of Tok2Vec component (requires PyTorch)", "option", "lstm", int),
 | 
				
			||||||
    embed_rows=("Number of embedding rows of Tok2Vec component", "option", "er", int),
 | 
					    embed_rows=("Number of embedding rows of Tok2Vec component", "option", "er", int),
 | 
				
			||||||
    n_iter=("Number of iterations", "option", "n", int),
 | 
					    n_iter=("Number of iterations", "option", "n", int),
 | 
				
			||||||
| 
						 | 
					@ -78,7 +77,6 @@ def train(
 | 
				
			||||||
    conv_depth=4,
 | 
					    conv_depth=4,
 | 
				
			||||||
    cnn_window=1,
 | 
					    cnn_window=1,
 | 
				
			||||||
    cnn_pieces=3,
 | 
					    cnn_pieces=3,
 | 
				
			||||||
    use_chars=False,
 | 
					 | 
				
			||||||
    bilstm_depth=0,
 | 
					    bilstm_depth=0,
 | 
				
			||||||
    embed_rows=2000,
 | 
					    embed_rows=2000,
 | 
				
			||||||
    n_iter=30,
 | 
					    n_iter=30,
 | 
				
			||||||
| 
						 | 
					@ -294,7 +292,6 @@ def train(
 | 
				
			||||||
        cfg["cnn_maxout_pieces"] = cnn_pieces
 | 
					        cfg["cnn_maxout_pieces"] = cnn_pieces
 | 
				
			||||||
        cfg["embed_size"] = embed_rows
 | 
					        cfg["embed_size"] = embed_rows
 | 
				
			||||||
        cfg["conv_window"] = cnn_window
 | 
					        cfg["conv_window"] = cnn_window
 | 
				
			||||||
        cfg["subword_features"] = not use_chars
 | 
					 | 
				
			||||||
        optimizer = nlp.begin_training(lambda: corpus.train_tuples, **cfg)
 | 
					        optimizer = nlp.begin_training(lambda: corpus.train_tuples, **cfg)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    nlp._optimizer = None
 | 
					    nlp._optimizer = None
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -384,7 +384,6 @@ $ python -m spacy train [lang] [output_path] [train_path] [dev_path]
 | 
				
			||||||
| `--conv-depth`, `-cd` <Tag variant="new">2.2.4</Tag>            | option        | Depth of CNN layers of `Tok2Vec` component.                                                                                                                       |
 | 
					| `--conv-depth`, `-cd` <Tag variant="new">2.2.4</Tag>            | option        | Depth of CNN layers of `Tok2Vec` component.                                                                                                                       |
 | 
				
			||||||
| `--cnn-window`, `-cW` <Tag variant="new">2.2.4</Tag>            | option        | Window size for CNN layers of `Tok2Vec` component.                                                                                                                |
 | 
					| `--cnn-window`, `-cW` <Tag variant="new">2.2.4</Tag>            | option        | Window size for CNN layers of `Tok2Vec` component.                                                                                                                |
 | 
				
			||||||
| `--cnn-pieces`, `-cP` <Tag variant="new">2.2.4</Tag>            | option        | Maxout size for CNN layers of `Tok2Vec` component.                                                                                                                |
 | 
					| `--cnn-pieces`, `-cP` <Tag variant="new">2.2.4</Tag>            | option        | Maxout size for CNN layers of `Tok2Vec` component.                                                                                                                |
 | 
				
			||||||
| `--use-chars`, `-chr` <Tag variant="new">2.2.4</Tag>            | flag          | Whether to use character-based embedding of `Tok2Vec` component.                                                                                                  |
 | 
					 | 
				
			||||||
| `--bilstm-depth`, `-lstm` <Tag variant="new">2.2.4</Tag>        | option        | Depth of BiLSTM layers of `Tok2Vec` component (requires PyTorch).                                                                                                 |
 | 
					| `--bilstm-depth`, `-lstm` <Tag variant="new">2.2.4</Tag>        | option        | Depth of BiLSTM layers of `Tok2Vec` component (requires PyTorch).                                                                                                 |
 | 
				
			||||||
| `--embed-rows`, `-er` <Tag variant="new">2.2.4</Tag>            | option        | Number of embedding rows of `Tok2Vec` component.                                                                                                                  |
 | 
					| `--embed-rows`, `-er` <Tag variant="new">2.2.4</Tag>            | option        | Number of embedding rows of `Tok2Vec` component.                                                                                                                  |
 | 
				
			||||||
| `--noise-level`, `-nl`                                          | option        | Float indicating the amount of corruption for data augmentation.                                                                                                  |
 | 
					| `--noise-level`, `-nl`                                          | option        | Float indicating the amount of corruption for data augmentation.                                                                                                  |
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in New Issue
	
	Block a user