Merge branch 'develop' into feature/dependency-matcher-v3

This commit is contained in:
Adriane Boyd 2020-09-04 13:03:30 +02:00 committed by GitHub
commit b927893309
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
113 changed files with 1854 additions and 1685 deletions

View File

@ -36,7 +36,7 @@ max_length = 0
limit = 0
[training.batcher]
@batchers = "batch_by_words.v1"
@batchers = "spacy.batch_by_words.v1"
discard_oversize = false
tolerance = 0.2

View File

@ -35,7 +35,7 @@ max_length = 0
limit = 0
[training.batcher]
@batchers = "batch_by_words.v1"
@batchers = "spacy.batch_by_words.v1"
discard_oversize = false
tolerance = 0.2

View File

@ -24,7 +24,7 @@ redirects = [
{from = "/docs/usage/customizing-tokenizer", to = "/usage/linguistic-features#tokenization", force = true},
{from = "/docs/usage/language-processing-pipeline", to = "/usage/processing-pipelines", force = true},
{from = "/docs/usage/customizing-pipeline", to = "/usage/processing-pipelines", force = true},
{from = "/docs/usage/training-ner", to = "/usage/training#ner", force = true},
{from = "/docs/usage/training-ner", to = "/usage/training", force = true},
{from = "/docs/usage/tutorials", to = "/usage/examples", force = true},
{from = "/docs/usage/data-model", to = "/api", force = true},
{from = "/docs/usage/cli", to = "/api/cli", force = true},

View File

@ -29,9 +29,9 @@ from .project.document import project_document # noqa: F401
@app.command("link", no_args_is_help=True, deprecated=True, hidden=True)
def link(*args, **kwargs):
"""As of spaCy v3.0, model symlinks are deprecated. You can load models
using their full names or from a directory path."""
"""As of spaCy v3.0, symlinks like "en" are deprecated. You can load trained
pipeline packages using their full names or from a directory path."""
msg.warn(
"As of spaCy v3.0, model symlinks are deprecated. You can load models "
"using their full names or from a directory path."
"As of spaCy v3.0, model symlinks are deprecated. You can load trained "
"pipeline packages using their full names or from a directory path."
)

View File

@ -25,7 +25,7 @@ COMMAND = "python -m spacy"
NAME = "spacy"
HELP = """spaCy Command-line Interface
DOCS: https://spacy.io/api/cli
DOCS: https://nightly.spacy.io/api/cli
"""
PROJECT_HELP = f"""Command-line interface for spaCy projects and templates.
You'd typically start by cloning a project template to a local directory and
@ -36,7 +36,7 @@ DEBUG_HELP = """Suite of helpful commands for debugging and profiling. Includes
commands to check and validate your config files, training and evaluation data,
and custom model implementations.
"""
INIT_HELP = """Commands for initializing configs and models."""
INIT_HELP = """Commands for initializing configs and pipeline packages."""
# Wrappers for Typer's annotations. Initially created to set defaults and to
# keep the names short, but not needed at the moment.

View File

@ -44,7 +44,7 @@ def convert_cli(
file_type: FileTypes = Opt("spacy", "--file-type", "-t", help="Type of data to produce"),
n_sents: int = Opt(1, "--n-sents", "-n", help="Number of sentences per doc (0 to disable)"),
seg_sents: bool = Opt(False, "--seg-sents", "-s", help="Segment sentences (for -c ner)"),
model: Optional[str] = Opt(None, "--model", "-b", help="Model for sentence segmentation (for -s)"),
model: Optional[str] = Opt(None, "--model", "--base", "-b", help="Trained spaCy pipeline for sentence segmentation to use as base (for --seg-sents)"),
morphology: bool = Opt(False, "--morphology", "-m", help="Enable appending morphology to tags"),
merge_subtokens: bool = Opt(False, "--merge-subtokens", "-T", help="Merge CoNLL-U subtokens"),
converter: str = Opt("auto", "--converter", "-c", help=f"Converter: {tuple(CONVERTERS.keys())}"),
@ -61,6 +61,8 @@ def convert_cli(
If no output_dir is specified and the output format is JSON, the data
is written to stdout, so you can pipe them forward to a JSON file:
$ spacy convert some_file.conllu --file-type json > some_file.json
DOCS: https://nightly.spacy.io/api/cli#convert
"""
if isinstance(file_type, FileTypes):
# We get an instance of the FileTypes from the CLI so we need its string value
@ -261,6 +263,6 @@ def _get_converter(msg, converter, input_path):
msg.warn(
"Can't automatically detect NER format. "
"Conversion may not succeed. "
"See https://spacy.io/api/cli#convert"
"See https://nightly.spacy.io/api/cli#convert"
)
return converter

View File

@ -31,6 +31,8 @@ def debug_config_cli(
Similar as with the 'train' command, you can override settings from the config
as command line options. For instance, --training.batch_size 128 overrides
the value of "batch_size" in the block "[training]".
DOCS: https://nightly.spacy.io/api/cli#debug-config
"""
overrides = parse_config_overrides(ctx.args)
import_code(code_path)

View File

@ -18,7 +18,7 @@ from .. import util
NEW_LABEL_THRESHOLD = 50
# Minimum number of expected occurrences of dependency labels
DEP_LABEL_THRESHOLD = 20
# Minimum number of expected examples to train a blank model
# Minimum number of expected examples to train a new pipeline
BLANK_MODEL_MIN_THRESHOLD = 100
BLANK_MODEL_THRESHOLD = 2000
@ -47,6 +47,8 @@ def debug_data_cli(
Analyze, debug and validate your training and development data. Outputs
useful stats, and can help you find problems like invalid entity annotations,
cyclic dependencies, low data labels and more.
DOCS: https://nightly.spacy.io/api/cli#debug-data
"""
if ctx.command.name == "debug-data":
msg.warn(
@ -148,7 +150,7 @@ def debug_data(
msg.text(f"Language: {config['nlp']['lang']}")
msg.text(f"Training pipeline: {', '.join(pipeline)}")
if resume_components:
msg.text(f"Components from other models: {', '.join(resume_components)}")
msg.text(f"Components from other pipelines: {', '.join(resume_components)}")
if frozen_components:
msg.text(f"Frozen components: {', '.join(frozen_components)}")
msg.text(f"{len(train_dataset)} training docs")
@ -164,9 +166,7 @@ def debug_data(
# TODO: make this feedback more fine-grained and report on updated
# components vs. blank components
if not resume_components and len(train_dataset) < BLANK_MODEL_THRESHOLD:
text = (
f"Low number of examples to train from a blank model ({len(train_dataset)})"
)
text = f"Low number of examples to train a new pipeline ({len(train_dataset)})"
if len(train_dataset) < BLANK_MODEL_MIN_THRESHOLD:
msg.fail(text)
else:
@ -214,7 +214,7 @@ def debug_data(
show=verbose,
)
else:
msg.info("No word vectors present in the model")
msg.info("No word vectors present in the package")
if "ner" in factory_names:
# Get all unique NER labels present in the data

View File

@ -30,6 +30,8 @@ def debug_model_cli(
"""
Analyze a Thinc model implementation. Includes checks for internal structure
and activations during training.
DOCS: https://nightly.spacy.io/api/cli#debug-model
"""
if use_gpu >= 0:
msg.info("Using GPU")

View File

@ -17,16 +17,19 @@ from ..errors import OLD_MODEL_SHORTCUTS
def download_cli(
# fmt: off
ctx: typer.Context,
model: str = Arg(..., help="Name of model to download"),
model: str = Arg(..., help="Name of pipeline package to download"),
direct: bool = Opt(False, "--direct", "-d", "-D", help="Force direct download of name + version"),
# fmt: on
):
"""
Download compatible model from default download path using pip. If --direct
flag is set, the command expects the full model name with version.
For direct downloads, the compatibility check will be skipped. All
Download compatible trained pipeline from the default download path using
pip. If --direct flag is set, the command expects the full package name with
version. For direct downloads, the compatibility check will be skipped. All
additional arguments provided to this command will be passed to `pip install`
on model installation.
on package installation.
DOCS: https://nightly.spacy.io/api/cli#download
AVAILABLE PACKAGES: https://spacy.io/models
"""
download(model, direct, *ctx.args)
@ -34,11 +37,11 @@ def download_cli(
def download(model: str, direct: bool = False, *pip_args) -> None:
if not is_package("spacy") and "--no-deps" not in pip_args:
msg.warn(
"Skipping model package dependencies and setting `--no-deps`. "
"Skipping pipeline package dependencies and setting `--no-deps`. "
"You don't seem to have the spaCy package itself installed "
"(maybe because you've built from source?), so installing the "
"model dependencies would cause spaCy to be downloaded, which "
"probably isn't what you want. If the model package has other "
"package dependencies would cause spaCy to be downloaded, which "
"probably isn't what you want. If the pipeline package has other "
"dependencies, you'll have to install them manually."
)
pip_args = pip_args + ("--no-deps",)
@ -53,7 +56,7 @@ def download(model: str, direct: bool = False, *pip_args) -> None:
if model in OLD_MODEL_SHORTCUTS:
msg.warn(
f"As of spaCy v3.0, shortcuts like '{model}' are deprecated. Please"
f"use the full model name '{OLD_MODEL_SHORTCUTS[model]}' instead."
f"use the full pipeline package name '{OLD_MODEL_SHORTCUTS[model]}' instead."
)
model_name = OLD_MODEL_SHORTCUTS[model]
compatibility = get_compatibility()
@ -61,7 +64,7 @@ def download(model: str, direct: bool = False, *pip_args) -> None:
download_model(dl_tpl.format(m=model_name, v=version), pip_args)
msg.good(
"Download and installation successful",
f"You can now load the model via spacy.load('{model_name}')",
f"You can now load the package via spacy.load('{model_name}')",
)
@ -71,16 +74,16 @@ def get_compatibility() -> dict:
if r.status_code != 200:
msg.fail(
f"Server error ({r.status_code})",
f"Couldn't fetch compatibility table. Please find a model for your spaCy "
f"Couldn't fetch compatibility table. Please find a package for your spaCy "
f"installation (v{about.__version__}), and download it manually. "
f"For more details, see the documentation: "
f"https://spacy.io/usage/models",
f"https://nightly.spacy.io/usage/models",
exits=1,
)
comp_table = r.json()
comp = comp_table["spacy"]
if version not in comp:
msg.fail(f"No compatible models found for v{version} of spaCy", exits=1)
msg.fail(f"No compatible packages found for v{version} of spaCy", exits=1)
return comp[version]
@ -88,7 +91,7 @@ def get_version(model: str, comp: dict) -> str:
model = get_base_version(model)
if model not in comp:
msg.fail(
f"No compatible model found for '{model}' (spaCy v{about.__version__})",
f"No compatible package found for '{model}' (spaCy v{about.__version__})",
exits=1,
)
return comp[model][0]

View File

@ -26,13 +26,16 @@ def evaluate_cli(
# fmt: on
):
"""
Evaluate a model. Expects a loadable spaCy model and evaluation data in the
binary .spacy format. The --gold-preproc option sets up the evaluation
examples with gold-standard sentences and tokens for the predictions. Gold
preprocessing helps the annotations align to the tokenization, and may
result in sequences of more consistent length. However, it may reduce
runtime accuracy due to train/test skew. To render a sample of dependency
parses in a HTML file, set as output directory as the displacy_path argument.
Evaluate a trained pipeline. Expects a loadable spaCy pipeline and evaluation
data in the binary .spacy format. The --gold-preproc option sets up the
evaluation examples with gold-standard sentences and tokens for the
predictions. Gold preprocessing helps the annotations align to the
tokenization, and may result in sequences of more consistent length. However,
it may reduce runtime accuracy due to train/test skew. To render a sample of
dependency parses in a HTML file, set as output directory as the
displacy_path argument.
DOCS: https://nightly.spacy.io/api/cli#evaluate
"""
evaluate(
model,

View File

@ -12,15 +12,17 @@ from .. import about
@app.command("info")
def info_cli(
# fmt: off
model: Optional[str] = Arg(None, help="Optional model name"),
model: Optional[str] = Arg(None, help="Optional loadable spaCy pipeline"),
markdown: bool = Opt(False, "--markdown", "-md", help="Generate Markdown for GitHub issues"),
silent: bool = Opt(False, "--silent", "-s", "-S", help="Don't print anything (just return)"),
# fmt: on
):
"""
Print info about spaCy installation. If a model is speficied as an argument,
print model information. Flag --markdown prints details in Markdown for easy
Print info about spaCy installation. If a pipeline is speficied as an argument,
print its meta information. Flag --markdown prints details in Markdown for easy
copy-pasting to GitHub issues.
DOCS: https://nightly.spacy.io/api/cli#info
"""
info(model, markdown=markdown, silent=silent)
@ -30,14 +32,16 @@ def info(
) -> Union[str, dict]:
msg = Printer(no_print=silent, pretty=not silent)
if model:
title = f"Info about model '{model}'"
title = f"Info about pipeline '{model}'"
data = info_model(model, silent=silent)
else:
title = "Info about spaCy"
data = info_spacy()
raw_data = {k.lower().replace(" ", "_"): v for k, v in data.items()}
if "Models" in data and isinstance(data["Models"], dict):
data["Models"] = ", ".join(f"{n} ({v})" for n, v in data["Models"].items())
if "Pipelines" in data and isinstance(data["Pipelines"], dict):
data["Pipelines"] = ", ".join(
f"{n} ({v})" for n, v in data["Pipelines"].items()
)
markdown_data = get_markdown(data, title=title)
if markdown:
if not silent:
@ -63,7 +67,7 @@ def info_spacy() -> Dict[str, any]:
"Location": str(Path(__file__).parent.parent),
"Platform": platform.platform(),
"Python version": platform.python_version(),
"Models": all_models,
"Pipelines": all_models,
}
@ -81,7 +85,7 @@ def info_model(model: str, *, silent: bool = True) -> Dict[str, Any]:
model_path = model
meta_path = model_path / "meta.json"
if not meta_path.is_file():
msg.fail("Can't find model meta.json", meta_path, exits=1)
msg.fail("Can't find pipeline meta.json", meta_path, exits=1)
meta = srsly.read_json(meta_path)
if model_path.resolve() != model_path:
meta["source"] = str(model_path.resolve())

View File

@ -27,7 +27,7 @@ def init_config_cli(
# fmt: off
output_file: Path = Arg(..., help="File to save config.cfg to or - for stdout (will only output config and no additional logging info)", allow_dash=True),
lang: Optional[str] = Opt("en", "--lang", "-l", help="Two-letter code of the language to use"),
pipeline: Optional[str] = Opt("tagger,parser,ner", "--pipeline", "-p", help="Comma-separated names of trainable pipeline components to include in the model (without 'tok2vec' or 'transformer')"),
pipeline: Optional[str] = Opt("tagger,parser,ner", "--pipeline", "-p", help="Comma-separated names of trainable pipeline components to include (without 'tok2vec' or 'transformer')"),
optimize: Optimizations = Opt(Optimizations.efficiency.value, "--optimize", "-o", help="Whether to optimize for efficiency (faster inference, smaller model, lower memory consumption) or higher accuracy (potentially larger and slower model). This will impact the choice of architecture, pretrained weights and related hyperparameters."),
cpu: bool = Opt(False, "--cpu", "-C", help="Whether the model needs to run on CPU. This will impact the choice of architecture, pretrained weights and related hyperparameters."),
# fmt: on
@ -37,6 +37,8 @@ def init_config_cli(
specified via the CLI arguments, this command generates a config with the
optimal settings for you use case. This includes the choice of architecture,
pretrained weights and related hyperparameters.
DOCS: https://nightly.spacy.io/api/cli#init-config
"""
if isinstance(optimize, Optimizations): # instance of enum from the CLI
optimize = optimize.value
@ -59,6 +61,8 @@ def init_fill_config_cli(
functions for their default values and update the base config. This command
can be used with a config generated via the training quickstart widget:
https://nightly.spacy.io/usage/training#quickstart
DOCS: https://nightly.spacy.io/api/cli#init-fill-config
"""
fill_config(output_file, base_path, pretraining=pretraining, diff=diff)
@ -168,7 +172,7 @@ def save_config(
output_file.parent.mkdir(parents=True)
config.to_disk(output_file, interpolate=False)
msg.good("Saved config", output_file)
msg.text("You can now add your data and train your model:")
msg.text("You can now add your data and train your pipeline:")
variables = ["--paths.train ./train.spacy", "--paths.dev ./dev.spacy"]
if not no_print:
print(f"{COMMAND} train {output_file.parts[-1]} {' '.join(variables)}")

View File

@ -28,7 +28,7 @@ except ImportError:
DEFAULT_OOV_PROB = -20
@init_cli.command("model")
@init_cli.command("vocab")
@app.command(
"init-model",
context_settings={"allow_extra_args": True, "ignore_unknown_options": True},
@ -37,8 +37,8 @@ DEFAULT_OOV_PROB = -20
def init_model_cli(
# fmt: off
ctx: typer.Context, # This is only used to read additional arguments
lang: str = Arg(..., help="Model language"),
output_dir: Path = Arg(..., help="Model output directory"),
lang: str = Arg(..., help="Pipeline language"),
output_dir: Path = Arg(..., help="Pipeline output directory"),
freqs_loc: Optional[Path] = Arg(None, help="Location of words frequencies file", exists=True),
clusters_loc: Optional[Path] = Opt(None, "--clusters-loc", "-c", help="Optional location of brown clusters data", exists=True),
jsonl_loc: Optional[Path] = Opt(None, "--jsonl-loc", "-j", help="Location of JSONL-formatted attributes file", exists=True),
@ -46,19 +46,22 @@ def init_model_cli(
prune_vectors: int = Opt(-1, "--prune-vectors", "-V", help="Optional number of vectors to prune to"),
truncate_vectors: int = Opt(0, "--truncate-vectors", "-t", help="Optional number of vectors to truncate to when reading in vectors file"),
vectors_name: Optional[str] = Opt(None, "--vectors-name", "-vn", help="Optional name for the word vectors, e.g. en_core_web_lg.vectors"),
model_name: Optional[str] = Opt(None, "--model-name", "-mn", help="Optional name for the model meta"),
base_model: Optional[str] = Opt(None, "--base-model", "-b", help="Base model (for languages with custom tokenizers)")
model_name: Optional[str] = Opt(None, "--meta-name", "-mn", help="Optional name of the package for the pipeline meta"),
base_model: Optional[str] = Opt(None, "--base", "-b", help="Name of or path to base pipeline to start with (mostly relevant for pipelines with custom tokenizers)")
# fmt: on
):
"""
Create a new model from raw data. If vectors are provided in Word2Vec format,
they can be either a .txt or zipped as a .zip or .tar.gz.
Create a new blank pipeline directory with vocab and vectors from raw data.
If vectors are provided in Word2Vec format, they can be either a .txt or
zipped as a .zip or .tar.gz.
DOCS: https://nightly.spacy.io/api/cli#init-vocab
"""
if ctx.command.name == "init-model":
msg.warn(
"The init-model command is now available via the 'init model' "
"subcommand (without the hyphen). You can run python -m spacy init "
"--help for an overview of the other available initialization commands."
"The init-model command is now called 'init vocab'. You can run "
"'python -m spacy init --help' for an overview of the other "
"available initialization commands."
)
init_model(
lang,
@ -115,10 +118,10 @@ def init_model(
msg.fail("Can't find words frequencies file", freqs_loc, exits=1)
lex_attrs = read_attrs_from_deprecated(msg, freqs_loc, clusters_loc)
with msg.loading("Creating model..."):
with msg.loading("Creating blank pipeline..."):
nlp = create_model(lang, lex_attrs, name=model_name, base_model=base_model)
msg.good("Successfully created model")
msg.good("Successfully created blank pipeline")
if vectors_loc is not None:
add_vectors(
msg, nlp, vectors_loc, truncate_vectors, prune_vectors, vectors_name
@ -242,7 +245,8 @@ def add_vectors(
if vectors_data is not None:
nlp.vocab.vectors = Vectors(data=vectors_data, keys=vector_keys)
if name is None:
nlp.vocab.vectors.name = f"{nlp.meta['lang']}_model.vectors"
# TODO: Is this correct? Does this matter?
nlp.vocab.vectors.name = f"{nlp.meta['lang']}_{nlp.meta['name']}.vectors"
else:
nlp.vocab.vectors.name = name
nlp.meta["vectors"]["name"] = nlp.vocab.vectors.name

View File

@ -14,23 +14,25 @@ from .. import about
@app.command("package")
def package_cli(
# fmt: off
input_dir: Path = Arg(..., help="Directory with model data", exists=True, file_okay=False),
input_dir: Path = Arg(..., help="Directory with pipeline data", exists=True, file_okay=False),
output_dir: Path = Arg(..., help="Output parent directory", exists=True, file_okay=False),
meta_path: Optional[Path] = Opt(None, "--meta-path", "--meta", "-m", help="Path to meta.json", exists=True, dir_okay=False),
create_meta: bool = Opt(False, "--create-meta", "-c", "-C", help="Create meta.json, even if one exists"),
version: Optional[str] = Opt(None, "--version", "-v", help="Package version to override meta"),
no_sdist: bool = Opt(False, "--no-sdist", "-NS", help="Don't build .tar.gz sdist, can be set if you want to run this step manually"),
force: bool = Opt(False, "--force", "-f", "-F", help="Force overwriting existing model in output directory"),
force: bool = Opt(False, "--force", "-f", "-F", help="Force overwriting existing data in output directory"),
# fmt: on
):
"""
Generate an installable Python package for a model. Includes model data,
Generate an installable Python package for a pipeline. Includes binary data,
meta and required installation files. A new directory will be created in the
specified output directory, and model data will be copied over. If
specified output directory, and the data will be copied over. If
--create-meta is set and a meta.json already exists in the output directory,
the existing values will be used as the defaults in the command-line prompt.
After packaging, "python setup.py sdist" is run in the package directory,
which will create a .tar.gz archive that can be installed via "pip install".
DOCS: https://nightly.spacy.io/api/cli#package
"""
package(
input_dir,
@ -59,14 +61,14 @@ def package(
output_path = util.ensure_path(output_dir)
meta_path = util.ensure_path(meta_path)
if not input_path or not input_path.exists():
msg.fail("Can't locate model data", input_path, exits=1)
msg.fail("Can't locate pipeline data", input_path, exits=1)
if not output_path or not output_path.exists():
msg.fail("Output directory not found", output_path, exits=1)
if meta_path and not meta_path.exists():
msg.fail("Can't find model meta.json", meta_path, exits=1)
msg.fail("Can't find pipeline meta.json", meta_path, exits=1)
meta_path = meta_path or input_dir / "meta.json"
if not meta_path.exists() or not meta_path.is_file():
msg.fail("Can't load model meta.json", meta_path, exits=1)
msg.fail("Can't load pipeline meta.json", meta_path, exits=1)
meta = srsly.read_json(meta_path)
meta = get_meta(input_dir, meta)
if version is not None:
@ -77,7 +79,7 @@ def package(
meta = generate_meta(meta, msg)
errors = validate(ModelMetaSchema, meta)
if errors:
msg.fail("Invalid model meta.json")
msg.fail("Invalid pipeline meta.json")
print("\n".join(errors))
sys.exit(1)
model_name = meta["lang"] + "_" + meta["name"]
@ -118,7 +120,7 @@ def get_meta(
) -> Dict[str, Any]:
meta = {
"lang": "en",
"name": "model",
"name": "pipeline",
"version": "0.0.0",
"description": "",
"author": "",
@ -143,10 +145,10 @@ def get_meta(
def generate_meta(existing_meta: Dict[str, Any], msg: Printer) -> Dict[str, Any]:
meta = existing_meta or {}
settings = [
("lang", "Model language", meta.get("lang", "en")),
("name", "Model name", meta.get("name", "model")),
("version", "Model version", meta.get("version", "0.0.0")),
("description", "Model description", meta.get("description", None)),
("lang", "Pipeline language", meta.get("lang", "en")),
("name", "Pipeline name", meta.get("name", "pipeline")),
("version", "Package version", meta.get("version", "0.0.0")),
("description", "Package description", meta.get("description", None)),
("author", "Author", meta.get("author", None)),
("email", "Author email", meta.get("email", None)),
("url", "Author website", meta.get("url", None)),
@ -154,8 +156,8 @@ def generate_meta(existing_meta: Dict[str, Any], msg: Printer) -> Dict[str, Any]
]
msg.divider("Generating meta.json")
msg.text(
"Enter the package settings for your model. The following information "
"will be read from your model data: pipeline, vectors."
"Enter the package settings for your pipeline. The following information "
"will be read from your pipeline data: pipeline, vectors."
)
for setting, desc, default in settings:
response = get_raw_input(desc, default)

View File

@ -31,7 +31,7 @@ def pretrain_cli(
# fmt: off
ctx: typer.Context, # This is only used to read additional arguments
texts_loc: Path = Arg(..., help="Path to JSONL file with raw texts to learn from, with text provided as the key 'text' or tokens as the key 'tokens'", exists=True),
output_dir: Path = Arg(..., help="Directory to write models to on each epoch"),
output_dir: Path = Arg(..., help="Directory to write weights to on each epoch"),
config_path: Path = Arg(..., help="Path to config file", exists=True, dir_okay=False),
code_path: Optional[Path] = Opt(None, "--code-path", "-c", help="Path to Python file with additional code (registered functions) to be imported"),
resume_path: Optional[Path] = Opt(None, "--resume-path", "-r", help="Path to pretrained weights from which to resume pretraining"),
@ -57,6 +57,8 @@ def pretrain_cli(
To load the weights back in during 'spacy train', you need to ensure
all settings are the same between pretraining and training. Ideally,
this is done by using the same config file for both commands.
DOCS: https://nightly.spacy.io/api/cli#pretrain
"""
overrides = parse_config_overrides(ctx.args)
import_code(code_path)
@ -376,10 +378,9 @@ def verify_cli_args(texts_loc, output_dir, config_path, resume_path, epoch_resum
if output_dir.exists() and [p for p in output_dir.iterdir()]:
if resume_path:
msg.warn(
"Output directory is not empty. ",
"If you're resuming a run from a previous model in this directory, "
"the old models for the consecutive epochs will be overwritten "
"with the new ones.",
"Output directory is not empty.",
"If you're resuming a run in this directory, the old weights "
"for the consecutive epochs will be overwritten with the new ones.",
)
else:
msg.warn(

View File

@ -19,7 +19,7 @@ from ..util import load_model
def profile_cli(
# fmt: off
ctx: typer.Context, # This is only used to read current calling context
model: str = Arg(..., help="Model to load"),
model: str = Arg(..., help="Trained pipeline to load"),
inputs: Optional[Path] = Arg(None, help="Location of input file. '-' for stdin.", exists=True, allow_dash=True),
n_texts: int = Opt(10000, "--n-texts", "-n", help="Maximum number of texts to use if available"),
# fmt: on
@ -29,6 +29,8 @@ def profile_cli(
Input should be formatted as one JSON object per line with a key "text".
It can either be provided as a JSONL file, or be read from sys.sytdin.
If no input file is specified, the IMDB dataset is loaded via Thinc.
DOCS: https://nightly.spacy.io/api/cli#debug-profile
"""
if ctx.parent.command.name == NAME: # called as top-level command
msg.warn(
@ -60,9 +62,9 @@ def profile(model: str, inputs: Optional[Path] = None, n_texts: int = 10000) ->
inputs, _ = zip(*imdb_train)
msg.info(f"Loaded IMDB dataset and using {n_inputs} examples")
inputs = inputs[:n_inputs]
with msg.loading(f"Loading model '{model}'..."):
with msg.loading(f"Loading pipeline '{model}'..."):
nlp = load_model(model)
msg.good(f"Loaded model '{model}'")
msg.good(f"Loaded pipeline '{model}'")
texts = list(itertools.islice(inputs, n_texts))
cProfile.runctx("parse_texts(nlp, texts)", globals(), locals(), "Profile.prof")
s = pstats.Stats("Profile.prof")

View File

@ -20,6 +20,8 @@ def project_assets_cli(
defined in the "assets" section of the project.yml. If a checksum is
provided in the project.yml, the file is only downloaded if no local file
with the same checksum exists.
DOCS: https://nightly.spacy.io/api/cli#project-assets
"""
project_assets(project_dir)

View File

@ -22,6 +22,8 @@ def project_clone_cli(
only download the files from the given subdirectory. The GitHub repo
defaults to the official spaCy template repo, but can be customized
(including using a private repo).
DOCS: https://nightly.spacy.io/api/cli#project-clone
"""
if dest is None:
dest = Path.cwd() / name

View File

@ -43,6 +43,8 @@ def project_document_cli(
hidden markers are added so you can add custom content before or after the
auto-generated section and only the auto-generated docs will be replaced
when you re-run the command.
DOCS: https://nightly.spacy.io/api/cli#project-document
"""
project_document(project_dir, output_file, no_emoji=no_emoji)

View File

@ -31,7 +31,10 @@ def project_update_dvc_cli(
"""Auto-generate Data Version Control (DVC) config. A DVC
project can only define one pipeline, so you need to specify one workflow
defined in the project.yml. If no workflow is specified, the first defined
workflow is used. The DVC config will only be updated if the project.yml changed.
workflow is used. The DVC config will only be updated if the project.yml
changed.
DOCS: https://nightly.spacy.io/api/cli#project-dvc
"""
project_update_dvc(project_dir, workflow, verbose=verbose, force=force)

View File

@ -17,7 +17,9 @@ def project_pull_cli(
"""Retrieve available precomputed outputs from a remote storage.
You can alias remotes in your project.yml by mapping them to storage paths.
A storage can be anything that the smart-open library can upload to, e.g.
gcs, aws, ssh, local directories etc
AWS, Google Cloud Storage, SSH, local directories etc.
DOCS: https://nightly.spacy.io/api/cli#project-pull
"""
for url, output_path in project_pull(project_dir, remote):
if url is not None:
@ -38,5 +40,5 @@ def project_pull(project_dir: Path, remote: str, *, verbose: bool = False):
url = storage.pull(output_path, command_hash=cmd_hash)
yield url, output_path
if cmd.get("outptus") and all(loc.exists() for loc in cmd["outputs"]):
if cmd.get("outputs") and all(loc.exists() for loc in cmd["outputs"]):
update_lockfile(project_dir, cmd)

View File

@ -13,9 +13,12 @@ def project_push_cli(
project_dir: Path = Arg(Path.cwd(), help="Location of project directory. Defaults to current working directory.", exists=True, file_okay=False),
# fmt: on
):
"""Persist outputs to a remote storage. You can alias remotes in your project.yml
by mapping them to storage paths. A storage can be anything that the smart-open
library can upload to, e.g. gcs, aws, ssh, local directories etc
"""Persist outputs to a remote storage. You can alias remotes in your
project.yml by mapping them to storage paths. A storage can be anything that
the smart-open library can upload to, e.g. AWS, Google Cloud Storage, SSH,
local directories etc.
DOCS: https://nightly.spacy.io/api/cli#project-push
"""
for output_path, url in project_push(project_dir, remote):
if url is None:

View File

@ -24,6 +24,8 @@ def project_run_cli(
name is specified, all commands in the workflow are run, in order. If
commands define dependencies and/or outputs, they will only be re-run if
state has changed.
DOCS: https://nightly.spacy.io/api/cli#project-run
"""
if show_help or not subcommand:
print_run_help(project_dir, subcommand)

View File

@ -29,7 +29,7 @@ name = "{{ transformer["name"] }}"
tokenizer_config = {"use_fast": true}
[components.transformer.model.get_spans]
@span_getters = "strided_spans.v1"
@span_getters = "spacy-transformers.strided_spans.v1"
window = 128
stride = 96
@ -204,13 +204,13 @@ max_length = 0
{% if use_transformer %}
[training.batcher]
@batchers = "batch_by_padded.v1"
@batchers = "spacy.batch_by_padded.v1"
discard_oversize = true
size = 2000
buffer = 256
{%- else %}
[training.batcher]
@batchers = "batch_by_words.v1"
@batchers = "spacy.batch_by_words.v1"
discard_oversize = false
tolerance = 0.2

View File

@ -26,7 +26,7 @@ def train_cli(
# fmt: off
ctx: typer.Context, # This is only used to read additional arguments
config_path: Path = Arg(..., help="Path to config file", exists=True),
output_path: Optional[Path] = Opt(None, "--output", "--output-path", "-o", help="Output directory to store model in"),
output_path: Optional[Path] = Opt(None, "--output", "--output-path", "-o", help="Output directory to store trained pipeline in"),
code_path: Optional[Path] = Opt(None, "--code-path", "-c", help="Path to Python file with additional code (registered functions) to be imported"),
verbose: bool = Opt(False, "--verbose", "-V", "-VV", help="Display more information for debugging purposes"),
use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU"),
@ -34,7 +34,7 @@ def train_cli(
# fmt: on
):
"""
Train or update a spaCy model. Requires data in spaCy's binary format. To
Train or update a spaCy pipeline. Requires data in spaCy's binary format. To
convert data from other formats, use the `spacy convert` command. The
config file includes all settings and hyperparameters used during traing.
To override settings in the config, e.g. settings that point to local
@ -44,6 +44,8 @@ def train_cli(
lets you pass in a Python file that's imported before training. It can be
used to register custom functions and architectures that can then be
referenced in the config.
DOCS: https://nightly.spacy.io/api/cli#train
"""
util.logger.setLevel(logging.DEBUG if verbose else logging.ERROR)
verify_cli_args(config_path, output_path)
@ -113,12 +115,12 @@ def train(
# Load morph rules
nlp.vocab.morphology.load_morph_exceptions(morph_rules)
# Load a pretrained tok2vec model - cf. CLI command 'pretrain'
# Load pretrained tok2vec weights - cf. CLI command 'pretrain'
if weights_data is not None:
tok2vec_path = config["pretraining"].get("tok2vec_model", None)
if tok2vec_path is None:
msg.fail(
f"To use a pretrained tok2vec model, the config needs to specify which "
f"To pretrained tok2vec weights, the config needs to specify which "
f"tok2vec layer to load in the setting [pretraining.tok2vec_model].",
exits=1,
)
@ -159,7 +161,8 @@ def train(
print_row(info)
if is_best_checkpoint and output_path is not None:
update_meta(T_cfg, nlp, info)
nlp.to_disk(output_path / "model-best")
with nlp.use_params(optimizer.averages):
nlp.to_disk(output_path / "model-best")
progress = tqdm.tqdm(total=T_cfg["eval_frequency"], leave=False)
progress.set_description(f"Epoch {info['epoch']}")
except Exception as e:
@ -182,7 +185,7 @@ def train(
nlp.to_disk(final_model_path)
else:
nlp.to_disk(final_model_path)
msg.good(f"Saved model to output directory {final_model_path}")
msg.good(f"Saved pipeline to output directory {final_model_path}")
def create_train_batches(iterator, batcher, max_epochs: int):

View File

@ -13,9 +13,11 @@ from ..util import get_package_path, get_model_meta, is_compatible_version
@app.command("validate")
def validate_cli():
"""
Validate the currently installed models and spaCy version. Checks if the
installed models are compatible and shows upgrade instructions if available.
Should be run after `pip install -U spacy`.
Validate the currently installed pipeline packages and spaCy version. Checks
if the installed packages are compatible and shows upgrade instructions if
available. Should be run after `pip install -U spacy`.
DOCS: https://nightly.spacy.io/api/cli#validate
"""
validate()
@ -25,13 +27,13 @@ def validate() -> None:
spacy_version = get_base_version(about.__version__)
current_compat = compat.get(spacy_version, {})
if not current_compat:
msg.warn(f"No compatible models found for v{spacy_version} of spaCy")
msg.warn(f"No compatible packages found for v{spacy_version} of spaCy")
incompat_models = {d["name"] for _, d in model_pkgs.items() if not d["compat"]}
na_models = [m for m in incompat_models if m not in current_compat]
update_models = [m for m in incompat_models if m in current_compat]
spacy_dir = Path(__file__).parent.parent
msg.divider(f"Installed models (spaCy v{about.__version__})")
msg.divider(f"Installed pipeline packages (spaCy v{about.__version__})")
msg.info(f"spaCy installation: {spacy_dir}")
if model_pkgs:
@ -47,15 +49,15 @@ def validate() -> None:
rows.append((data["name"], data["spacy"], version, comp))
msg.table(rows, header=header)
else:
msg.text("No models found in your current environment.", exits=0)
msg.text("No pipeline packages found in your current environment.", exits=0)
if update_models:
msg.divider("Install updates")
msg.text("Use the following commands to update the model packages:")
msg.text("Use the following commands to update the packages:")
cmd = "python -m spacy download {}"
print("\n".join([cmd.format(pkg) for pkg in update_models]) + "\n")
if na_models:
msg.info(
f"The following models are custom spaCy models or not "
f"The following packages are custom spaCy pipelines or not "
f"available for spaCy v{about.__version__}:",
", ".join(na_models),
)

View File

@ -69,7 +69,7 @@ max_length = 2000
limit = 0
[training.batcher]
@batchers = "batch_by_words.v1"
@batchers = "spacy.batch_by_words.v1"
discard_oversize = false
tolerance = 0.2

View File

@ -1,8 +1,8 @@
"""
spaCy's built in visualization suite for dependencies and named entities.
DOCS: https://spacy.io/api/top-level#displacy
USAGE: https://spacy.io/usage/visualizers
DOCS: https://nightly.spacy.io/api/top-level#displacy
USAGE: https://nightly.spacy.io/usage/visualizers
"""
from typing import Union, Iterable, Optional, Dict, Any, Callable
import warnings
@ -37,8 +37,8 @@ def render(
manual (bool): Don't parse `Doc` and instead expect a dict/list of dicts.
RETURNS (str): Rendered HTML markup.
DOCS: https://spacy.io/api/top-level#displacy.render
USAGE: https://spacy.io/usage/visualizers
DOCS: https://nightly.spacy.io/api/top-level#displacy.render
USAGE: https://nightly.spacy.io/usage/visualizers
"""
factories = {
"dep": (DependencyRenderer, parse_deps),
@ -88,8 +88,8 @@ def serve(
port (int): Port to serve visualisation.
host (str): Host to serve visualisation.
DOCS: https://spacy.io/api/top-level#displacy.serve
USAGE: https://spacy.io/usage/visualizers
DOCS: https://nightly.spacy.io/api/top-level#displacy.serve
USAGE: https://nightly.spacy.io/usage/visualizers
"""
from wsgiref import simple_server

View File

@ -249,6 +249,12 @@ class EntityRenderer:
colors = dict(DEFAULT_LABEL_COLORS)
user_colors = registry.displacy_colors.get_all()
for user_color in user_colors.values():
if callable(user_color):
# Since this comes from the function registry, we want to make
# sure we support functions that *return* a dict of colors
user_color = user_color()
if not isinstance(user_color, dict):
raise ValueError(Errors.E925.format(obj=type(user_color)))
colors.update(user_color)
colors.update(options.get("colors", {}))
self.default_color = DEFAULT_ENTITY_COLOR

View File

@ -22,7 +22,7 @@ class Warnings:
"generate a dependency visualization for it. Make sure the Doc "
"was processed with a model that supports dependency parsing, and "
"not just a language class like `English()`. For more info, see "
"the docs:\nhttps://spacy.io/usage/models")
"the docs:\nhttps://nightly.spacy.io/usage/models")
W006 = ("No entities to visualize found in Doc object. If this is "
"surprising to you, make sure the Doc was processed using a model "
"that supports named entity recognition, and check the `doc.ents` "
@ -147,7 +147,7 @@ class Errors:
E010 = ("Word vectors set to length 0. This may be because you don't have "
"a model installed or loaded, or because your model doesn't "
"include word vectors. For more info, see the docs:\n"
"https://spacy.io/usage/models")
"https://nightly.spacy.io/usage/models")
E011 = ("Unknown operator: '{op}'. Options: {opts}")
E012 = ("Cannot add pattern for zero tokens to matcher.\nKey: {key}")
E014 = ("Unknown tag ID: {tag}")
@ -181,7 +181,7 @@ class Errors:
"list of (unicode, bool) tuples. Got bytes instance: {value}")
E029 = ("noun_chunks requires the dependency parse, which requires a "
"statistical model to be installed and loaded. For more info, see "
"the documentation:\nhttps://spacy.io/usage/models")
"the documentation:\nhttps://nightly.spacy.io/usage/models")
E030 = ("Sentence boundaries unset. You can add the 'sentencizer' "
"component to the pipeline with: "
"nlp.add_pipe('sentencizer'). "
@ -294,7 +294,7 @@ class Errors:
E102 = ("Can't merge non-disjoint spans. '{token}' is already part of "
"tokens to merge. If you want to find the longest non-overlapping "
"spans, you can use the util.filter_spans helper:\n"
"https://spacy.io/api/top-level#util.filter_spans")
"https://nightly.spacy.io/api/top-level#util.filter_spans")
E103 = ("Trying to set conflicting doc.ents: '{span1}' and '{span2}'. A "
"token can only be part of one entity, so make sure the entities "
"you're setting don't overlap.")
@ -364,10 +364,10 @@ class Errors:
E137 = ("Expected 'dict' type, but got '{type}' from '{line}'. Make sure "
"to provide a valid JSON object as input with either the `text` "
"or `tokens` key. For more info, see the docs:\n"
"https://spacy.io/api/cli#pretrain-jsonl")
"https://nightly.spacy.io/api/cli#pretrain-jsonl")
E138 = ("Invalid JSONL format for raw text '{text}'. Make sure the input "
"includes either the `text` or `tokens` key. For more info, see "
"the docs:\nhttps://spacy.io/api/cli#pretrain-jsonl")
"the docs:\nhttps://nightly.spacy.io/api/cli#pretrain-jsonl")
E139 = ("Knowledge Base for component '{name}' is empty. Use the methods "
"kb.add_entity and kb.add_alias to add entries.")
E140 = ("The list of entities, prior probabilities and entity vectors "
@ -476,6 +476,8 @@ class Errors:
E199 = ("Unable to merge 0-length span at doc[{start}:{end}].")
# TODO: fix numbering after merging develop into master
E925 = ("Invalid color values for displaCy visualizer: expected dictionary "
"mapping label names to colors but got: {obj}")
E926 = ("It looks like you're trying to modify nlp.{attr} directly. This "
"doesn't work because it's an immutable computed property. If you "
"need to modify the pipeline, use the built-in methods like "

View File

@ -11,7 +11,7 @@ ItemT = TypeVar("ItemT")
BatcherT = Callable[[Iterable[ItemT]], Iterable[List[ItemT]]]
@registry.batchers("batch_by_padded.v1")
@registry.batchers("spacy.batch_by_padded.v1")
def configure_minibatch_by_padded_size(
*,
size: Sizing,
@ -46,7 +46,7 @@ def configure_minibatch_by_padded_size(
)
@registry.batchers("batch_by_words.v1")
@registry.batchers("spacy.batch_by_words.v1")
def configure_minibatch_by_words(
*,
size: Sizing,
@ -70,7 +70,7 @@ def configure_minibatch_by_words(
)
@registry.batchers("batch_by_sequence.v1")
@registry.batchers("spacy.batch_by_sequence.v1")
def configure_minibatch(
size: Sizing, get_length: Optional[Callable[[ItemT], int]] = None
) -> BatcherT:

View File

@ -106,7 +106,7 @@ def conll_ner2docs(
raise ValueError(
"The token-per-line NER file is not formatted correctly. "
"Try checking whitespace and delimiters. See "
"https://spacy.io/api/cli#convert"
"https://nightly.spacy.io/api/cli#convert"
)
length = len(cols[0])
words.extend(cols[0])

View File

@ -44,7 +44,7 @@ def read_iob(raw_sents, vocab, n_sents):
sent_tags = ["-"] * len(sent_words)
else:
raise ValueError(
"The sentence-per-line IOB/IOB2 file is not formatted correctly. Try checking whitespace and delimiters. See https://spacy.io/api/cli#convert"
"The sentence-per-line IOB/IOB2 file is not formatted correctly. Try checking whitespace and delimiters. See https://nightly.spacy.io/api/cli#convert"
)
words.extend(sent_words)
tags.extend(sent_tags)

View File

@ -38,7 +38,7 @@ class Corpus:
limit (int): Limit corpus to a subset of examples, e.g. for debugging.
Defaults to 0, which indicates no limit.
DOCS: https://spacy.io/api/corpus
DOCS: https://nightly.spacy.io/api/corpus
"""
def __init__(
@ -83,7 +83,7 @@ class Corpus:
nlp (Language): The current nlp object.
YIELDS (Example): The examples.
DOCS: https://spacy.io/api/corpus#call
DOCS: https://nightly.spacy.io/api/corpus#call
"""
ref_docs = self.read_docbin(nlp.vocab, self.walk_corpus(self.path))
if self.gold_preproc:

View File

@ -21,7 +21,7 @@ cdef class Candidate:
algorithm which will disambiguate the various candidates to the correct one.
Each candidate (alias, entity) pair is assigned to a certain prior probability.
DOCS: https://spacy.io/api/kb/#candidate_init
DOCS: https://nightly.spacy.io/api/kb/#candidate_init
"""
def __init__(self, KnowledgeBase kb, entity_hash, entity_freq, entity_vector, alias_hash, prior_prob):
@ -79,7 +79,7 @@ cdef class KnowledgeBase:
"""A `KnowledgeBase` instance stores unique identifiers for entities and their textual aliases,
to support entity linking of named entities to real-world concepts.
DOCS: https://spacy.io/api/kb
DOCS: https://nightly.spacy.io/api/kb
"""
def __init__(self, Vocab vocab, entity_vector_length):

View File

@ -7,6 +7,7 @@ _concat_icons = CONCAT_ICONS.replace("\u00B0", "")
_currency = r"\$¢£€¥฿"
_quotes = CONCAT_QUOTES.replace("'", "")
_units = UNITS.replace("%", "")
_prefixes = (
LIST_PUNCT
@ -26,7 +27,7 @@ _suffixes = (
r"(?<=[0-9])\+",
r"(?<=°[FfCcKk])\.",
r"(?<=[0-9])(?:[{c}])".format(c=_currency),
r"(?<=[0-9])(?:{u})".format(u=UNITS),
r"(?<=[0-9])(?:{u})".format(u=_units),
r"(?<=[{al}{e}{q}(?:{c})])\.".format(
al=ALPHA_LOWER, e=r"%²\-\+", q=CONCAT_QUOTES, c=_currency
),

View File

@ -1,5 +1,5 @@
from typing import Optional, Any, Dict, Callable, Iterable, Union, List, Pattern
from typing import Tuple, Iterator
from typing import Tuple, Iterator, Optional
from dataclasses import dataclass
import random
import itertools
@ -95,7 +95,7 @@ class Language:
object and processing pipeline.
lang (str): Two-letter language ID, i.e. ISO code.
DOCS: https://spacy.io/api/language
DOCS: https://nightly.spacy.io/api/language
"""
Defaults = BaseDefaults
@ -130,7 +130,7 @@ class Language:
create_tokenizer (Callable): Function that takes the nlp object and
returns a tokenizer.
DOCS: https://spacy.io/api/language#init
DOCS: https://nightly.spacy.io/api/language#init
"""
# We're only calling this to import all factories provided via entry
# points. The factory decorator applied to these functions takes care
@ -185,14 +185,14 @@ class Language:
RETURNS (Dict[str, Any]): The meta.
DOCS: https://spacy.io/api/language#meta
DOCS: https://nightly.spacy.io/api/language#meta
"""
spacy_version = util.get_model_version_range(about.__version__)
if self.vocab.lang:
self._meta.setdefault("lang", self.vocab.lang)
else:
self._meta.setdefault("lang", self.lang)
self._meta.setdefault("name", "model")
self._meta.setdefault("name", "pipeline")
self._meta.setdefault("version", "0.0.0")
self._meta.setdefault("spacy_version", spacy_version)
self._meta.setdefault("description", "")
@ -225,7 +225,7 @@ class Language:
RETURNS (thinc.api.Config): The config.
DOCS: https://spacy.io/api/language#config
DOCS: https://nightly.spacy.io/api/language#config
"""
self._config.setdefault("nlp", {})
self._config.setdefault("training", {})
@ -433,7 +433,7 @@ class Language:
will be combined and normalized for the whole pipeline.
func (Optional[Callable]): Factory function if not used as a decorator.
DOCS: https://spacy.io/api/language#factory
DOCS: https://nightly.spacy.io/api/language#factory
"""
if not isinstance(name, str):
raise ValueError(Errors.E963.format(decorator="factory"))
@ -513,7 +513,7 @@ class Language:
Used for pipeline analysis.
func (Optional[Callable]): Factory function if not used as a decorator.
DOCS: https://spacy.io/api/language#component
DOCS: https://nightly.spacy.io/api/language#component
"""
if name is not None and not isinstance(name, str):
raise ValueError(Errors.E963.format(decorator="component"))
@ -579,7 +579,7 @@ class Language:
name (str): Name of pipeline component to get.
RETURNS (callable): The pipeline component.
DOCS: https://spacy.io/api/language#get_pipe
DOCS: https://nightly.spacy.io/api/language#get_pipe
"""
for pipe_name, component in self._components:
if pipe_name == name:
@ -608,7 +608,7 @@ class Language:
arguments and types expected by the factory.
RETURNS (Callable[[Doc], Doc]): The pipeline component.
DOCS: https://spacy.io/api/language#create_pipe
DOCS: https://nightly.spacy.io/api/language#create_pipe
"""
name = name if name is not None else factory_name
if not isinstance(config, dict):
@ -722,7 +722,7 @@ class Language:
arguments and types expected by the factory.
RETURNS (Callable[[Doc], Doc]): The pipeline component.
DOCS: https://spacy.io/api/language#add_pipe
DOCS: https://nightly.spacy.io/api/language#add_pipe
"""
if not isinstance(factory_name, str):
bad_val = repr(factory_name)
@ -820,7 +820,7 @@ class Language:
name (str): Name of the component.
RETURNS (bool): Whether a component of the name exists in the pipeline.
DOCS: https://spacy.io/api/language#has_pipe
DOCS: https://nightly.spacy.io/api/language#has_pipe
"""
return name in self.pipe_names
@ -841,7 +841,7 @@ class Language:
validate (bool): Whether to validate the component config against the
arguments and types expected by the factory.
DOCS: https://spacy.io/api/language#replace_pipe
DOCS: https://nightly.spacy.io/api/language#replace_pipe
"""
if name not in self.pipe_names:
raise ValueError(Errors.E001.format(name=name, opts=self.pipe_names))
@ -870,7 +870,7 @@ class Language:
old_name (str): Name of the component to rename.
new_name (str): New name of the component.
DOCS: https://spacy.io/api/language#rename_pipe
DOCS: https://nightly.spacy.io/api/language#rename_pipe
"""
if old_name not in self.component_names:
raise ValueError(
@ -891,7 +891,7 @@ class Language:
name (str): Name of the component to remove.
RETURNS (tuple): A `(name, component)` tuple of the removed component.
DOCS: https://spacy.io/api/language#remove_pipe
DOCS: https://nightly.spacy.io/api/language#remove_pipe
"""
if name not in self.component_names:
raise ValueError(Errors.E001.format(name=name, opts=self.component_names))
@ -944,7 +944,7 @@ class Language:
keyword arguments for specific components.
RETURNS (Doc): A container for accessing the annotations.
DOCS: https://spacy.io/api/language#call
DOCS: https://nightly.spacy.io/api/language#call
"""
if len(text) > self.max_length:
raise ValueError(
@ -993,7 +993,7 @@ class Language:
disable (str or iterable): The name(s) of the pipes to disable
enable (str or iterable): The name(s) of the pipes to enable - all others will be disabled
DOCS: https://spacy.io/api/language#select_pipes
DOCS: https://nightly.spacy.io/api/language#select_pipes
"""
if enable is None and disable is None:
raise ValueError(Errors.E991)
@ -1044,7 +1044,7 @@ class Language:
exclude (Iterable[str]): Names of components that shouldn't be updated.
RETURNS (Dict[str, float]): The updated losses dictionary
DOCS: https://spacy.io/api/language#update
DOCS: https://nightly.spacy.io/api/language#update
"""
if _ is not None:
raise ValueError(Errors.E989)
@ -1106,7 +1106,7 @@ class Language:
>>> raw_batch = [Example.from_dict(nlp.make_doc(text), {}) for text in next(raw_text_batches)]
>>> nlp.rehearse(raw_batch)
DOCS: https://spacy.io/api/language#rehearse
DOCS: https://nightly.spacy.io/api/language#rehearse
"""
if len(examples) == 0:
return
@ -1153,7 +1153,7 @@ class Language:
create_optimizer if it doesn't exist.
RETURNS (thinc.api.Optimizer): The optimizer.
DOCS: https://spacy.io/api/language#begin_training
DOCS: https://nightly.spacy.io/api/language#begin_training
"""
# TODO: throw warning when get_gold_tuples is provided instead of get_examples
if get_examples is None:
@ -1200,7 +1200,7 @@ class Language:
sgd (Optional[Optimizer]): An optimizer.
RETURNS (Optimizer): The optimizer.
DOCS: https://spacy.io/api/language#resume_training
DOCS: https://nightly.spacy.io/api/language#resume_training
"""
if device >= 0: # TODO: do we need this here?
require_gpu(device)
@ -1236,7 +1236,7 @@ class Language:
for the scorer.
RETURNS (Scorer): The scorer containing the evaluation results.
DOCS: https://spacy.io/api/language#evaluate
DOCS: https://nightly.spacy.io/api/language#evaluate
"""
validate_examples(examples, "Language.evaluate")
if component_cfg is None:
@ -1275,7 +1275,7 @@ class Language:
return results
@contextmanager
def use_params(self, params: dict):
def use_params(self, params: Optional[dict]):
"""Replace weights of models in the pipeline with those provided in the
params dictionary. Can be used as a contextmanager, in which case,
models go back to their original weights after the block.
@ -1286,26 +1286,29 @@ class Language:
>>> with nlp.use_params(optimizer.averages):
>>> nlp.to_disk("/tmp/checkpoint")
DOCS: https://spacy.io/api/language#use_params
DOCS: https://nightly.spacy.io/api/language#use_params
"""
contexts = [
pipe.use_params(params)
for name, pipe in self.pipeline
if hasattr(pipe, "use_params") and hasattr(pipe, "model")
]
# TODO: Having trouble with contextlib
# Workaround: these aren't actually context managers atm.
for context in contexts:
try:
next(context)
except StopIteration:
pass
yield
for context in contexts:
try:
next(context)
except StopIteration:
pass
if not params:
yield
else:
contexts = [
pipe.use_params(params)
for name, pipe in self.pipeline
if hasattr(pipe, "use_params") and hasattr(pipe, "model")
]
# TODO: Having trouble with contextlib
# Workaround: these aren't actually context managers atm.
for context in contexts:
try:
next(context)
except StopIteration:
pass
yield
for context in contexts:
try:
next(context)
except StopIteration:
pass
def pipe(
self,
@ -1330,7 +1333,7 @@ class Language:
n_process (int): Number of processors to process texts. If -1, set `multiprocessing.cpu_count()`.
YIELDS (Doc): Documents in the order of the original text.
DOCS: https://spacy.io/api/language#pipe
DOCS: https://nightly.spacy.io/api/language#pipe
"""
if n_process == -1:
n_process = mp.cpu_count()
@ -1466,7 +1469,7 @@ class Language:
the types expected by the factory.
RETURNS (Language): The initialized Language class.
DOCS: https://spacy.io/api/language#from_config
DOCS: https://nightly.spacy.io/api/language#from_config
"""
if auto_fill:
config = Config(
@ -1579,7 +1582,7 @@ class Language:
it doesn't exist.
exclude (list): Names of components or serialization fields to exclude.
DOCS: https://spacy.io/api/language#to_disk
DOCS: https://nightly.spacy.io/api/language#to_disk
"""
path = util.ensure_path(path)
serializers = {}
@ -1608,7 +1611,7 @@ class Language:
exclude (list): Names of components or serialization fields to exclude.
RETURNS (Language): The modified `Language` object.
DOCS: https://spacy.io/api/language#from_disk
DOCS: https://nightly.spacy.io/api/language#from_disk
"""
def deserialize_meta(path: Path) -> None:
@ -1656,7 +1659,7 @@ class Language:
exclude (list): Names of components or serialization fields to exclude.
RETURNS (bytes): The serialized form of the `Language` object.
DOCS: https://spacy.io/api/language#to_bytes
DOCS: https://nightly.spacy.io/api/language#to_bytes
"""
serializers = {}
serializers["vocab"] = lambda: self.vocab.to_bytes()
@ -1680,7 +1683,7 @@ class Language:
exclude (list): Names of components or serialization fields to exclude.
RETURNS (Language): The `Language` object.
DOCS: https://spacy.io/api/language#from_bytes
DOCS: https://nightly.spacy.io/api/language#from_bytes
"""
def deserialize_meta(b):

View File

@ -30,7 +30,7 @@ cdef class Lexeme:
tag, dependency parse, or lemma (lemmatization depends on the
part-of-speech tag).
DOCS: https://spacy.io/api/lexeme
DOCS: https://nightly.spacy.io/api/lexeme
"""
def __init__(self, Vocab vocab, attr_t orth):
"""Create a Lexeme object.

View File

@ -57,7 +57,7 @@ class Table(OrderedDict):
data (dict): The dictionary.
name (str): Optional table name for reference.
DOCS: https://spacy.io/api/lookups#table.from_dict
DOCS: https://nightly.spacy.io/api/lookups#table.from_dict
"""
self = cls(name=name)
self.update(data)
@ -69,7 +69,7 @@ class Table(OrderedDict):
name (str): Optional table name for reference.
data (dict): Initial data, used to hint Bloom Filter.
DOCS: https://spacy.io/api/lookups#table.init
DOCS: https://nightly.spacy.io/api/lookups#table.init
"""
OrderedDict.__init__(self)
self.name = name
@ -135,7 +135,7 @@ class Table(OrderedDict):
RETURNS (bytes): The serialized table.
DOCS: https://spacy.io/api/lookups#table.to_bytes
DOCS: https://nightly.spacy.io/api/lookups#table.to_bytes
"""
data = {
"name": self.name,
@ -150,7 +150,7 @@ class Table(OrderedDict):
bytes_data (bytes): The data to load.
RETURNS (Table): The loaded table.
DOCS: https://spacy.io/api/lookups#table.from_bytes
DOCS: https://nightly.spacy.io/api/lookups#table.from_bytes
"""
loaded = srsly.msgpack_loads(bytes_data)
data = loaded.get("dict", {})
@ -172,7 +172,7 @@ class Lookups:
def __init__(self) -> None:
"""Initialize the Lookups object.
DOCS: https://spacy.io/api/lookups#init
DOCS: https://nightly.spacy.io/api/lookups#init
"""
self._tables = {}
@ -201,7 +201,7 @@ class Lookups:
data (dict): Optional data to add to the table.
RETURNS (Table): The newly added table.
DOCS: https://spacy.io/api/lookups#add_table
DOCS: https://nightly.spacy.io/api/lookups#add_table
"""
if name in self.tables:
raise ValueError(Errors.E158.format(name=name))
@ -215,7 +215,7 @@ class Lookups:
name (str): Name of the table to set.
table (Table): The Table to set.
DOCS: https://spacy.io/api/lookups#set_table
DOCS: https://nightly.spacy.io/api/lookups#set_table
"""
self._tables[name] = table
@ -227,7 +227,7 @@ class Lookups:
default (Any): Optional default value to return if table doesn't exist.
RETURNS (Table): The table.
DOCS: https://spacy.io/api/lookups#get_table
DOCS: https://nightly.spacy.io/api/lookups#get_table
"""
if name not in self._tables:
if default == UNSET:
@ -241,7 +241,7 @@ class Lookups:
name (str): Name of the table to remove.
RETURNS (Table): The removed table.
DOCS: https://spacy.io/api/lookups#remove_table
DOCS: https://nightly.spacy.io/api/lookups#remove_table
"""
if name not in self._tables:
raise KeyError(Errors.E159.format(name=name, tables=self.tables))
@ -253,7 +253,7 @@ class Lookups:
name (str): Name of the table.
RETURNS (bool): Whether a table of that name exists.
DOCS: https://spacy.io/api/lookups#has_table
DOCS: https://nightly.spacy.io/api/lookups#has_table
"""
return name in self._tables
@ -262,7 +262,7 @@ class Lookups:
RETURNS (bytes): The serialized Lookups.
DOCS: https://spacy.io/api/lookups#to_bytes
DOCS: https://nightly.spacy.io/api/lookups#to_bytes
"""
return srsly.msgpack_dumps(self._tables)
@ -272,7 +272,7 @@ class Lookups:
bytes_data (bytes): The data to load.
RETURNS (Lookups): The loaded Lookups.
DOCS: https://spacy.io/api/lookups#from_bytes
DOCS: https://nightly.spacy.io/api/lookups#from_bytes
"""
self._tables = {}
for key, value in srsly.msgpack_loads(bytes_data).items():
@ -287,7 +287,7 @@ class Lookups:
path (str / Path): The file path.
DOCS: https://spacy.io/api/lookups#to_disk
DOCS: https://nightly.spacy.io/api/lookups#to_disk
"""
if len(self._tables):
path = ensure_path(path)
@ -306,7 +306,7 @@ class Lookups:
path (str / Path): The directory path.
RETURNS (Lookups): The loaded lookups.
DOCS: https://spacy.io/api/lookups#from_disk
DOCS: https://nightly.spacy.io/api/lookups#from_disk
"""
path = ensure_path(path)
filepath = path / filename

View File

@ -31,8 +31,8 @@ DEF PADDING = 5
cdef class Matcher:
"""Match sequences of tokens, based on pattern rules.
DOCS: https://spacy.io/api/matcher
USAGE: https://spacy.io/usage/rule-based-matching
DOCS: https://nightly.spacy.io/api/matcher
USAGE: https://nightly.spacy.io/usage/rule-based-matching
"""
def __init__(self, vocab, validate=True):

View File

@ -19,8 +19,8 @@ cdef class PhraseMatcher:
sequences based on lists of token descriptions, the `PhraseMatcher` accepts
match patterns in the form of `Doc` objects.
DOCS: https://spacy.io/api/phrasematcher
USAGE: https://spacy.io/usage/rule-based-matching#phrasematcher
DOCS: https://nightly.spacy.io/api/phrasematcher
USAGE: https://nightly.spacy.io/usage/rule-based-matching#phrasematcher
Adapted from FlashText: https://github.com/vi3k6i5/flashtext
MIT License (see `LICENSE`)
@ -34,7 +34,7 @@ cdef class PhraseMatcher:
attr (int / str): Token attribute to match on.
validate (bool): Perform additional validation when patterns are added.
DOCS: https://spacy.io/api/phrasematcher#init
DOCS: https://nightly.spacy.io/api/phrasematcher#init
"""
self.vocab = vocab
self._callbacks = {}
@ -61,7 +61,7 @@ cdef class PhraseMatcher:
RETURNS (int): The number of rules.
DOCS: https://spacy.io/api/phrasematcher#len
DOCS: https://nightly.spacy.io/api/phrasematcher#len
"""
return len(self._callbacks)
@ -71,7 +71,7 @@ cdef class PhraseMatcher:
key (str): The match ID.
RETURNS (bool): Whether the matcher contains rules for this match ID.
DOCS: https://spacy.io/api/phrasematcher#contains
DOCS: https://nightly.spacy.io/api/phrasematcher#contains
"""
return key in self._callbacks
@ -85,7 +85,7 @@ cdef class PhraseMatcher:
key (str): The match ID.
DOCS: https://spacy.io/api/phrasematcher#remove
DOCS: https://nightly.spacy.io/api/phrasematcher#remove
"""
if key not in self._docs:
raise KeyError(key)
@ -164,7 +164,7 @@ cdef class PhraseMatcher:
as variable arguments. Will be ignored if a list of patterns is
provided as the second argument.
DOCS: https://spacy.io/api/phrasematcher#add
DOCS: https://nightly.spacy.io/api/phrasematcher#add
"""
if docs is None or hasattr(docs, "__call__"): # old API
on_match = docs
@ -228,7 +228,7 @@ cdef class PhraseMatcher:
`doc[start:end]`. The `match_id` is an integer. If as_spans is set
to True, a list of Span objects is returned.
DOCS: https://spacy.io/api/phrasematcher#call
DOCS: https://nightly.spacy.io/api/phrasematcher#call
"""
matches = []
if doc is None or len(doc) == 0:

View File

@ -24,7 +24,7 @@ def build_nel_encoder(tok2vec: Model, nO: Optional[int] = None) -> Model:
return model
@registry.assets.register("spacy.KBFromFile.v1")
@registry.misc.register("spacy.KBFromFile.v1")
def load_kb(kb_path: str) -> Callable[[Vocab], KnowledgeBase]:
def kb_from_file(vocab):
kb = KnowledgeBase(vocab, entity_vector_length=1)
@ -34,7 +34,7 @@ def load_kb(kb_path: str) -> Callable[[Vocab], KnowledgeBase]:
return kb_from_file
@registry.assets.register("spacy.EmptyKB.v1")
@registry.misc.register("spacy.EmptyKB.v1")
def empty_kb(entity_vector_length: int) -> Callable[[Vocab], KnowledgeBase]:
def empty_kb_factory(vocab):
return KnowledgeBase(vocab=vocab, entity_vector_length=entity_vector_length)
@ -42,6 +42,6 @@ def empty_kb(entity_vector_length: int) -> Callable[[Vocab], KnowledgeBase]:
return empty_kb_factory
@registry.assets.register("spacy.CandidateGenerator.v1")
@registry.misc.register("spacy.CandidateGenerator.v1")
def create_candidates() -> Callable[[KnowledgeBase, "Span"], Iterable[Candidate]]:
return get_candidates

View File

@ -38,7 +38,7 @@ class AttributeRuler(Pipe):
"""Set token-level attributes for tokens matched by Matcher patterns.
Additionally supports importing patterns from tag maps and morph rules.
DOCS: https://spacy.io/api/attributeruler
DOCS: https://nightly.spacy.io/api/attributeruler
"""
def __init__(
@ -59,7 +59,7 @@ class AttributeRuler(Pipe):
RETURNS (AttributeRuler): The AttributeRuler component.
DOCS: https://spacy.io/api/attributeruler#init
DOCS: https://nightly.spacy.io/api/attributeruler#init
"""
self.name = name
self.vocab = vocab
@ -77,7 +77,7 @@ class AttributeRuler(Pipe):
doc (Doc): The document to process.
RETURNS (Doc): The processed Doc.
DOCS: https://spacy.io/api/attributeruler#call
DOCS: https://nightly.spacy.io/api/attributeruler#call
"""
matches = sorted(self.matcher(doc))
@ -121,7 +121,7 @@ class AttributeRuler(Pipe):
tag_map (dict): The tag map that maps fine-grained tags to
coarse-grained tags and morphological features.
DOCS: https://spacy.io/api/attributeruler#load_from_morph_rules
DOCS: https://nightly.spacy.io/api/attributeruler#load_from_morph_rules
"""
for tag, attrs in tag_map.items():
pattern = [{"TAG": tag}]
@ -139,7 +139,7 @@ class AttributeRuler(Pipe):
fine-grained tags to coarse-grained tags, lemmas and morphological
features.
DOCS: https://spacy.io/api/attributeruler#load_from_morph_rules
DOCS: https://nightly.spacy.io/api/attributeruler#load_from_morph_rules
"""
for tag in morph_rules:
for word in morph_rules[tag]:
@ -163,7 +163,7 @@ class AttributeRuler(Pipe):
index (int): The index of the token in the matched span to modify. May
be negative to index from the end of the span. Defaults to 0.
DOCS: https://spacy.io/api/attributeruler#add
DOCS: https://nightly.spacy.io/api/attributeruler#add
"""
self.matcher.add(len(self.attrs), patterns)
self._attrs_unnormed.append(attrs)
@ -178,7 +178,7 @@ class AttributeRuler(Pipe):
as the arguments to AttributeRuler.add (patterns/attrs/index) to
add as patterns.
DOCS: https://spacy.io/api/attributeruler#add_patterns
DOCS: https://nightly.spacy.io/api/attributeruler#add_patterns
"""
for p in pattern_dicts:
self.add(**p)
@ -203,7 +203,7 @@ class AttributeRuler(Pipe):
Scorer.score_token_attr for the attributes "tag", "pos", "morph"
and "lemma" for the target token attributes.
DOCS: https://spacy.io/api/tagger#score
DOCS: https://nightly.spacy.io/api/tagger#score
"""
validate_examples(examples, "AttributeRuler.score")
results = {}
@ -227,7 +227,7 @@ class AttributeRuler(Pipe):
exclude (Iterable[str]): String names of serialization fields to exclude.
RETURNS (bytes): The serialized object.
DOCS: https://spacy.io/api/attributeruler#to_bytes
DOCS: https://nightly.spacy.io/api/attributeruler#to_bytes
"""
serialize = {}
serialize["vocab"] = self.vocab.to_bytes
@ -243,7 +243,7 @@ class AttributeRuler(Pipe):
exclude (Iterable[str]): String names of serialization fields to exclude.
returns (AttributeRuler): The loaded object.
DOCS: https://spacy.io/api/attributeruler#from_bytes
DOCS: https://nightly.spacy.io/api/attributeruler#from_bytes
"""
def load_patterns(b):
@ -264,7 +264,7 @@ class AttributeRuler(Pipe):
path (Union[Path, str]): A path to a directory.
exclude (Iterable[str]): String names of serialization fields to exclude.
DOCS: https://spacy.io/api/attributeruler#to_disk
DOCS: https://nightly.spacy.io/api/attributeruler#to_disk
"""
serialize = {
"vocab": lambda p: self.vocab.to_disk(p),
@ -279,7 +279,7 @@ class AttributeRuler(Pipe):
path (Union[Path, str]): A path to a directory.
exclude (Iterable[str]): String names of serialization fields to exclude.
DOCS: https://spacy.io/api/attributeruler#from_disk
DOCS: https://nightly.spacy.io/api/attributeruler#from_disk
"""
def load_patterns(p):

View File

@ -105,7 +105,7 @@ def make_parser(
cdef class DependencyParser(Parser):
"""Pipeline component for dependency parsing.
DOCS: https://spacy.io/api/dependencyparser
DOCS: https://nightly.spacy.io/api/dependencyparser
"""
TransitionSystem = ArcEager
@ -146,7 +146,7 @@ cdef class DependencyParser(Parser):
RETURNS (Dict[str, Any]): The scores, produced by Scorer.score_spans
and Scorer.score_deps.
DOCS: https://spacy.io/api/dependencyparser#score
DOCS: https://nightly.spacy.io/api/dependencyparser#score
"""
validate_examples(examples, "DependencyParser.score")
def dep_getter(token, attr):

View File

@ -39,12 +39,12 @@ DEFAULT_NEL_MODEL = Config().from_str(default_model_config)["model"]
requires=["doc.ents", "doc.sents", "token.ent_iob", "token.ent_type"],
assigns=["token.ent_kb_id"],
default_config={
"kb_loader": {"@assets": "spacy.EmptyKB.v1", "entity_vector_length": 64},
"kb_loader": {"@misc": "spacy.EmptyKB.v1", "entity_vector_length": 64},
"model": DEFAULT_NEL_MODEL,
"labels_discard": [],
"incl_prior": True,
"incl_context": True,
"get_candidates": {"@assets": "spacy.CandidateGenerator.v1"},
"get_candidates": {"@misc": "spacy.CandidateGenerator.v1"},
},
)
def make_entity_linker(
@ -83,7 +83,7 @@ def make_entity_linker(
class EntityLinker(Pipe):
"""Pipeline component for named entity linking.
DOCS: https://spacy.io/api/entitylinker
DOCS: https://nightly.spacy.io/api/entitylinker
"""
NIL = "NIL" # string used to refer to a non-existing link
@ -111,7 +111,7 @@ class EntityLinker(Pipe):
incl_prior (bool): Whether or not to include prior probabilities from the KB in the model.
incl_context (bool): Whether or not to include the local context in the model.
DOCS: https://spacy.io/api/entitylinker#init
DOCS: https://nightly.spacy.io/api/entitylinker#init
"""
self.vocab = vocab
self.model = model
@ -151,7 +151,7 @@ class EntityLinker(Pipe):
create_optimizer if it doesn't exist.
RETURNS (thinc.api.Optimizer): The optimizer.
DOCS: https://spacy.io/api/entitylinker#begin_training
DOCS: https://nightly.spacy.io/api/entitylinker#begin_training
"""
self.require_kb()
nO = self.kb.entity_vector_length
@ -182,7 +182,7 @@ class EntityLinker(Pipe):
Updated using the component name as the key.
RETURNS (Dict[str, float]): The updated losses dictionary.
DOCS: https://spacy.io/api/entitylinker#update
DOCS: https://nightly.spacy.io/api/entitylinker#update
"""
self.require_kb()
if losses is None:
@ -264,7 +264,7 @@ class EntityLinker(Pipe):
doc (Doc): The document to process.
RETURNS (Doc): The processed Doc.
DOCS: https://spacy.io/api/entitylinker#call
DOCS: https://nightly.spacy.io/api/entitylinker#call
"""
kb_ids = self.predict([doc])
self.set_annotations([doc], kb_ids)
@ -279,7 +279,7 @@ class EntityLinker(Pipe):
batch_size (int): The number of documents to buffer.
YIELDS (Doc): Processed documents in order.
DOCS: https://spacy.io/api/entitylinker#pipe
DOCS: https://nightly.spacy.io/api/entitylinker#pipe
"""
for docs in util.minibatch(stream, size=batch_size):
kb_ids = self.predict(docs)
@ -294,7 +294,7 @@ class EntityLinker(Pipe):
docs (Iterable[Doc]): The documents to predict.
RETURNS (List[int]): The models prediction for each document.
DOCS: https://spacy.io/api/entitylinker#predict
DOCS: https://nightly.spacy.io/api/entitylinker#predict
"""
self.require_kb()
entity_count = 0
@ -391,7 +391,7 @@ class EntityLinker(Pipe):
docs (Iterable[Doc]): The documents to modify.
kb_ids (List[str]): The IDs to set, produced by EntityLinker.predict.
DOCS: https://spacy.io/api/entitylinker#set_annotations
DOCS: https://nightly.spacy.io/api/entitylinker#set_annotations
"""
count_ents = len([ent for doc in docs for ent in doc.ents])
if count_ents != len(kb_ids):
@ -412,7 +412,7 @@ class EntityLinker(Pipe):
path (str / Path): Path to a directory.
exclude (Iterable[str]): String names of serialization fields to exclude.
DOCS: https://spacy.io/api/entitylinker#to_disk
DOCS: https://nightly.spacy.io/api/entitylinker#to_disk
"""
serialize = {}
serialize["cfg"] = lambda p: srsly.write_json(p, self.cfg)
@ -430,7 +430,7 @@ class EntityLinker(Pipe):
exclude (Iterable[str]): String names of serialization fields to exclude.
RETURNS (EntityLinker): The modified EntityLinker object.
DOCS: https://spacy.io/api/entitylinker#from_disk
DOCS: https://nightly.spacy.io/api/entitylinker#from_disk
"""
def load_model(p):

View File

@ -53,8 +53,8 @@ class EntityRuler:
purely rule-based entity recognition system. After initialization, the
component is typically added to the pipeline using `nlp.add_pipe`.
DOCS: https://spacy.io/api/entityruler
USAGE: https://spacy.io/usage/rule-based-matching#entityruler
DOCS: https://nightly.spacy.io/api/entityruler
USAGE: https://nightly.spacy.io/usage/rule-based-matching#entityruler
"""
def __init__(
@ -88,7 +88,7 @@ class EntityRuler:
added by the model, overwrite them by matches if necessary.
ent_id_sep (str): Separator used internally for entity IDs.
DOCS: https://spacy.io/api/entityruler#init
DOCS: https://nightly.spacy.io/api/entityruler#init
"""
self.nlp = nlp
self.name = name
@ -127,7 +127,7 @@ class EntityRuler:
doc (Doc): The Doc object in the pipeline.
RETURNS (Doc): The Doc with added entities, if available.
DOCS: https://spacy.io/api/entityruler#call
DOCS: https://nightly.spacy.io/api/entityruler#call
"""
matches = list(self.matcher(doc)) + list(self.phrase_matcher(doc))
matches = set(
@ -165,7 +165,7 @@ class EntityRuler:
RETURNS (set): The string labels.
DOCS: https://spacy.io/api/entityruler#labels
DOCS: https://nightly.spacy.io/api/entityruler#labels
"""
keys = set(self.token_patterns.keys())
keys.update(self.phrase_patterns.keys())
@ -185,7 +185,7 @@ class EntityRuler:
RETURNS (set): The string entity ids.
DOCS: https://spacy.io/api/entityruler#ent_ids
DOCS: https://nightly.spacy.io/api/entityruler#ent_ids
"""
keys = set(self.token_patterns.keys())
keys.update(self.phrase_patterns.keys())
@ -203,7 +203,7 @@ class EntityRuler:
RETURNS (list): The original patterns, one dictionary per pattern.
DOCS: https://spacy.io/api/entityruler#patterns
DOCS: https://nightly.spacy.io/api/entityruler#patterns
"""
all_patterns = []
for label, patterns in self.token_patterns.items():
@ -230,7 +230,7 @@ class EntityRuler:
patterns (list): The patterns to add.
DOCS: https://spacy.io/api/entityruler#add_patterns
DOCS: https://nightly.spacy.io/api/entityruler#add_patterns
"""
# disable the nlp components after this one in case they hadn't been initialized / deserialised yet
@ -324,7 +324,7 @@ class EntityRuler:
patterns_bytes (bytes): The bytestring to load.
RETURNS (EntityRuler): The loaded entity ruler.
DOCS: https://spacy.io/api/entityruler#from_bytes
DOCS: https://nightly.spacy.io/api/entityruler#from_bytes
"""
cfg = srsly.msgpack_loads(patterns_bytes)
self.clear()
@ -346,7 +346,7 @@ class EntityRuler:
RETURNS (bytes): The serialized patterns.
DOCS: https://spacy.io/api/entityruler#to_bytes
DOCS: https://nightly.spacy.io/api/entityruler#to_bytes
"""
serial = {
"overwrite": self.overwrite,
@ -365,7 +365,7 @@ class EntityRuler:
path (str / Path): The JSONL file to load.
RETURNS (EntityRuler): The loaded entity ruler.
DOCS: https://spacy.io/api/entityruler#from_disk
DOCS: https://nightly.spacy.io/api/entityruler#from_disk
"""
path = ensure_path(path)
self.clear()
@ -401,7 +401,7 @@ class EntityRuler:
path (str / Path): The JSONL file to save.
DOCS: https://spacy.io/api/entityruler#to_disk
DOCS: https://nightly.spacy.io/api/entityruler#to_disk
"""
path = ensure_path(path)
cfg = {

View File

@ -15,7 +15,7 @@ def merge_noun_chunks(doc: Doc) -> Doc:
doc (Doc): The Doc object.
RETURNS (Doc): The Doc object with merged noun chunks.
DOCS: https://spacy.io/api/pipeline-functions#merge_noun_chunks
DOCS: https://nightly.spacy.io/api/pipeline-functions#merge_noun_chunks
"""
if not doc.is_parsed:
return doc
@ -37,7 +37,7 @@ def merge_entities(doc: Doc):
doc (Doc): The Doc object.
RETURNS (Doc): The Doc object with merged entities.
DOCS: https://spacy.io/api/pipeline-functions#merge_entities
DOCS: https://nightly.spacy.io/api/pipeline-functions#merge_entities
"""
with doc.retokenize() as retokenizer:
for ent in doc.ents:
@ -54,7 +54,7 @@ def merge_subtokens(doc: Doc, label: str = "subtok") -> Doc:
label (str): The subtoken dependency label.
RETURNS (Doc): The Doc object with merged subtokens.
DOCS: https://spacy.io/api/pipeline-functions#merge_subtokens
DOCS: https://nightly.spacy.io/api/pipeline-functions#merge_subtokens
"""
# TODO: make stateful component with "label" config
merger = Matcher(doc.vocab)

View File

@ -43,7 +43,7 @@ class Lemmatizer(Pipe):
The Lemmatizer supports simple part-of-speech-sensitive suffix rules and
lookup tables.
DOCS: https://spacy.io/api/lemmatizer
DOCS: https://nightly.spacy.io/api/lemmatizer
"""
@classmethod
@ -54,7 +54,7 @@ class Lemmatizer(Pipe):
mode (str): The lemmatizer mode.
RETURNS (dict): The lookups configuration settings for this mode.
DOCS: https://spacy.io/api/lemmatizer#get_lookups_config
DOCS: https://nightly.spacy.io/api/lemmatizer#get_lookups_config
"""
if mode == "lookup":
return {
@ -80,7 +80,7 @@ class Lemmatizer(Pipe):
lookups should be loaded.
RETURNS (Lookups): The Lookups object.
DOCS: https://spacy.io/api/lemmatizer#get_lookups_config
DOCS: https://nightly.spacy.io/api/lemmatizer#get_lookups_config
"""
config = cls.get_lookups_config(mode)
required_tables = config.get("required_tables", [])
@ -123,7 +123,7 @@ class Lemmatizer(Pipe):
overwrite (bool): Whether to overwrite existing lemmas. Defaults to
`False`.
DOCS: https://spacy.io/api/lemmatizer#init
DOCS: https://nightly.spacy.io/api/lemmatizer#init
"""
self.vocab = vocab
self.model = model
@ -152,7 +152,7 @@ class Lemmatizer(Pipe):
doc (Doc): The Doc to process.
RETURNS (Doc): The processed Doc.
DOCS: https://spacy.io/api/lemmatizer#call
DOCS: https://nightly.spacy.io/api/lemmatizer#call
"""
for token in doc:
if self.overwrite or token.lemma == 0:
@ -168,7 +168,7 @@ class Lemmatizer(Pipe):
batch_size (int): The number of documents to buffer.
YIELDS (Doc): Processed documents in order.
DOCS: https://spacy.io/api/lemmatizer#pipe
DOCS: https://nightly.spacy.io/api/lemmatizer#pipe
"""
for doc in stream:
doc = self(doc)
@ -180,7 +180,7 @@ class Lemmatizer(Pipe):
token (Token): The token to lemmatize.
RETURNS (list): The available lemmas for the string.
DOCS: https://spacy.io/api/lemmatizer#lookup_lemmatize
DOCS: https://nightly.spacy.io/api/lemmatizer#lookup_lemmatize
"""
lookup_table = self.lookups.get_table("lemma_lookup", {})
result = lookup_table.get(token.text, token.text)
@ -194,7 +194,7 @@ class Lemmatizer(Pipe):
token (Token): The token to lemmatize.
RETURNS (list): The available lemmas for the string.
DOCS: https://spacy.io/api/lemmatizer#rule_lemmatize
DOCS: https://nightly.spacy.io/api/lemmatizer#rule_lemmatize
"""
cache_key = (token.orth, token.pos, token.morph)
if cache_key in self.cache:
@ -260,7 +260,7 @@ class Lemmatizer(Pipe):
token (Token): The token.
RETURNS (bool): Whether the token is a base form.
DOCS: https://spacy.io/api/lemmatizer#is_base_form
DOCS: https://nightly.spacy.io/api/lemmatizer#is_base_form
"""
return False
@ -270,7 +270,7 @@ class Lemmatizer(Pipe):
examples (Iterable[Example]): The examples to score.
RETURNS (Dict[str, Any]): The scores.
DOCS: https://spacy.io/api/lemmatizer#score
DOCS: https://nightly.spacy.io/api/lemmatizer#score
"""
validate_examples(examples, "Lemmatizer.score")
return Scorer.score_token_attr(examples, "lemma", **kwargs)
@ -282,7 +282,7 @@ class Lemmatizer(Pipe):
it doesn't exist.
exclude (list): String names of serialization fields to exclude.
DOCS: https://spacy.io/api/vocab#to_disk
DOCS: https://nightly.spacy.io/api/vocab#to_disk
"""
serialize = {}
serialize["vocab"] = lambda p: self.vocab.to_disk(p)
@ -297,7 +297,7 @@ class Lemmatizer(Pipe):
exclude (list): String names of serialization fields to exclude.
RETURNS (Vocab): The modified `Vocab` object.
DOCS: https://spacy.io/api/vocab#to_disk
DOCS: https://nightly.spacy.io/api/vocab#to_disk
"""
deserialize = {}
deserialize["vocab"] = lambda p: self.vocab.from_disk(p)
@ -310,7 +310,7 @@ class Lemmatizer(Pipe):
exclude (list): String names of serialization fields to exclude.
RETURNS (bytes): The serialized form of the `Vocab` object.
DOCS: https://spacy.io/api/vocab#to_bytes
DOCS: https://nightly.spacy.io/api/vocab#to_bytes
"""
serialize = {}
serialize["vocab"] = self.vocab.to_bytes
@ -324,7 +324,7 @@ class Lemmatizer(Pipe):
exclude (list): String names of serialization fields to exclude.
RETURNS (Vocab): The `Vocab` object.
DOCS: https://spacy.io/api/vocab#from_bytes
DOCS: https://nightly.spacy.io/api/vocab#from_bytes
"""
deserialize = {}
deserialize["vocab"] = lambda b: self.vocab.from_bytes(b)

View File

@ -79,7 +79,7 @@ class Morphologizer(Tagger):
labels_morph (dict): Mapping of morph + POS tags to morph labels.
labels_pos (dict): Mapping of morph + POS tags to POS tags.
DOCS: https://spacy.io/api/morphologizer#init
DOCS: https://nightly.spacy.io/api/morphologizer#init
"""
self.vocab = vocab
self.model = model
@ -106,7 +106,7 @@ class Morphologizer(Tagger):
label (str): The label to add.
RETURNS (int): 0 if label is already present, otherwise 1.
DOCS: https://spacy.io/api/morphologizer#add_label
DOCS: https://nightly.spacy.io/api/morphologizer#add_label
"""
if not isinstance(label, str):
raise ValueError(Errors.E187)
@ -139,7 +139,7 @@ class Morphologizer(Tagger):
create_optimizer if it doesn't exist.
RETURNS (thinc.api.Optimizer): The optimizer.
DOCS: https://spacy.io/api/morphologizer#begin_training
DOCS: https://nightly.spacy.io/api/morphologizer#begin_training
"""
if not hasattr(get_examples, "__call__"):
err = Errors.E930.format(name="Morphologizer", obj=type(get_examples))
@ -169,7 +169,7 @@ class Morphologizer(Tagger):
docs (Iterable[Doc]): The documents to modify.
batch_tag_ids: The IDs to set, produced by Morphologizer.predict.
DOCS: https://spacy.io/api/morphologizer#set_annotations
DOCS: https://nightly.spacy.io/api/morphologizer#set_annotations
"""
if isinstance(docs, Doc):
docs = [docs]
@ -194,7 +194,7 @@ class Morphologizer(Tagger):
scores: Scores representing the model's predictions.
RETUTNRS (Tuple[float, float]): The loss and the gradient.
DOCS: https://spacy.io/api/morphologizer#get_loss
DOCS: https://nightly.spacy.io/api/morphologizer#get_loss
"""
validate_examples(examples, "Morphologizer.get_loss")
loss_func = SequenceCategoricalCrossentropy(names=self.labels, normalize=False)
@ -231,7 +231,7 @@ class Morphologizer(Tagger):
Scorer.score_token_attr for the attributes "pos" and "morph" and
Scorer.score_token_attr_per_feat for the attribute "morph".
DOCS: https://spacy.io/api/morphologizer#score
DOCS: https://nightly.spacy.io/api/morphologizer#score
"""
validate_examples(examples, "Morphologizer.score")
results = {}
@ -247,7 +247,7 @@ class Morphologizer(Tagger):
exclude (Iterable[str]): String names of serialization fields to exclude.
RETURNS (bytes): The serialized object.
DOCS: https://spacy.io/api/morphologizer#to_bytes
DOCS: https://nightly.spacy.io/api/morphologizer#to_bytes
"""
serialize = {}
serialize["model"] = self.model.to_bytes
@ -262,7 +262,7 @@ class Morphologizer(Tagger):
exclude (Iterable[str]): String names of serialization fields to exclude.
RETURNS (Morphologizer): The loaded Morphologizer.
DOCS: https://spacy.io/api/morphologizer#from_bytes
DOCS: https://nightly.spacy.io/api/morphologizer#from_bytes
"""
def load_model(b):
try:
@ -284,7 +284,7 @@ class Morphologizer(Tagger):
path (str / Path): Path to a directory.
exclude (Iterable[str]): String names of serialization fields to exclude.
DOCS: https://spacy.io/api/morphologizer#to_disk
DOCS: https://nightly.spacy.io/api/morphologizer#to_disk
"""
serialize = {
"vocab": lambda p: self.vocab.to_disk(p),
@ -300,7 +300,7 @@ class Morphologizer(Tagger):
exclude (Iterable[str]): String names of serialization fields to exclude.
RETURNS (Morphologizer): The modified Morphologizer object.
DOCS: https://spacy.io/api/morphologizer#from_disk
DOCS: https://nightly.spacy.io/api/morphologizer#from_disk
"""
def load_model(p):
with p.open("rb") as file_:

View File

@ -88,7 +88,7 @@ def make_ner(
cdef class EntityRecognizer(Parser):
"""Pipeline component for named entity recognition.
DOCS: https://spacy.io/api/entityrecognizer
DOCS: https://nightly.spacy.io/api/entityrecognizer
"""
TransitionSystem = BiluoPushDown
@ -119,7 +119,7 @@ cdef class EntityRecognizer(Parser):
examples (Iterable[Example]): The examples to score.
RETURNS (Dict[str, Any]): The scores, produced by Scorer.score_spans.
DOCS: https://spacy.io/api/entityrecognizer#score
DOCS: https://nightly.spacy.io/api/entityrecognizer#score
"""
validate_examples(examples, "EntityRecognizer.score")
return Scorer.score_spans(examples, "ents", **kwargs)

View File

@ -15,7 +15,7 @@ cdef class Pipe:
from it and it defines the interface that components should follow to
function as trainable components in a spaCy pipeline.
DOCS: https://spacy.io/api/pipe
DOCS: https://nightly.spacy.io/api/pipe
"""
def __init__(self, vocab, model, name, **cfg):
"""Initialize a pipeline component.
@ -25,7 +25,7 @@ cdef class Pipe:
name (str): The component instance name.
**cfg: Additonal settings and config parameters.
DOCS: https://spacy.io/api/pipe#init
DOCS: https://nightly.spacy.io/api/pipe#init
"""
self.vocab = vocab
self.model = model
@ -40,7 +40,7 @@ cdef class Pipe:
docs (Doc): The Doc to process.
RETURNS (Doc): The processed Doc.
DOCS: https://spacy.io/api/pipe#call
DOCS: https://nightly.spacy.io/api/pipe#call
"""
scores = self.predict([doc])
self.set_annotations([doc], scores)
@ -55,7 +55,7 @@ cdef class Pipe:
batch_size (int): The number of documents to buffer.
YIELDS (Doc): Processed documents in order.
DOCS: https://spacy.io/api/pipe#pipe
DOCS: https://nightly.spacy.io/api/pipe#pipe
"""
for docs in util.minibatch(stream, size=batch_size):
scores = self.predict(docs)
@ -69,7 +69,7 @@ cdef class Pipe:
docs (Iterable[Doc]): The documents to predict.
RETURNS: Vector representations for each token in the documents.
DOCS: https://spacy.io/api/pipe#predict
DOCS: https://nightly.spacy.io/api/pipe#predict
"""
raise NotImplementedError(Errors.E931.format(method="predict", name=self.name))
@ -79,7 +79,7 @@ cdef class Pipe:
docs (Iterable[Doc]): The documents to modify.
scores: The scores to assign.
DOCS: https://spacy.io/api/pipe#set_annotations
DOCS: https://nightly.spacy.io/api/pipe#set_annotations
"""
raise NotImplementedError(Errors.E931.format(method="set_annotations", name=self.name))
@ -96,7 +96,7 @@ cdef class Pipe:
Updated using the component name as the key.
RETURNS (Dict[str, float]): The updated losses dictionary.
DOCS: https://spacy.io/api/pipe#update
DOCS: https://nightly.spacy.io/api/pipe#update
"""
if losses is None:
losses = {}
@ -132,7 +132,7 @@ cdef class Pipe:
Updated using the component name as the key.
RETURNS (Dict[str, float]): The updated losses dictionary.
DOCS: https://spacy.io/api/pipe#rehearse
DOCS: https://nightly.spacy.io/api/pipe#rehearse
"""
pass
@ -144,7 +144,7 @@ cdef class Pipe:
scores: Scores representing the model's predictions.
RETUTNRS (Tuple[float, float]): The loss and the gradient.
DOCS: https://spacy.io/api/pipe#get_loss
DOCS: https://nightly.spacy.io/api/pipe#get_loss
"""
raise NotImplementedError(Errors.E931.format(method="get_loss", name=self.name))
@ -156,7 +156,7 @@ cdef class Pipe:
label (str): The label to add.
RETURNS (int): 0 if label is already present, otherwise 1.
DOCS: https://spacy.io/api/pipe#add_label
DOCS: https://nightly.spacy.io/api/pipe#add_label
"""
raise NotImplementedError(Errors.E931.format(method="add_label", name=self.name))
@ -165,7 +165,7 @@ cdef class Pipe:
RETURNS (thinc.api.Optimizer): The optimizer.
DOCS: https://spacy.io/api/pipe#create_optimizer
DOCS: https://nightly.spacy.io/api/pipe#create_optimizer
"""
return util.create_default_optimizer()
@ -181,7 +181,7 @@ cdef class Pipe:
create_optimizer if it doesn't exist.
RETURNS (thinc.api.Optimizer): The optimizer.
DOCS: https://spacy.io/api/pipe#begin_training
DOCS: https://nightly.spacy.io/api/pipe#begin_training
"""
self.model.initialize()
if sgd is None:
@ -200,7 +200,7 @@ cdef class Pipe:
params (dict): The parameter values to use in the model.
DOCS: https://spacy.io/api/pipe#use_params
DOCS: https://nightly.spacy.io/api/pipe#use_params
"""
with self.model.use_params(params):
yield
@ -211,7 +211,7 @@ cdef class Pipe:
examples (Iterable[Example]): The examples to score.
RETURNS (Dict[str, Any]): The scores.
DOCS: https://spacy.io/api/pipe#score
DOCS: https://nightly.spacy.io/api/pipe#score
"""
return {}
@ -221,7 +221,7 @@ cdef class Pipe:
exclude (Iterable[str]): String names of serialization fields to exclude.
RETURNS (bytes): The serialized object.
DOCS: https://spacy.io/api/pipe#to_bytes
DOCS: https://nightly.spacy.io/api/pipe#to_bytes
"""
serialize = {}
serialize["cfg"] = lambda: srsly.json_dumps(self.cfg)
@ -236,7 +236,7 @@ cdef class Pipe:
exclude (Iterable[str]): String names of serialization fields to exclude.
RETURNS (Pipe): The loaded object.
DOCS: https://spacy.io/api/pipe#from_bytes
DOCS: https://nightly.spacy.io/api/pipe#from_bytes
"""
def load_model(b):
@ -259,7 +259,7 @@ cdef class Pipe:
path (str / Path): Path to a directory.
exclude (Iterable[str]): String names of serialization fields to exclude.
DOCS: https://spacy.io/api/pipe#to_disk
DOCS: https://nightly.spacy.io/api/pipe#to_disk
"""
serialize = {}
serialize["cfg"] = lambda p: srsly.write_json(p, self.cfg)
@ -274,7 +274,7 @@ cdef class Pipe:
exclude (Iterable[str]): String names of serialization fields to exclude.
RETURNS (Pipe): The loaded object.
DOCS: https://spacy.io/api/pipe#from_disk
DOCS: https://nightly.spacy.io/api/pipe#from_disk
"""
def load_model(p):

View File

@ -29,7 +29,7 @@ def make_sentencizer(
class Sentencizer(Pipe):
"""Segment the Doc into sentences using a rule-based strategy.
DOCS: https://spacy.io/api/sentencizer
DOCS: https://nightly.spacy.io/api/sentencizer
"""
default_punct_chars = ['!', '.', '?', '։', '؟', '۔', '܀', '܁', '܂', '߹',
@ -51,7 +51,7 @@ class Sentencizer(Pipe):
serialized with the nlp object.
RETURNS (Sentencizer): The sentencizer component.
DOCS: https://spacy.io/api/sentencizer#init
DOCS: https://nightly.spacy.io/api/sentencizer#init
"""
self.name = name
if punct_chars:
@ -68,7 +68,7 @@ class Sentencizer(Pipe):
doc (Doc): The document to process.
RETURNS (Doc): The processed Doc.
DOCS: https://spacy.io/api/sentencizer#call
DOCS: https://nightly.spacy.io/api/sentencizer#call
"""
start = 0
seen_period = False
@ -94,7 +94,7 @@ class Sentencizer(Pipe):
batch_size (int): The number of documents to buffer.
YIELDS (Doc): Processed documents in order.
DOCS: https://spacy.io/api/sentencizer#pipe
DOCS: https://nightly.spacy.io/api/sentencizer#pipe
"""
for docs in util.minibatch(stream, size=batch_size):
predictions = self.predict(docs)
@ -157,7 +157,7 @@ class Sentencizer(Pipe):
examples (Iterable[Example]): The examples to score.
RETURNS (Dict[str, Any]): The scores, produced by Scorer.score_spans.
DOCS: https://spacy.io/api/sentencizer#score
DOCS: https://nightly.spacy.io/api/sentencizer#score
"""
validate_examples(examples, "Sentencizer.score")
results = Scorer.score_spans(examples, "sents", **kwargs)
@ -169,7 +169,7 @@ class Sentencizer(Pipe):
RETURNS (bytes): The serialized object.
DOCS: https://spacy.io/api/sentencizer#to_bytes
DOCS: https://nightly.spacy.io/api/sentencizer#to_bytes
"""
return srsly.msgpack_dumps({"punct_chars": list(self.punct_chars)})
@ -179,7 +179,7 @@ class Sentencizer(Pipe):
bytes_data (bytes): The data to load.
returns (Sentencizer): The loaded object.
DOCS: https://spacy.io/api/sentencizer#from_bytes
DOCS: https://nightly.spacy.io/api/sentencizer#from_bytes
"""
cfg = srsly.msgpack_loads(bytes_data)
self.punct_chars = set(cfg.get("punct_chars", self.default_punct_chars))
@ -188,7 +188,7 @@ class Sentencizer(Pipe):
def to_disk(self, path, *, exclude=tuple()):
"""Serialize the sentencizer to disk.
DOCS: https://spacy.io/api/sentencizer#to_disk
DOCS: https://nightly.spacy.io/api/sentencizer#to_disk
"""
path = util.ensure_path(path)
path = path.with_suffix(".json")
@ -198,7 +198,7 @@ class Sentencizer(Pipe):
def from_disk(self, path, *, exclude=tuple()):
"""Load the sentencizer from disk.
DOCS: https://spacy.io/api/sentencizer#from_disk
DOCS: https://nightly.spacy.io/api/sentencizer#from_disk
"""
path = util.ensure_path(path)
path = path.with_suffix(".json")

View File

@ -44,7 +44,7 @@ def make_senter(nlp: Language, name: str, model: Model):
class SentenceRecognizer(Tagger):
"""Pipeline component for sentence segmentation.
DOCS: https://spacy.io/api/sentencerecognizer
DOCS: https://nightly.spacy.io/api/sentencerecognizer
"""
def __init__(self, vocab, model, name="senter"):
"""Initialize a sentence recognizer.
@ -54,7 +54,7 @@ class SentenceRecognizer(Tagger):
name (str): The component instance name, used to add entries to the
losses during training.
DOCS: https://spacy.io/api/sentencerecognizer#init
DOCS: https://nightly.spacy.io/api/sentencerecognizer#init
"""
self.vocab = vocab
self.model = model
@ -76,7 +76,7 @@ class SentenceRecognizer(Tagger):
docs (Iterable[Doc]): The documents to modify.
batch_tag_ids: The IDs to set, produced by SentenceRecognizer.predict.
DOCS: https://spacy.io/api/sentencerecognizer#set_annotations
DOCS: https://nightly.spacy.io/api/sentencerecognizer#set_annotations
"""
if isinstance(docs, Doc):
docs = [docs]
@ -101,7 +101,7 @@ class SentenceRecognizer(Tagger):
scores: Scores representing the model's predictions.
RETUTNRS (Tuple[float, float]): The loss and the gradient.
DOCS: https://spacy.io/api/sentencerecognizer#get_loss
DOCS: https://nightly.spacy.io/api/sentencerecognizer#get_loss
"""
validate_examples(examples, "SentenceRecognizer.get_loss")
labels = self.labels
@ -135,7 +135,7 @@ class SentenceRecognizer(Tagger):
create_optimizer if it doesn't exist.
RETURNS (thinc.api.Optimizer): The optimizer.
DOCS: https://spacy.io/api/sentencerecognizer#begin_training
DOCS: https://nightly.spacy.io/api/sentencerecognizer#begin_training
"""
self.set_output(len(self.labels))
self.model.initialize()
@ -151,7 +151,7 @@ class SentenceRecognizer(Tagger):
examples (Iterable[Example]): The examples to score.
RETURNS (Dict[str, Any]): The scores, produced by Scorer.score_spans.
DOCS: https://spacy.io/api/sentencerecognizer#score
DOCS: https://nightly.spacy.io/api/sentencerecognizer#score
"""
validate_examples(examples, "SentenceRecognizer.score")
results = Scorer.score_spans(examples, "sents", **kwargs)
@ -164,7 +164,7 @@ class SentenceRecognizer(Tagger):
exclude (Iterable[str]): String names of serialization fields to exclude.
RETURNS (bytes): The serialized object.
DOCS: https://spacy.io/api/sentencerecognizer#to_bytes
DOCS: https://nightly.spacy.io/api/sentencerecognizer#to_bytes
"""
serialize = {}
serialize["model"] = self.model.to_bytes
@ -179,7 +179,7 @@ class SentenceRecognizer(Tagger):
exclude (Iterable[str]): String names of serialization fields to exclude.
RETURNS (Tagger): The loaded SentenceRecognizer.
DOCS: https://spacy.io/api/sentencerecognizer#from_bytes
DOCS: https://nightly.spacy.io/api/sentencerecognizer#from_bytes
"""
def load_model(b):
try:
@ -201,7 +201,7 @@ class SentenceRecognizer(Tagger):
path (str / Path): Path to a directory.
exclude (Iterable[str]): String names of serialization fields to exclude.
DOCS: https://spacy.io/api/sentencerecognizer#to_disk
DOCS: https://nightly.spacy.io/api/sentencerecognizer#to_disk
"""
serialize = {
"vocab": lambda p: self.vocab.to_disk(p),
@ -217,7 +217,7 @@ class SentenceRecognizer(Tagger):
exclude (Iterable[str]): String names of serialization fields to exclude.
RETURNS (Tagger): The modified SentenceRecognizer object.
DOCS: https://spacy.io/api/sentencerecognizer#from_disk
DOCS: https://nightly.spacy.io/api/sentencerecognizer#from_disk
"""
def load_model(p):
with p.open("rb") as file_:

View File

@ -78,7 +78,7 @@ class SimpleNER(Pipe):
def add_label(self, label: str) -> None:
"""Add a new label to the pipe.
label (str): The label to add.
DOCS: https://spacy.io/api/simplener#add_label
DOCS: https://nightly.spacy.io/api/simplener#add_label
"""
if not isinstance(label, str):
raise ValueError(Errors.E187)

View File

@ -58,7 +58,7 @@ def make_tagger(nlp: Language, name: str, model: Model):
class Tagger(Pipe):
"""Pipeline component for part-of-speech tagging.
DOCS: https://spacy.io/api/tagger
DOCS: https://nightly.spacy.io/api/tagger
"""
def __init__(self, vocab, model, name="tagger", *, labels=None):
"""Initialize a part-of-speech tagger.
@ -69,7 +69,7 @@ class Tagger(Pipe):
losses during training.
labels (List): The set of labels. Defaults to None.
DOCS: https://spacy.io/api/tagger#init
DOCS: https://nightly.spacy.io/api/tagger#init
"""
self.vocab = vocab
self.model = model
@ -86,7 +86,7 @@ class Tagger(Pipe):
RETURNS (Tuple[str]): The labels.
DOCS: https://spacy.io/api/tagger#labels
DOCS: https://nightly.spacy.io/api/tagger#labels
"""
return tuple(self.cfg["labels"])
@ -96,7 +96,7 @@ class Tagger(Pipe):
doc (Doc): The document to process.
RETURNS (Doc): The processed Doc.
DOCS: https://spacy.io/api/tagger#call
DOCS: https://nightly.spacy.io/api/tagger#call
"""
tags = self.predict([doc])
self.set_annotations([doc], tags)
@ -111,7 +111,7 @@ class Tagger(Pipe):
batch_size (int): The number of documents to buffer.
YIELDS (Doc): Processed documents in order.
DOCS: https://spacy.io/api/tagger#pipe
DOCS: https://nightly.spacy.io/api/tagger#pipe
"""
for docs in util.minibatch(stream, size=batch_size):
tag_ids = self.predict(docs)
@ -124,7 +124,7 @@ class Tagger(Pipe):
docs (Iterable[Doc]): The documents to predict.
RETURNS: The models prediction for each document.
DOCS: https://spacy.io/api/tagger#predict
DOCS: https://nightly.spacy.io/api/tagger#predict
"""
if not any(len(doc) for doc in docs):
# Handle cases where there are no tokens in any docs.
@ -153,7 +153,7 @@ class Tagger(Pipe):
docs (Iterable[Doc]): The documents to modify.
batch_tag_ids: The IDs to set, produced by Tagger.predict.
DOCS: https://spacy.io/api/tagger#set_annotations
DOCS: https://nightly.spacy.io/api/tagger#set_annotations
"""
if isinstance(docs, Doc):
docs = [docs]
@ -182,7 +182,7 @@ class Tagger(Pipe):
Updated using the component name as the key.
RETURNS (Dict[str, float]): The updated losses dictionary.
DOCS: https://spacy.io/api/tagger#update
DOCS: https://nightly.spacy.io/api/tagger#update
"""
if losses is None:
losses = {}
@ -220,7 +220,7 @@ class Tagger(Pipe):
Updated using the component name as the key.
RETURNS (Dict[str, float]): The updated losses dictionary.
DOCS: https://spacy.io/api/tagger#rehearse
DOCS: https://nightly.spacy.io/api/tagger#rehearse
"""
validate_examples(examples, "Tagger.rehearse")
docs = [eg.predicted for eg in examples]
@ -247,7 +247,7 @@ class Tagger(Pipe):
scores: Scores representing the model's predictions.
RETUTNRS (Tuple[float, float]): The loss and the gradient.
DOCS: https://spacy.io/api/tagger#get_loss
DOCS: https://nightly.spacy.io/api/tagger#get_loss
"""
validate_examples(examples, "Tagger.get_loss")
loss_func = SequenceCategoricalCrossentropy(names=self.labels, normalize=False)
@ -269,7 +269,7 @@ class Tagger(Pipe):
create_optimizer if it doesn't exist.
RETURNS (thinc.api.Optimizer): The optimizer.
DOCS: https://spacy.io/api/tagger#begin_training
DOCS: https://nightly.spacy.io/api/tagger#begin_training
"""
if not hasattr(get_examples, "__call__"):
err = Errors.E930.format(name="Tagger", obj=type(get_examples))
@ -307,7 +307,7 @@ class Tagger(Pipe):
label (str): The label to add.
RETURNS (int): 0 if label is already present, otherwise 1.
DOCS: https://spacy.io/api/tagger#add_label
DOCS: https://nightly.spacy.io/api/tagger#add_label
"""
if not isinstance(label, str):
raise ValueError(Errors.E187)
@ -324,7 +324,7 @@ class Tagger(Pipe):
RETURNS (Dict[str, Any]): The scores, produced by
Scorer.score_token_attr for the attributes "tag".
DOCS: https://spacy.io/api/tagger#score
DOCS: https://nightly.spacy.io/api/tagger#score
"""
validate_examples(examples, "Tagger.score")
return Scorer.score_token_attr(examples, "tag", **kwargs)
@ -335,7 +335,7 @@ class Tagger(Pipe):
exclude (Iterable[str]): String names of serialization fields to exclude.
RETURNS (bytes): The serialized object.
DOCS: https://spacy.io/api/tagger#to_bytes
DOCS: https://nightly.spacy.io/api/tagger#to_bytes
"""
serialize = {}
serialize["model"] = self.model.to_bytes
@ -350,7 +350,7 @@ class Tagger(Pipe):
exclude (Iterable[str]): String names of serialization fields to exclude.
RETURNS (Tagger): The loaded Tagger.
DOCS: https://spacy.io/api/tagger#from_bytes
DOCS: https://nightly.spacy.io/api/tagger#from_bytes
"""
def load_model(b):
try:
@ -372,7 +372,7 @@ class Tagger(Pipe):
path (str / Path): Path to a directory.
exclude (Iterable[str]): String names of serialization fields to exclude.
DOCS: https://spacy.io/api/tagger#to_disk
DOCS: https://nightly.spacy.io/api/tagger#to_disk
"""
serialize = {
"vocab": lambda p: self.vocab.to_disk(p),
@ -388,7 +388,7 @@ class Tagger(Pipe):
exclude (Iterable[str]): String names of serialization fields to exclude.
RETURNS (Tagger): The modified Tagger object.
DOCS: https://spacy.io/api/tagger#from_disk
DOCS: https://nightly.spacy.io/api/tagger#from_disk
"""
def load_model(p):
with p.open("rb") as file_:

View File

@ -92,7 +92,7 @@ def make_textcat(
class TextCategorizer(Pipe):
"""Pipeline component for text classification.
DOCS: https://spacy.io/api/textcategorizer
DOCS: https://nightly.spacy.io/api/textcategorizer
"""
def __init__(
@ -111,7 +111,7 @@ class TextCategorizer(Pipe):
losses during training.
labels (Iterable[str]): The labels to use.
DOCS: https://spacy.io/api/textcategorizer#init
DOCS: https://nightly.spacy.io/api/textcategorizer#init
"""
self.vocab = vocab
self.model = model
@ -124,7 +124,7 @@ class TextCategorizer(Pipe):
def labels(self) -> Tuple[str]:
"""RETURNS (Tuple[str]): The labels currently added to the component.
DOCS: https://spacy.io/api/textcategorizer#labels
DOCS: https://nightly.spacy.io/api/textcategorizer#labels
"""
return tuple(self.cfg.setdefault("labels", []))
@ -146,7 +146,7 @@ class TextCategorizer(Pipe):
batch_size (int): The number of documents to buffer.
YIELDS (Doc): Processed documents in order.
DOCS: https://spacy.io/api/textcategorizer#pipe
DOCS: https://nightly.spacy.io/api/textcategorizer#pipe
"""
for docs in util.minibatch(stream, size=batch_size):
scores = self.predict(docs)
@ -159,7 +159,7 @@ class TextCategorizer(Pipe):
docs (Iterable[Doc]): The documents to predict.
RETURNS: The models prediction for each document.
DOCS: https://spacy.io/api/textcategorizer#predict
DOCS: https://nightly.spacy.io/api/textcategorizer#predict
"""
tensors = [doc.tensor for doc in docs]
if not any(len(doc) for doc in docs):
@ -177,7 +177,7 @@ class TextCategorizer(Pipe):
docs (Iterable[Doc]): The documents to modify.
scores: The scores to set, produced by TextCategorizer.predict.
DOCS: https://spacy.io/api/textcategorizer#set_annotations
DOCS: https://nightly.spacy.io/api/textcategorizer#set_annotations
"""
for i, doc in enumerate(docs):
for j, label in enumerate(self.labels):
@ -204,7 +204,7 @@ class TextCategorizer(Pipe):
Updated using the component name as the key.
RETURNS (Dict[str, float]): The updated losses dictionary.
DOCS: https://spacy.io/api/textcategorizer#update
DOCS: https://nightly.spacy.io/api/textcategorizer#update
"""
if losses is None:
losses = {}
@ -245,7 +245,7 @@ class TextCategorizer(Pipe):
Updated using the component name as the key.
RETURNS (Dict[str, float]): The updated losses dictionary.
DOCS: https://spacy.io/api/textcategorizer#rehearse
DOCS: https://nightly.spacy.io/api/textcategorizer#rehearse
"""
if losses is not None:
losses.setdefault(self.name, 0.0)
@ -289,7 +289,7 @@ class TextCategorizer(Pipe):
scores: Scores representing the model's predictions.
RETUTNRS (Tuple[float, float]): The loss and the gradient.
DOCS: https://spacy.io/api/textcategorizer#get_loss
DOCS: https://nightly.spacy.io/api/textcategorizer#get_loss
"""
validate_examples(examples, "TextCategorizer.get_loss")
truths, not_missing = self._examples_to_truth(examples)
@ -305,7 +305,7 @@ class TextCategorizer(Pipe):
label (str): The label to add.
RETURNS (int): 0 if label is already present, otherwise 1.
DOCS: https://spacy.io/api/textcategorizer#add_label
DOCS: https://nightly.spacy.io/api/textcategorizer#add_label
"""
if not isinstance(label, str):
raise ValueError(Errors.E187)
@ -343,7 +343,7 @@ class TextCategorizer(Pipe):
create_optimizer if it doesn't exist.
RETURNS (thinc.api.Optimizer): The optimizer.
DOCS: https://spacy.io/api/textcategorizer#begin_training
DOCS: https://nightly.spacy.io/api/textcategorizer#begin_training
"""
if not hasattr(get_examples, "__call__"):
err = Errors.E930.format(name="TextCategorizer", obj=type(get_examples))
@ -378,7 +378,7 @@ class TextCategorizer(Pipe):
positive_label (str): Optional positive label.
RETURNS (Dict[str, Any]): The scores, produced by Scorer.score_cats.
DOCS: https://spacy.io/api/textcategorizer#score
DOCS: https://nightly.spacy.io/api/textcategorizer#score
"""
validate_examples(examples, "TextCategorizer.score")
return Scorer.score_cats(

View File

@ -56,7 +56,7 @@ class Tok2Vec(Pipe):
a list of Doc objects as input, and output a list of 2d float arrays.
name (str): The component instance name.
DOCS: https://spacy.io/api/tok2vec#init
DOCS: https://nightly.spacy.io/api/tok2vec#init
"""
self.vocab = vocab
self.model = model
@ -91,7 +91,7 @@ class Tok2Vec(Pipe):
docs (Doc): The Doc to process.
RETURNS (Doc): The processed Doc.
DOCS: https://spacy.io/api/tok2vec#call
DOCS: https://nightly.spacy.io/api/tok2vec#call
"""
tokvecses = self.predict([doc])
self.set_annotations([doc], tokvecses)
@ -106,7 +106,7 @@ class Tok2Vec(Pipe):
batch_size (int): The number of documents to buffer.
YIELDS (Doc): Processed documents in order.
DOCS: https://spacy.io/api/tok2vec#pipe
DOCS: https://nightly.spacy.io/api/tok2vec#pipe
"""
for docs in minibatch(stream, batch_size):
docs = list(docs)
@ -121,7 +121,7 @@ class Tok2Vec(Pipe):
docs (Iterable[Doc]): The documents to predict.
RETURNS: Vector representations for each token in the documents.
DOCS: https://spacy.io/api/tok2vec#predict
DOCS: https://nightly.spacy.io/api/tok2vec#predict
"""
tokvecs = self.model.predict(docs)
batch_id = Tok2VecListener.get_batch_id(docs)
@ -135,7 +135,7 @@ class Tok2Vec(Pipe):
docs (Iterable[Doc]): The documents to modify.
tokvecses: The tensors to set, produced by Tok2Vec.predict.
DOCS: https://spacy.io/api/tok2vec#set_annotations
DOCS: https://nightly.spacy.io/api/tok2vec#set_annotations
"""
for doc, tokvecs in zip(docs, tokvecses):
assert tokvecs.shape[0] == len(doc)
@ -162,7 +162,7 @@ class Tok2Vec(Pipe):
Updated using the component name as the key.
RETURNS (Dict[str, float]): The updated losses dictionary.
DOCS: https://spacy.io/api/tok2vec#update
DOCS: https://nightly.spacy.io/api/tok2vec#update
"""
if losses is None:
losses = {}
@ -220,7 +220,7 @@ class Tok2Vec(Pipe):
create_optimizer if it doesn't exist.
RETURNS (thinc.api.Optimizer): The optimizer.
DOCS: https://spacy.io/api/tok2vec#begin_training
DOCS: https://nightly.spacy.io/api/tok2vec#begin_training
"""
docs = [Doc(self.vocab, words=["hello"])]
self.model.initialize(X=docs)

View File

@ -6,6 +6,7 @@ from itertools import islice
from libcpp.vector cimport vector
from libc.string cimport memset
from libc.stdlib cimport calloc, free
import random
import srsly
from thinc.api import set_dropout_rate
@ -275,22 +276,22 @@ cdef class Parser(Pipe):
# Prepare the stepwise model, and get the callback for finishing the batch
model, backprop_tok2vec = self.model.begin_update(
[eg.predicted for eg in examples])
if self.cfg["update_with_oracle_cut_size"] >= 1:
# Chop sequences into lengths of this many transitions, to make the
max_moves = self.cfg["update_with_oracle_cut_size"]
if max_moves >= 1:
# Chop sequences into lengths of this many words, to make the
# batch uniform length.
# We used to randomize this, but it's not clear that actually helps?
cut_size = self.cfg["update_with_oracle_cut_size"]
states, golds, max_steps = self._init_gold_batch(
max_moves = int(random.uniform(max_moves // 2, max_moves * 2))
states, golds, _ = self._init_gold_batch(
examples,
max_length=cut_size
max_length=max_moves
)
else:
states, golds, _ = self.moves.init_gold_batch(examples)
max_steps = max([len(eg.x) for eg in examples])
if not states:
return losses
all_states = list(states)
states_golds = list(zip(states, golds))
n_moves = 0
while states_golds:
states, golds = zip(*states_golds)
scores, backprop = model.begin_update(states)
@ -303,6 +304,9 @@ cdef class Parser(Pipe):
# Follow the predicted action
self.transition_states(states, scores)
states_golds = [(s, g) for (s, g) in zip(states, golds) if not s.is_final()]
if max_moves >= 1 and n_moves >= max_moves:
break
n_moves += 1
backprop_tok2vec(golds)
if sgd not in (None, False):
@ -498,7 +502,7 @@ cdef class Parser(Pipe):
raise ValueError(Errors.E149) from None
return self
def _init_gold_batch(self, examples, min_length=5, max_length=500):
def _init_gold_batch(self, examples, max_length):
"""Make a square batch, of length equal to the shortest transition
sequence or a cap. A long
doc will get multiple states. Let's say we have a doc of length 2*N,
@ -511,8 +515,7 @@ cdef class Parser(Pipe):
all_states = self.moves.init_batch([eg.predicted for eg in examples])
states = []
golds = []
kept = []
max_length_seen = 0
to_cut = []
for state, eg in zip(all_states, examples):
if self.moves.has_gold(eg) and not state.is_final():
gold = self.moves.init_gold(state, eg)
@ -522,30 +525,22 @@ cdef class Parser(Pipe):
else:
oracle_actions = self.moves.get_oracle_sequence_from_state(
state.copy(), gold)
kept.append((eg, state, gold, oracle_actions))
min_length = min(min_length, len(oracle_actions))
max_length_seen = max(max_length, len(oracle_actions))
if not kept:
to_cut.append((eg, state, gold, oracle_actions))
if not to_cut:
return states, golds, 0
max_length = max(min_length, min(max_length, max_length_seen))
cdef int clas
max_moves = 0
for eg, state, gold, oracle_actions in kept:
for eg, state, gold, oracle_actions in to_cut:
for i in range(0, len(oracle_actions), max_length):
start_state = state.copy()
n_moves = 0
for clas in oracle_actions[i:i+max_length]:
action = self.moves.c[clas]
action.do(state.c, action.label)
state.c.push_hist(action.clas)
n_moves += 1
if state.is_final():
break
max_moves = max(max_moves, n_moves)
if self.moves.has_gold(eg, start_state.B(0), state.B(0)):
states.append(start_state)
golds.append(gold)
max_moves = max(max_moves, n_moves)
if state.is_final():
break
return states, golds, max_moves
return states, golds, max_length

View File

@ -85,7 +85,7 @@ class Scorer:
) -> None:
"""Initialize the Scorer.
DOCS: https://spacy.io/api/scorer#init
DOCS: https://nightly.spacy.io/api/scorer#init
"""
self.nlp = nlp
self.cfg = cfg
@ -101,7 +101,7 @@ class Scorer:
examples (Iterable[Example]): The predicted annotations + correct annotations.
RETURNS (Dict): A dictionary of scores.
DOCS: https://spacy.io/api/scorer#score
DOCS: https://nightly.spacy.io/api/scorer#score
"""
scores = {}
if hasattr(self.nlp.tokenizer, "score"):
@ -121,7 +121,7 @@ class Scorer:
RETURNS (Dict[str, float]): A dictionary containing the scores
token_acc/p/r/f.
DOCS: https://spacy.io/api/scorer#score_tokenization
DOCS: https://nightly.spacy.io/api/scorer#score_tokenization
"""
acc_score = PRFScore()
prf_score = PRFScore()
@ -169,7 +169,7 @@ class Scorer:
RETURNS (Dict[str, float]): A dictionary containing the accuracy score
under the key attr_acc.
DOCS: https://spacy.io/api/scorer#score_token_attr
DOCS: https://nightly.spacy.io/api/scorer#score_token_attr
"""
tag_score = PRFScore()
for example in examples:
@ -263,7 +263,7 @@ class Scorer:
RETURNS (Dict[str, Any]): A dictionary containing the PRF scores under
the keys attr_p/r/f and the per-type PRF scores under attr_per_type.
DOCS: https://spacy.io/api/scorer#score_spans
DOCS: https://nightly.spacy.io/api/scorer#score_spans
"""
score = PRFScore()
score_per_type = dict()
@ -350,7 +350,7 @@ class Scorer:
attr_f_per_type,
attr_auc_per_type
DOCS: https://spacy.io/api/scorer#score_cats
DOCS: https://nightly.spacy.io/api/scorer#score_cats
"""
if threshold is None:
threshold = 0.5 if multi_label else 0.0
@ -467,7 +467,7 @@ class Scorer:
RETURNS (Dict[str, Any]): A dictionary containing the scores:
attr_uas, attr_las, and attr_las_per_type.
DOCS: https://spacy.io/api/scorer#score_deps
DOCS: https://nightly.spacy.io/api/scorer#score_deps
"""
unlabelled = PRFScore()
labelled = PRFScore()

View File

@ -91,7 +91,7 @@ cdef Utf8Str* _allocate(Pool mem, const unsigned char* chars, uint32_t length) e
cdef class StringStore:
"""Look up strings by 64-bit hashes.
DOCS: https://spacy.io/api/stringstore
DOCS: https://nightly.spacy.io/api/stringstore
"""
def __init__(self, strings=None, freeze=False):
"""Create the StringStore.

View File

@ -317,7 +317,8 @@ def test_doc_from_array_morph(en_vocab):
def test_doc_api_from_docs(en_tokenizer, de_tokenizer):
en_texts = ["Merging the docs is fun.", "They don't think alike."]
en_texts = ["Merging the docs is fun.", "", "They don't think alike."]
en_texts_without_empty = [t for t in en_texts if len(t)]
de_text = "Wie war die Frage?"
en_docs = [en_tokenizer(text) for text in en_texts]
docs_idx = en_texts[0].index("docs")
@ -338,14 +339,14 @@ def test_doc_api_from_docs(en_tokenizer, de_tokenizer):
Doc.from_docs(en_docs + [de_doc])
m_doc = Doc.from_docs(en_docs)
assert len(en_docs) == len(list(m_doc.sents))
assert len(en_texts_without_empty) == len(list(m_doc.sents))
assert len(str(m_doc)) > len(en_texts[0]) + len(en_texts[1])
assert str(m_doc) == " ".join(en_texts)
assert str(m_doc) == " ".join(en_texts_without_empty)
p_token = m_doc[len(en_docs[0]) - 1]
assert p_token.text == "." and bool(p_token.whitespace_)
en_docs_tokens = [t for doc in en_docs for t in doc]
assert len(m_doc) == len(en_docs_tokens)
think_idx = len(en_texts[0]) + 1 + en_texts[1].index("think")
think_idx = len(en_texts[0]) + 1 + en_texts[2].index("think")
assert m_doc[9].idx == think_idx
with pytest.raises(AttributeError):
# not callable, because it was not set via set_extension
@ -353,14 +354,14 @@ def test_doc_api_from_docs(en_tokenizer, de_tokenizer):
assert len(m_doc.user_data) == len(en_docs[0].user_data) # but it's there
m_doc = Doc.from_docs(en_docs, ensure_whitespace=False)
assert len(en_docs) == len(list(m_doc.sents))
assert len(str(m_doc)) == len(en_texts[0]) + len(en_texts[1])
assert len(en_texts_without_empty) == len(list(m_doc.sents))
assert len(str(m_doc)) == sum(len(t) for t in en_texts)
assert str(m_doc) == "".join(en_texts)
p_token = m_doc[len(en_docs[0]) - 1]
assert p_token.text == "." and not bool(p_token.whitespace_)
en_docs_tokens = [t for doc in en_docs for t in doc]
assert len(m_doc) == len(en_docs_tokens)
think_idx = len(en_texts[0]) + 0 + en_texts[1].index("think")
think_idx = len(en_texts[0]) + 0 + en_texts[2].index("think")
assert m_doc[9].idx == think_idx
m_doc = Doc.from_docs(en_docs, attrs=["lemma", "length", "pos"])
@ -369,12 +370,12 @@ def test_doc_api_from_docs(en_tokenizer, de_tokenizer):
assert list(m_doc.sents)
assert len(str(m_doc)) > len(en_texts[0]) + len(en_texts[1])
# space delimiter considered, although spacy attribute was missing
assert str(m_doc) == " ".join(en_texts)
assert str(m_doc) == " ".join(en_texts_without_empty)
p_token = m_doc[len(en_docs[0]) - 1]
assert p_token.text == "." and bool(p_token.whitespace_)
en_docs_tokens = [t for doc in en_docs for t in doc]
assert len(m_doc) == len(en_docs_tokens)
think_idx = len(en_texts[0]) + 1 + en_texts[1].index("think")
think_idx = len(en_texts[0]) + 1 + en_texts[2].index("think")
assert m_doc[9].idx == think_idx

View File

@ -14,7 +14,7 @@ LANGUAGES = ["el", "en", "fr", "nl"]
@pytest.mark.parametrize("lang", LANGUAGES)
def test_lemmatizer_initialize(lang, capfd):
@registry.assets("lemmatizer_init_lookups")
@registry.misc("lemmatizer_init_lookups")
def lemmatizer_init_lookups():
lookups = Lookups()
lookups.add_table("lemma_lookup", {"cope": "cope"})
@ -25,9 +25,7 @@ def test_lemmatizer_initialize(lang, capfd):
"""Test that languages can be initialized."""
nlp = get_lang_class(lang)()
nlp.add_pipe(
"lemmatizer", config={"lookups": {"@assets": "lemmatizer_init_lookups"}}
)
nlp.add_pipe("lemmatizer", config={"lookups": {"@misc": "lemmatizer_init_lookups"}})
# Check for stray print statements (see #3342)
doc = nlp("test") # noqa: F841
captured = capfd.readouterr()

View File

@ -31,7 +31,7 @@ def pattern_dicts():
]
@registry.assets("attribute_ruler_patterns")
@registry.misc("attribute_ruler_patterns")
def attribute_ruler_patterns():
return [
{
@ -86,7 +86,7 @@ def test_attributeruler_init_patterns(nlp, pattern_dicts):
# initialize with patterns from asset
nlp.add_pipe(
"attribute_ruler",
config={"pattern_dicts": {"@assets": "attribute_ruler_patterns"}},
config={"pattern_dicts": {"@misc": "attribute_ruler_patterns"}},
)
doc = nlp("This is a test.")
assert doc[2].lemma_ == "the"

View File

@ -137,7 +137,7 @@ def test_kb_undefined(nlp):
def test_kb_empty(nlp):
"""Test that the EL can't train with an empty KB"""
config = {"kb_loader": {"@assets": "spacy.EmptyKB.v1", "entity_vector_length": 342}}
config = {"kb_loader": {"@misc": "spacy.EmptyKB.v1", "entity_vector_length": 342}}
entity_linker = nlp.add_pipe("entity_linker", config=config)
assert len(entity_linker.kb) == 0
with pytest.raises(ValueError):
@ -183,7 +183,7 @@ def test_el_pipe_configuration(nlp):
ruler = nlp.add_pipe("entity_ruler")
ruler.add_patterns([pattern])
@registry.assets.register("myAdamKB.v1")
@registry.misc.register("myAdamKB.v1")
def mykb() -> Callable[["Vocab"], KnowledgeBase]:
def create_kb(vocab):
kb = KnowledgeBase(vocab, entity_vector_length=1)
@ -199,7 +199,7 @@ def test_el_pipe_configuration(nlp):
# run an EL pipe without a trained context encoder, to check the candidate generation step only
nlp.add_pipe(
"entity_linker",
config={"kb_loader": {"@assets": "myAdamKB.v1"}, "incl_context": False},
config={"kb_loader": {"@misc": "myAdamKB.v1"}, "incl_context": False},
)
# With the default get_candidates function, matching is case-sensitive
text = "Douglas and douglas are not the same."
@ -211,7 +211,7 @@ def test_el_pipe_configuration(nlp):
def get_lowercased_candidates(kb, span):
return kb.get_alias_candidates(span.text.lower())
@registry.assets.register("spacy.LowercaseCandidateGenerator.v1")
@registry.misc.register("spacy.LowercaseCandidateGenerator.v1")
def create_candidates() -> Callable[[KnowledgeBase, "Span"], Iterable[Candidate]]:
return get_lowercased_candidates
@ -220,9 +220,9 @@ def test_el_pipe_configuration(nlp):
"entity_linker",
"entity_linker",
config={
"kb_loader": {"@assets": "myAdamKB.v1"},
"kb_loader": {"@misc": "myAdamKB.v1"},
"incl_context": False,
"get_candidates": {"@assets": "spacy.LowercaseCandidateGenerator.v1"},
"get_candidates": {"@misc": "spacy.LowercaseCandidateGenerator.v1"},
},
)
doc = nlp(text)
@ -282,7 +282,7 @@ def test_append_invalid_alias(nlp):
def test_preserving_links_asdoc(nlp):
"""Test that Span.as_doc preserves the existing entity links"""
@registry.assets.register("myLocationsKB.v1")
@registry.misc.register("myLocationsKB.v1")
def dummy_kb() -> Callable[["Vocab"], KnowledgeBase]:
def create_kb(vocab):
mykb = KnowledgeBase(vocab, entity_vector_length=1)
@ -304,7 +304,7 @@ def test_preserving_links_asdoc(nlp):
]
ruler = nlp.add_pipe("entity_ruler")
ruler.add_patterns(patterns)
el_config = {"kb_loader": {"@assets": "myLocationsKB.v1"}, "incl_prior": False}
el_config = {"kb_loader": {"@misc": "myLocationsKB.v1"}, "incl_prior": False}
el_pipe = nlp.add_pipe("entity_linker", config=el_config, last=True)
el_pipe.begin_training(lambda: [])
el_pipe.incl_context = False
@ -387,7 +387,7 @@ def test_overfitting_IO():
doc = nlp(text)
train_examples.append(Example.from_dict(doc, annotation))
@registry.assets.register("myOverfittingKB.v1")
@registry.misc.register("myOverfittingKB.v1")
def dummy_kb() -> Callable[["Vocab"], KnowledgeBase]:
def create_kb(vocab):
# create artificial KB - assign same prior weight to the two russ cochran's
@ -408,7 +408,7 @@ def test_overfitting_IO():
# Create the Entity Linker component and add it to the pipeline
nlp.add_pipe(
"entity_linker",
config={"kb_loader": {"@assets": "myOverfittingKB.v1"}},
config={"kb_loader": {"@misc": "myOverfittingKB.v1"}},
last=True,
)

View File

@ -13,7 +13,7 @@ def nlp():
@pytest.fixture
def lemmatizer(nlp):
@registry.assets("cope_lookups")
@registry.misc("cope_lookups")
def cope_lookups():
lookups = Lookups()
lookups.add_table("lemma_lookup", {"cope": "cope"})
@ -23,13 +23,13 @@ def lemmatizer(nlp):
return lookups
lemmatizer = nlp.add_pipe(
"lemmatizer", config={"mode": "rule", "lookups": {"@assets": "cope_lookups"}}
"lemmatizer", config={"mode": "rule", "lookups": {"@misc": "cope_lookups"}}
)
return lemmatizer
def test_lemmatizer_init(nlp):
@registry.assets("cope_lookups")
@registry.misc("cope_lookups")
def cope_lookups():
lookups = Lookups()
lookups.add_table("lemma_lookup", {"cope": "cope"})
@ -39,7 +39,7 @@ def test_lemmatizer_init(nlp):
return lookups
lemmatizer = nlp.add_pipe(
"lemmatizer", config={"mode": "lookup", "lookups": {"@assets": "cope_lookups"}}
"lemmatizer", config={"mode": "lookup", "lookups": {"@misc": "cope_lookups"}}
)
assert isinstance(lemmatizer.lookups, Lookups)
assert lemmatizer.mode == "lookup"
@ -51,14 +51,14 @@ def test_lemmatizer_init(nlp):
nlp.remove_pipe("lemmatizer")
@registry.assets("empty_lookups")
@registry.misc("empty_lookups")
def empty_lookups():
return Lookups()
with pytest.raises(ValueError):
nlp.add_pipe(
"lemmatizer",
config={"mode": "lookup", "lookups": {"@assets": "empty_lookups"}},
config={"mode": "lookup", "lookups": {"@misc": "empty_lookups"}},
)
@ -79,7 +79,7 @@ def test_lemmatizer_config(nlp, lemmatizer):
def test_lemmatizer_serialize(nlp, lemmatizer):
@registry.assets("cope_lookups")
@registry.misc("cope_lookups")
def cope_lookups():
lookups = Lookups()
lookups.add_table("lemma_lookup", {"cope": "cope"})
@ -90,7 +90,7 @@ def test_lemmatizer_serialize(nlp, lemmatizer):
nlp2 = English()
lemmatizer2 = nlp2.add_pipe(
"lemmatizer", config={"mode": "rule", "lookups": {"@assets": "cope_lookups"}}
"lemmatizer", config={"mode": "rule", "lookups": {"@misc": "cope_lookups"}}
)
lemmatizer2.from_bytes(lemmatizer.to_bytes())
assert lemmatizer.to_bytes() == lemmatizer2.to_bytes()

View File

@ -28,8 +28,6 @@ def test_tagger_begin_training_tag_map():
TAGS = ("N", "V", "J")
MORPH_RULES = {"V": {"like": {"lemma": "luck"}}}
TRAIN_DATA = [
("I like green eggs", {"tags": ["N", "V", "J", "N"]}),
("Eat blue ham", {"tags": ["V", "J", "N"]}),

View File

@ -84,9 +84,8 @@ def test_overfitting_IO():
# Simple test to try and quickly overfit the textcat component - ensuring the ML models work correctly
fix_random_seed(0)
nlp = English()
textcat = nlp.add_pipe("textcat")
# Set exclusive labels
textcat.model.attrs["multi_label"] = False
textcat = nlp.add_pipe("textcat", config={"model": {"exclusive_classes": True}})
train_examples = []
for text, annotations in TRAIN_DATA:
train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
@ -103,9 +102,8 @@ def test_overfitting_IO():
test_text = "I am happy."
doc = nlp(test_text)
cats = doc.cats
# note that by default, exclusive_classes = false so we need a bigger error margin
assert cats["POSITIVE"] > 0.8
assert cats["POSITIVE"] + cats["NEGATIVE"] == pytest.approx(1.0, 0.1)
assert cats["POSITIVE"] > 0.9
assert cats["POSITIVE"] + cats["NEGATIVE"] == pytest.approx(1.0, 0.001)
# Also test the results are still the same after IO
with make_tempdir() as tmp_dir:
@ -113,8 +111,8 @@ def test_overfitting_IO():
nlp2 = util.load_model_from_path(tmp_dir)
doc2 = nlp2(test_text)
cats2 = doc2.cats
assert cats2["POSITIVE"] > 0.8
assert cats2["POSITIVE"] + cats2["NEGATIVE"] == pytest.approx(1.0, 0.1)
assert cats2["POSITIVE"] > 0.9
assert cats2["POSITIVE"] + cats2["NEGATIVE"] == pytest.approx(1.0, 0.001)
# Test scoring
scores = nlp.evaluate(train_examples, scorer_cfg={"positive_label": "POSITIVE"})

View File

@ -71,7 +71,7 @@ def tagger():
def entity_linker():
nlp = Language()
@registry.assets.register("TestIssue5230KB.v1")
@registry.misc.register("TestIssue5230KB.v1")
def dummy_kb() -> Callable[["Vocab"], KnowledgeBase]:
def create_kb(vocab):
kb = KnowledgeBase(vocab, entity_vector_length=1)
@ -80,7 +80,7 @@ def entity_linker():
return create_kb
config = {"kb_loader": {"@assets": "TestIssue5230KB.v1"}}
config = {"kb_loader": {"@misc": "TestIssue5230KB.v1"}}
entity_linker = nlp.add_pipe("entity_linker", config=config)
# need to add model for two reasons:
# 1. no model leads to error in serialization,

View File

@ -28,7 +28,7 @@ path = ${paths.train}
path = ${paths.dev}
[training.batcher]
@batchers = "batch_by_words.v1"
@batchers = "spacy.batch_by_words.v1"
size = 666
[nlp]

View File

@ -85,7 +85,7 @@ def test_serialize_subclassed_kb():
super().__init__(vocab, entity_vector_length)
self.custom_field = custom_field
@registry.assets.register("spacy.CustomKB.v1")
@registry.misc.register("spacy.CustomKB.v1")
def custom_kb(
entity_vector_length: int, custom_field: int
) -> Callable[["Vocab"], KnowledgeBase]:
@ -101,7 +101,7 @@ def test_serialize_subclassed_kb():
nlp = English()
config = {
"kb_loader": {
"@assets": "spacy.CustomKB.v1",
"@misc": "spacy.CustomKB.v1",
"entity_vector_length": 342,
"custom_field": 666,
}

View File

@ -34,9 +34,9 @@ cdef class Tokenizer:
vector[SpanC] &filtered)
cdef int _retokenize_special_spans(self, Doc doc, TokenC* tokens,
object span_data)
cdef int _try_cache(self, hash_t key, Doc tokens) except -1
cdef int _try_specials(self, hash_t key, Doc tokens,
int* has_special) except -1
cdef int _try_specials_and_cache(self, hash_t key, Doc tokens,
int* has_special,
bint with_special_cases) except -1
cdef int _tokenize(self, Doc tokens, unicode span, hash_t key,
int* has_special, bint with_special_cases) except -1
cdef unicode _split_affixes(self, Pool mem, unicode string,

View File

@ -31,7 +31,7 @@ cdef class Tokenizer:
"""Segment text, and create Doc objects with the discovered segment
boundaries.
DOCS: https://spacy.io/api/tokenizer
DOCS: https://nightly.spacy.io/api/tokenizer
"""
def __init__(self, Vocab vocab, rules=None, prefix_search=None,
suffix_search=None, infix_finditer=None, token_match=None,
@ -54,7 +54,7 @@ cdef class Tokenizer:
EXAMPLE:
>>> tokenizer = Tokenizer(nlp.vocab)
DOCS: https://spacy.io/api/tokenizer#init
DOCS: https://nightly.spacy.io/api/tokenizer#init
"""
self.mem = Pool()
self._cache = PreshMap()
@ -147,7 +147,7 @@ cdef class Tokenizer:
string (str): The string to tokenize.
RETURNS (Doc): A container for linguistic annotations.
DOCS: https://spacy.io/api/tokenizer#call
DOCS: https://nightly.spacy.io/api/tokenizer#call
"""
doc = self._tokenize_affixes(string, True)
self._apply_special_cases(doc)
@ -169,8 +169,6 @@ cdef class Tokenizer:
cdef int i = 0
cdef int start = 0
cdef int has_special = 0
cdef bint specials_hit = 0
cdef bint cache_hit = 0
cdef bint in_ws = string[0].isspace()
cdef unicode span
# The task here is much like string.split, but not quite
@ -186,13 +184,7 @@ cdef class Tokenizer:
# we don't have to create the slice when we hit the cache.
span = string[start:i]
key = hash_string(span)
specials_hit = 0
cache_hit = 0
if with_special_cases:
specials_hit = self._try_specials(key, doc, &has_special)
if not specials_hit:
cache_hit = self._try_cache(key, doc)
if not specials_hit and not cache_hit:
if not self._try_specials_and_cache(key, doc, &has_special, with_special_cases):
self._tokenize(doc, span, key, &has_special, with_special_cases)
if uc == ' ':
doc.c[doc.length - 1].spacy = True
@ -204,13 +196,7 @@ cdef class Tokenizer:
if start < i:
span = string[start:]
key = hash_string(span)
specials_hit = 0
cache_hit = 0
if with_special_cases:
specials_hit = self._try_specials(key, doc, &has_special)
if not specials_hit:
cache_hit = self._try_cache(key, doc)
if not specials_hit and not cache_hit:
if not self._try_specials_and_cache(key, doc, &has_special, with_special_cases):
self._tokenize(doc, span, key, &has_special, with_special_cases)
doc.c[doc.length - 1].spacy = string[-1] == " " and not in_ws
return doc
@ -223,7 +209,7 @@ cdef class Tokenizer:
Defaults to 1000.
YIELDS (Doc): A sequence of Doc objects, in order.
DOCS: https://spacy.io/api/tokenizer#pipe
DOCS: https://nightly.spacy.io/api/tokenizer#pipe
"""
for text in texts:
yield self(text)
@ -364,27 +350,33 @@ cdef class Tokenizer:
offset += span[3]
return offset
cdef int _try_cache(self, hash_t key, Doc tokens) except -1:
cached = <_Cached*>self._cache.get(key)
if cached == NULL:
return False
cdef int _try_specials_and_cache(self, hash_t key, Doc tokens, int* has_special, bint with_special_cases) except -1:
cdef bint specials_hit = 0
cdef bint cache_hit = 0
cdef int i
if cached.is_lex:
for i in range(cached.length):
tokens.push_back(cached.data.lexemes[i], False)
else:
for i in range(cached.length):
tokens.push_back(&cached.data.tokens[i], False)
return True
cdef int _try_specials(self, hash_t key, Doc tokens, int* has_special) except -1:
cached = <_Cached*>self._specials.get(key)
if cached == NULL:
if with_special_cases:
cached = <_Cached*>self._specials.get(key)
if cached == NULL:
specials_hit = False
else:
for i in range(cached.length):
tokens.push_back(&cached.data.tokens[i], False)
has_special[0] = 1
specials_hit = True
if not specials_hit:
cached = <_Cached*>self._cache.get(key)
if cached == NULL:
cache_hit = False
else:
if cached.is_lex:
for i in range(cached.length):
tokens.push_back(cached.data.lexemes[i], False)
else:
for i in range(cached.length):
tokens.push_back(&cached.data.tokens[i], False)
cache_hit = True
if not specials_hit and not cache_hit:
return False
cdef int i
for i in range(cached.length):
tokens.push_back(&cached.data.tokens[i], False)
has_special[0] = 1
return True
cdef int _tokenize(self, Doc tokens, unicode span, hash_t orig_key, int* has_special, bint with_special_cases) except -1:
@ -462,12 +454,7 @@ cdef class Tokenizer:
for i in range(prefixes.size()):
tokens.push_back(prefixes[0][i], False)
if string:
if with_special_cases:
specials_hit = self._try_specials(hash_string(string), tokens,
has_special)
if not specials_hit:
cache_hit = self._try_cache(hash_string(string), tokens)
if specials_hit or cache_hit:
if self._try_specials_and_cache(hash_string(string), tokens, has_special, with_special_cases):
pass
elif (self.token_match and self.token_match(string)) or \
(self.url_match and \
@ -542,7 +529,7 @@ cdef class Tokenizer:
and `.end()` methods, denoting the placement of internal segment
separators, e.g. hyphens.
DOCS: https://spacy.io/api/tokenizer#find_infix
DOCS: https://nightly.spacy.io/api/tokenizer#find_infix
"""
if self.infix_finditer is None:
return 0
@ -555,7 +542,7 @@ cdef class Tokenizer:
string (str): The string to segment.
RETURNS (int): The length of the prefix if present, otherwise `None`.
DOCS: https://spacy.io/api/tokenizer#find_prefix
DOCS: https://nightly.spacy.io/api/tokenizer#find_prefix
"""
if self.prefix_search is None:
return 0
@ -569,7 +556,7 @@ cdef class Tokenizer:
string (str): The string to segment.
Returns (int): The length of the suffix if present, otherwise `None`.
DOCS: https://spacy.io/api/tokenizer#find_suffix
DOCS: https://nightly.spacy.io/api/tokenizer#find_suffix
"""
if self.suffix_search is None:
return 0
@ -609,7 +596,7 @@ cdef class Tokenizer:
a token and its attributes. The `ORTH` fields of the attributes
must exactly match the string when they are concatenated.
DOCS: https://spacy.io/api/tokenizer#add_special_case
DOCS: https://nightly.spacy.io/api/tokenizer#add_special_case
"""
self._validate_special_case(string, substrings)
substrings = list(substrings)
@ -648,7 +635,7 @@ cdef class Tokenizer:
string (str): The string to tokenize.
RETURNS (list): A list of (pattern_string, token_string) tuples
DOCS: https://spacy.io/api/tokenizer#explain
DOCS: https://nightly.spacy.io/api/tokenizer#explain
"""
prefix_search = self.prefix_search
suffix_search = self.suffix_search
@ -729,7 +716,7 @@ cdef class Tokenizer:
it doesn't exist.
exclude (list): String names of serialization fields to exclude.
DOCS: https://spacy.io/api/tokenizer#to_disk
DOCS: https://nightly.spacy.io/api/tokenizer#to_disk
"""
path = util.ensure_path(path)
with path.open("wb") as file_:
@ -743,7 +730,7 @@ cdef class Tokenizer:
exclude (list): String names of serialization fields to exclude.
RETURNS (Tokenizer): The modified `Tokenizer` object.
DOCS: https://spacy.io/api/tokenizer#from_disk
DOCS: https://nightly.spacy.io/api/tokenizer#from_disk
"""
path = util.ensure_path(path)
with path.open("rb") as file_:
@ -757,7 +744,7 @@ cdef class Tokenizer:
exclude (list): String names of serialization fields to exclude.
RETURNS (bytes): The serialized form of the `Tokenizer` object.
DOCS: https://spacy.io/api/tokenizer#to_bytes
DOCS: https://nightly.spacy.io/api/tokenizer#to_bytes
"""
serializers = {
"vocab": lambda: self.vocab.to_bytes(),
@ -777,7 +764,7 @@ cdef class Tokenizer:
exclude (list): String names of serialization fields to exclude.
RETURNS (Tokenizer): The `Tokenizer` object.
DOCS: https://spacy.io/api/tokenizer#from_bytes
DOCS: https://nightly.spacy.io/api/tokenizer#from_bytes
"""
data = {}
deserializers = {

View File

@ -24,8 +24,8 @@ from ..strings import get_string_id
cdef class Retokenizer:
"""Helper class for doc.retokenize() context manager.
DOCS: https://spacy.io/api/doc#retokenize
USAGE: https://spacy.io/usage/linguistic-features#retokenization
DOCS: https://nightly.spacy.io/api/doc#retokenize
USAGE: https://nightly.spacy.io/usage/linguistic-features#retokenization
"""
cdef Doc doc
cdef list merges
@ -47,7 +47,7 @@ cdef class Retokenizer:
span (Span): The span to merge.
attrs (dict): Attributes to set on the merged token.
DOCS: https://spacy.io/api/doc#retokenizer.merge
DOCS: https://nightly.spacy.io/api/doc#retokenizer.merge
"""
if (span.start, span.end) in self._spans_to_merge:
return
@ -73,7 +73,7 @@ cdef class Retokenizer:
attrs (dict): Attributes to set on all split tokens. Attribute names
mapped to list of per-token attribute values.
DOCS: https://spacy.io/api/doc#retokenizer.split
DOCS: https://nightly.spacy.io/api/doc#retokenizer.split
"""
if ''.join(orths) != token.text:
raise ValueError(Errors.E117.format(new=''.join(orths), old=token.text))

View File

@ -61,7 +61,7 @@ class DocBin:
store_user_data (bool): Whether to include the `Doc.user_data`.
docs (Iterable[Doc]): Docs to add.
DOCS: https://spacy.io/api/docbin#init
DOCS: https://nightly.spacy.io/api/docbin#init
"""
attrs = sorted([intify_attr(attr) for attr in attrs])
self.version = "0.1"
@ -86,7 +86,7 @@ class DocBin:
doc (Doc): The Doc object to add.
DOCS: https://spacy.io/api/docbin#add
DOCS: https://nightly.spacy.io/api/docbin#add
"""
array = doc.to_array(self.attrs)
if len(array.shape) == 1:
@ -115,7 +115,7 @@ class DocBin:
vocab (Vocab): The shared vocab.
YIELDS (Doc): The Doc objects.
DOCS: https://spacy.io/api/docbin#get_docs
DOCS: https://nightly.spacy.io/api/docbin#get_docs
"""
for string in self.strings:
vocab[string]
@ -141,7 +141,7 @@ class DocBin:
other (DocBin): The DocBin to merge into the current bin.
DOCS: https://spacy.io/api/docbin#merge
DOCS: https://nightly.spacy.io/api/docbin#merge
"""
if self.attrs != other.attrs:
raise ValueError(Errors.E166.format(current=self.attrs, other=other.attrs))
@ -158,7 +158,7 @@ class DocBin:
RETURNS (bytes): The serialized DocBin.
DOCS: https://spacy.io/api/docbin#to_bytes
DOCS: https://nightly.spacy.io/api/docbin#to_bytes
"""
for tokens in self.tokens:
assert len(tokens.shape) == 2, tokens.shape # this should never happen
@ -185,7 +185,7 @@ class DocBin:
bytes_data (bytes): The data to load from.
RETURNS (DocBin): The loaded DocBin.
DOCS: https://spacy.io/api/docbin#from_bytes
DOCS: https://nightly.spacy.io/api/docbin#from_bytes
"""
msg = srsly.msgpack_loads(zlib.decompress(bytes_data))
self.attrs = msg["attrs"]
@ -211,7 +211,7 @@ class DocBin:
path (str / Path): The file path.
DOCS: https://spacy.io/api/docbin#to_disk
DOCS: https://nightly.spacy.io/api/docbin#to_disk
"""
path = ensure_path(path)
with path.open("wb") as file_:
@ -223,7 +223,7 @@ class DocBin:
path (str / Path): The file path.
RETURNS (DocBin): The loaded DocBin.
DOCS: https://spacy.io/api/docbin#to_disk
DOCS: https://nightly.spacy.io/api/docbin#to_disk
"""
path = ensure_path(path)
with path.open("rb") as file_:

View File

@ -104,7 +104,7 @@ cdef class Doc:
>>> from spacy.tokens import Doc
>>> doc = Doc(nlp.vocab, words=["hello", "world", "!"], spaces=[True, False, False])
DOCS: https://spacy.io/api/doc
DOCS: https://nightly.spacy.io/api/doc
"""
@classmethod
@ -118,8 +118,8 @@ cdef class Doc:
method (callable): Optional method for method extension.
force (bool): Force overwriting existing attribute.
DOCS: https://spacy.io/api/doc#set_extension
USAGE: https://spacy.io/usage/processing-pipelines#custom-components-attributes
DOCS: https://nightly.spacy.io/api/doc#set_extension
USAGE: https://nightly.spacy.io/usage/processing-pipelines#custom-components-attributes
"""
if cls.has_extension(name) and not kwargs.get("force", False):
raise ValueError(Errors.E090.format(name=name, obj="Doc"))
@ -132,7 +132,7 @@ cdef class Doc:
name (str): Name of the extension.
RETURNS (tuple): A `(default, method, getter, setter)` tuple.
DOCS: https://spacy.io/api/doc#get_extension
DOCS: https://nightly.spacy.io/api/doc#get_extension
"""
return Underscore.doc_extensions.get(name)
@ -143,7 +143,7 @@ cdef class Doc:
name (str): Name of the extension.
RETURNS (bool): Whether the extension has been registered.
DOCS: https://spacy.io/api/doc#has_extension
DOCS: https://nightly.spacy.io/api/doc#has_extension
"""
return name in Underscore.doc_extensions
@ -155,7 +155,7 @@ cdef class Doc:
RETURNS (tuple): A `(default, method, getter, setter)` tuple of the
removed extension.
DOCS: https://spacy.io/api/doc#remove_extension
DOCS: https://nightly.spacy.io/api/doc#remove_extension
"""
if not cls.has_extension(name):
raise ValueError(Errors.E046.format(name=name))
@ -173,7 +173,7 @@ cdef class Doc:
it is not. If `None`, defaults to `[True]*len(words)`
user_data (dict or None): Optional extra data to attach to the Doc.
DOCS: https://spacy.io/api/doc#init
DOCS: https://nightly.spacy.io/api/doc#init
"""
self.vocab = vocab
size = max(20, (len(words) if words is not None else 0))
@ -288,7 +288,7 @@ cdef class Doc:
You can use negative indices and open-ended ranges, which have
their normal Python semantics.
DOCS: https://spacy.io/api/doc#getitem
DOCS: https://nightly.spacy.io/api/doc#getitem
"""
if isinstance(i, slice):
start, stop = normalize_slice(len(self), i.start, i.stop, i.step)
@ -305,7 +305,7 @@ cdef class Doc:
than-Python speeds are required, you can instead access the annotations
as a numpy array, or access the underlying C data directly from Cython.
DOCS: https://spacy.io/api/doc#iter
DOCS: https://nightly.spacy.io/api/doc#iter
"""
cdef int i
for i in range(self.length):
@ -316,7 +316,7 @@ cdef class Doc:
RETURNS (int): The number of tokens in the document.
DOCS: https://spacy.io/api/doc#len
DOCS: https://nightly.spacy.io/api/doc#len
"""
return self.length
@ -349,7 +349,7 @@ cdef class Doc:
the span.
RETURNS (Span): The newly constructed object.
DOCS: https://spacy.io/api/doc#char_span
DOCS: https://nightly.spacy.io/api/doc#char_span
"""
if not isinstance(label, int):
label = self.vocab.strings.add(label)
@ -374,7 +374,7 @@ cdef class Doc:
`Span`, `Token` and `Lexeme` objects.
RETURNS (float): A scalar similarity score. Higher is more similar.
DOCS: https://spacy.io/api/doc#similarity
DOCS: https://nightly.spacy.io/api/doc#similarity
"""
if "similarity" in self.user_hooks:
return self.user_hooks["similarity"](self, other)
@ -407,7 +407,7 @@ cdef class Doc:
RETURNS (bool): Whether a word vector is associated with the object.
DOCS: https://spacy.io/api/doc#has_vector
DOCS: https://nightly.spacy.io/api/doc#has_vector
"""
if "has_vector" in self.user_hooks:
return self.user_hooks["has_vector"](self)
@ -425,7 +425,7 @@ cdef class Doc:
RETURNS (numpy.ndarray[ndim=1, dtype='float32']): A 1D numpy array
representing the document's semantics.
DOCS: https://spacy.io/api/doc#vector
DOCS: https://nightly.spacy.io/api/doc#vector
"""
def __get__(self):
if "vector" in self.user_hooks:
@ -453,7 +453,7 @@ cdef class Doc:
RETURNS (float): The L2 norm of the vector representation.
DOCS: https://spacy.io/api/doc#vector_norm
DOCS: https://nightly.spacy.io/api/doc#vector_norm
"""
def __get__(self):
if "vector_norm" in self.user_hooks:
@ -493,7 +493,7 @@ cdef class Doc:
RETURNS (tuple): Entities in the document, one `Span` per entity.
DOCS: https://spacy.io/api/doc#ents
DOCS: https://nightly.spacy.io/api/doc#ents
"""
def __get__(self):
cdef int i
@ -584,7 +584,7 @@ cdef class Doc:
YIELDS (Span): Noun chunks in the document.
DOCS: https://spacy.io/api/doc#noun_chunks
DOCS: https://nightly.spacy.io/api/doc#noun_chunks
"""
# Accumulate the result before beginning to iterate over it. This
@ -609,7 +609,7 @@ cdef class Doc:
YIELDS (Span): Sentences in the document.
DOCS: https://spacy.io/api/doc#sents
DOCS: https://nightly.spacy.io/api/doc#sents
"""
if not self.is_sentenced:
raise ValueError(Errors.E030)
@ -722,7 +722,7 @@ cdef class Doc:
attr_id (int): The attribute ID to key the counts.
RETURNS (dict): A dictionary mapping attributes to integer counts.
DOCS: https://spacy.io/api/doc#count_by
DOCS: https://nightly.spacy.io/api/doc#count_by
"""
cdef int i
cdef attr_t attr
@ -777,7 +777,7 @@ cdef class Doc:
array (numpy.ndarray[ndim=2, dtype='int32']): The attribute values.
RETURNS (Doc): Itself.
DOCS: https://spacy.io/api/doc#from_array
DOCS: https://nightly.spacy.io/api/doc#from_array
"""
# Handle scalar/list inputs of strings/ints for py_attr_ids
# See also #3064
@ -872,7 +872,7 @@ cdef class Doc:
attrs (list): Optional list of attribute ID ints or attribute name strings.
RETURNS (Doc): A doc that contains the concatenated docs, or None if no docs were given.
DOCS: https://spacy.io/api/doc#from_docs
DOCS: https://nightly.spacy.io/api/doc#from_docs
"""
if not docs:
return None
@ -920,7 +920,9 @@ cdef class Doc:
warnings.warn(Warnings.W101.format(name=name))
else:
warnings.warn(Warnings.W102.format(key=key, value=value))
char_offset += len(doc.text) if not ensure_whitespace or doc[-1].is_space else len(doc.text) + 1
char_offset += len(doc.text)
if ensure_whitespace and not (len(doc) > 0 and doc[-1].is_space):
char_offset += 1
arrays = [doc.to_array(attrs) for doc in docs]
@ -932,7 +934,7 @@ cdef class Doc:
token_offset = -1
for doc in docs[:-1]:
token_offset += len(doc)
if not doc[-1].is_space:
if not (len(doc) > 0 and doc[-1].is_space):
concat_spaces[token_offset] = True
concat_array = numpy.concatenate(arrays)
@ -951,7 +953,7 @@ cdef class Doc:
RETURNS (np.array[ndim=2, dtype=numpy.int32]): LCA matrix with shape
(n, n), where n = len(self).
DOCS: https://spacy.io/api/doc#get_lca_matrix
DOCS: https://nightly.spacy.io/api/doc#get_lca_matrix
"""
return numpy.asarray(_get_lca_matrix(self, 0, len(self)))
@ -985,7 +987,7 @@ cdef class Doc:
it doesn't exist. Paths may be either strings or Path-like objects.
exclude (Iterable[str]): String names of serialization fields to exclude.
DOCS: https://spacy.io/api/doc#to_disk
DOCS: https://nightly.spacy.io/api/doc#to_disk
"""
path = util.ensure_path(path)
with path.open("wb") as file_:
@ -1000,7 +1002,7 @@ cdef class Doc:
exclude (list): String names of serialization fields to exclude.
RETURNS (Doc): The modified `Doc` object.
DOCS: https://spacy.io/api/doc#from_disk
DOCS: https://nightly.spacy.io/api/doc#from_disk
"""
path = util.ensure_path(path)
with path.open("rb") as file_:
@ -1014,7 +1016,7 @@ cdef class Doc:
RETURNS (bytes): A losslessly serialized copy of the `Doc`, including
all annotations.
DOCS: https://spacy.io/api/doc#to_bytes
DOCS: https://nightly.spacy.io/api/doc#to_bytes
"""
return srsly.msgpack_dumps(self.to_dict(exclude=exclude))
@ -1025,7 +1027,7 @@ cdef class Doc:
exclude (list): String names of serialization fields to exclude.
RETURNS (Doc): Itself.
DOCS: https://spacy.io/api/doc#from_bytes
DOCS: https://nightly.spacy.io/api/doc#from_bytes
"""
return self.from_dict(srsly.msgpack_loads(bytes_data), exclude=exclude)
@ -1036,7 +1038,7 @@ cdef class Doc:
RETURNS (bytes): A losslessly serialized copy of the `Doc`, including
all annotations.
DOCS: https://spacy.io/api/doc#to_bytes
DOCS: https://nightly.spacy.io/api/doc#to_bytes
"""
array_head = [LENGTH, SPACY, LEMMA, ENT_IOB, ENT_TYPE, ENT_ID, NORM, ENT_KB_ID]
if self.is_tagged:
@ -1084,7 +1086,7 @@ cdef class Doc:
exclude (list): String names of serialization fields to exclude.
RETURNS (Doc): Itself.
DOCS: https://spacy.io/api/doc#from_dict
DOCS: https://nightly.spacy.io/api/doc#from_dict
"""
if self.length != 0:
raise ValueError(Errors.E033.format(length=self.length))
@ -1164,8 +1166,8 @@ cdef class Doc:
retokenization are invalidated, although they may accidentally
continue to work.
DOCS: https://spacy.io/api/doc#retokenize
USAGE: https://spacy.io/usage/linguistic-features#retokenization
DOCS: https://nightly.spacy.io/api/doc#retokenize
USAGE: https://nightly.spacy.io/usage/linguistic-features#retokenization
"""
return Retokenizer(self)
@ -1200,7 +1202,7 @@ cdef class Doc:
be added to an "_" key in the data, e.g. "_": {"foo": "bar"}.
RETURNS (dict): The data in spaCy's JSON format.
DOCS: https://spacy.io/api/doc#to_json
DOCS: https://nightly.spacy.io/api/doc#to_json
"""
data = {"text": self.text}
if self.is_nered:

View File

@ -27,7 +27,7 @@ from .underscore import Underscore, get_ext_args
cdef class Span:
"""A slice from a Doc object.
DOCS: https://spacy.io/api/span
DOCS: https://nightly.spacy.io/api/span
"""
@classmethod
def set_extension(cls, name, **kwargs):
@ -40,8 +40,8 @@ cdef class Span:
method (callable): Optional method for method extension.
force (bool): Force overwriting existing attribute.
DOCS: https://spacy.io/api/span#set_extension
USAGE: https://spacy.io/usage/processing-pipelines#custom-components-attributes
DOCS: https://nightly.spacy.io/api/span#set_extension
USAGE: https://nightly.spacy.io/usage/processing-pipelines#custom-components-attributes
"""
if cls.has_extension(name) and not kwargs.get("force", False):
raise ValueError(Errors.E090.format(name=name, obj="Span"))
@ -54,7 +54,7 @@ cdef class Span:
name (str): Name of the extension.
RETURNS (tuple): A `(default, method, getter, setter)` tuple.
DOCS: https://spacy.io/api/span#get_extension
DOCS: https://nightly.spacy.io/api/span#get_extension
"""
return Underscore.span_extensions.get(name)
@ -65,7 +65,7 @@ cdef class Span:
name (str): Name of the extension.
RETURNS (bool): Whether the extension has been registered.
DOCS: https://spacy.io/api/span#has_extension
DOCS: https://nightly.spacy.io/api/span#has_extension
"""
return name in Underscore.span_extensions
@ -77,7 +77,7 @@ cdef class Span:
RETURNS (tuple): A `(default, method, getter, setter)` tuple of the
removed extension.
DOCS: https://spacy.io/api/span#remove_extension
DOCS: https://nightly.spacy.io/api/span#remove_extension
"""
if not cls.has_extension(name):
raise ValueError(Errors.E046.format(name=name))
@ -95,7 +95,7 @@ cdef class Span:
vector (ndarray[ndim=1, dtype='float32']): A meaning representation
of the span.
DOCS: https://spacy.io/api/span#init
DOCS: https://nightly.spacy.io/api/span#init
"""
if not (0 <= start <= end <= len(doc)):
raise IndexError(Errors.E035.format(start=start, end=end, length=len(doc)))
@ -151,7 +151,7 @@ cdef class Span:
RETURNS (int): The number of tokens in the span.
DOCS: https://spacy.io/api/span#len
DOCS: https://nightly.spacy.io/api/span#len
"""
self._recalculate_indices()
if self.end < self.start:
@ -168,7 +168,7 @@ cdef class Span:
the span to get.
RETURNS (Token or Span): The token at `span[i]`.
DOCS: https://spacy.io/api/span#getitem
DOCS: https://nightly.spacy.io/api/span#getitem
"""
self._recalculate_indices()
if isinstance(i, slice):
@ -189,7 +189,7 @@ cdef class Span:
YIELDS (Token): A `Token` object.
DOCS: https://spacy.io/api/span#iter
DOCS: https://nightly.spacy.io/api/span#iter
"""
self._recalculate_indices()
for i in range(self.start, self.end):
@ -210,7 +210,7 @@ cdef class Span:
copy_user_data (bool): Whether or not to copy the original doc's user data.
RETURNS (Doc): The `Doc` copy of the span.
DOCS: https://spacy.io/api/span#as_doc
DOCS: https://nightly.spacy.io/api/span#as_doc
"""
# TODO: make copy_user_data a keyword-only argument (Python 3 only)
words = [t.text for t in self]
@ -292,7 +292,7 @@ cdef class Span:
RETURNS (np.array[ndim=2, dtype=numpy.int32]): LCA matrix with shape
(n, n), where n = len(self).
DOCS: https://spacy.io/api/span#get_lca_matrix
DOCS: https://nightly.spacy.io/api/span#get_lca_matrix
"""
return numpy.asarray(_get_lca_matrix(self.doc, self.start, self.end))
@ -304,7 +304,7 @@ cdef class Span:
`Span`, `Token` and `Lexeme` objects.
RETURNS (float): A scalar similarity score. Higher is more similar.
DOCS: https://spacy.io/api/span#similarity
DOCS: https://nightly.spacy.io/api/span#similarity
"""
if "similarity" in self.doc.user_span_hooks:
return self.doc.user_span_hooks["similarity"](self, other)
@ -400,7 +400,7 @@ cdef class Span:
RETURNS (tuple): Entities in the span, one `Span` per entity.
DOCS: https://spacy.io/api/span#ents
DOCS: https://nightly.spacy.io/api/span#ents
"""
ents = []
for ent in self.doc.ents:
@ -415,7 +415,7 @@ cdef class Span:
RETURNS (bool): Whether a word vector is associated with the object.
DOCS: https://spacy.io/api/span#has_vector
DOCS: https://nightly.spacy.io/api/span#has_vector
"""
if "has_vector" in self.doc.user_span_hooks:
return self.doc.user_span_hooks["has_vector"](self)
@ -434,7 +434,7 @@ cdef class Span:
RETURNS (numpy.ndarray[ndim=1, dtype='float32']): A 1D numpy array
representing the span's semantics.
DOCS: https://spacy.io/api/span#vector
DOCS: https://nightly.spacy.io/api/span#vector
"""
if "vector" in self.doc.user_span_hooks:
return self.doc.user_span_hooks["vector"](self)
@ -448,7 +448,7 @@ cdef class Span:
RETURNS (float): The L2 norm of the vector representation.
DOCS: https://spacy.io/api/span#vector_norm
DOCS: https://nightly.spacy.io/api/span#vector_norm
"""
if "vector_norm" in self.doc.user_span_hooks:
return self.doc.user_span_hooks["vector"](self)
@ -508,7 +508,7 @@ cdef class Span:
YIELDS (Span): Base noun-phrase `Span` objects.
DOCS: https://spacy.io/api/span#noun_chunks
DOCS: https://nightly.spacy.io/api/span#noun_chunks
"""
if not self.doc.is_parsed:
raise ValueError(Errors.E029)
@ -533,7 +533,7 @@ cdef class Span:
RETURNS (Token): The root token.
DOCS: https://spacy.io/api/span#root
DOCS: https://nightly.spacy.io/api/span#root
"""
self._recalculate_indices()
if "root" in self.doc.user_span_hooks:
@ -590,7 +590,7 @@ cdef class Span:
RETURNS (tuple): A tuple of Token objects.
DOCS: https://spacy.io/api/span#lefts
DOCS: https://nightly.spacy.io/api/span#lefts
"""
return self.root.conjuncts
@ -601,7 +601,7 @@ cdef class Span:
YIELDS (Token):A left-child of a token of the span.
DOCS: https://spacy.io/api/span#lefts
DOCS: https://nightly.spacy.io/api/span#lefts
"""
for token in reversed(self): # Reverse, so we get tokens in order
for left in token.lefts:
@ -615,7 +615,7 @@ cdef class Span:
YIELDS (Token): A right-child of a token of the span.
DOCS: https://spacy.io/api/span#rights
DOCS: https://nightly.spacy.io/api/span#rights
"""
for token in self:
for right in token.rights:
@ -630,7 +630,7 @@ cdef class Span:
RETURNS (int): The number of leftward immediate children of the
span, in the syntactic dependency parse.
DOCS: https://spacy.io/api/span#n_lefts
DOCS: https://nightly.spacy.io/api/span#n_lefts
"""
return len(list(self.lefts))
@ -642,7 +642,7 @@ cdef class Span:
RETURNS (int): The number of rightward immediate children of the
span, in the syntactic dependency parse.
DOCS: https://spacy.io/api/span#n_rights
DOCS: https://nightly.spacy.io/api/span#n_rights
"""
return len(list(self.rights))
@ -652,7 +652,7 @@ cdef class Span:
YIELDS (Token): A token within the span, or a descendant from it.
DOCS: https://spacy.io/api/span#subtree
DOCS: https://nightly.spacy.io/api/span#subtree
"""
for word in self.lefts:
yield from word.subtree

View File

@ -30,7 +30,7 @@ cdef class Token:
"""An individual token i.e. a word, punctuation symbol, whitespace,
etc.
DOCS: https://spacy.io/api/token
DOCS: https://nightly.spacy.io/api/token
"""
@classmethod
def set_extension(cls, name, **kwargs):
@ -43,8 +43,8 @@ cdef class Token:
method (callable): Optional method for method extension.
force (bool): Force overwriting existing attribute.
DOCS: https://spacy.io/api/token#set_extension
USAGE: https://spacy.io/usage/processing-pipelines#custom-components-attributes
DOCS: https://nightly.spacy.io/api/token#set_extension
USAGE: https://nightly.spacy.io/usage/processing-pipelines#custom-components-attributes
"""
if cls.has_extension(name) and not kwargs.get("force", False):
raise ValueError(Errors.E090.format(name=name, obj="Token"))
@ -57,7 +57,7 @@ cdef class Token:
name (str): Name of the extension.
RETURNS (tuple): A `(default, method, getter, setter)` tuple.
DOCS: https://spacy.io/api/token#get_extension
DOCS: https://nightly.spacy.io/api/token#get_extension
"""
return Underscore.token_extensions.get(name)
@ -68,7 +68,7 @@ cdef class Token:
name (str): Name of the extension.
RETURNS (bool): Whether the extension has been registered.
DOCS: https://spacy.io/api/token#has_extension
DOCS: https://nightly.spacy.io/api/token#has_extension
"""
return name in Underscore.token_extensions
@ -80,7 +80,7 @@ cdef class Token:
RETURNS (tuple): A `(default, method, getter, setter)` tuple of the
removed extension.
DOCS: https://spacy.io/api/token#remove_extension
DOCS: https://nightly.spacy.io/api/token#remove_extension
"""
if not cls.has_extension(name):
raise ValueError(Errors.E046.format(name=name))
@ -93,7 +93,7 @@ cdef class Token:
doc (Doc): The parent document.
offset (int): The index of the token within the document.
DOCS: https://spacy.io/api/token#init
DOCS: https://nightly.spacy.io/api/token#init
"""
self.vocab = vocab
self.doc = doc
@ -108,7 +108,7 @@ cdef class Token:
RETURNS (int): The number of unicode characters in the token.
DOCS: https://spacy.io/api/token#len
DOCS: https://nightly.spacy.io/api/token#len
"""
return self.c.lex.length
@ -171,7 +171,7 @@ cdef class Token:
flag_id (int): The ID of the flag attribute.
RETURNS (bool): Whether the flag is set.
DOCS: https://spacy.io/api/token#check_flag
DOCS: https://nightly.spacy.io/api/token#check_flag
"""
return Lexeme.c_check_flag(self.c.lex, flag_id)
@ -181,7 +181,7 @@ cdef class Token:
i (int): The relative position of the token to get. Defaults to 1.
RETURNS (Token): The token at position `self.doc[self.i+i]`.
DOCS: https://spacy.io/api/token#nbor
DOCS: https://nightly.spacy.io/api/token#nbor
"""
if self.i+i < 0 or (self.i+i >= len(self.doc)):
raise IndexError(Errors.E042.format(i=self.i, j=i, length=len(self.doc)))
@ -195,7 +195,7 @@ cdef class Token:
`Span`, `Token` and `Lexeme` objects.
RETURNS (float): A scalar similarity score. Higher is more similar.
DOCS: https://spacy.io/api/token#similarity
DOCS: https://nightly.spacy.io/api/token#similarity
"""
if "similarity" in self.doc.user_token_hooks:
return self.doc.user_token_hooks["similarity"](self, other)
@ -373,7 +373,7 @@ cdef class Token:
RETURNS (bool): Whether a word vector is associated with the object.
DOCS: https://spacy.io/api/token#has_vector
DOCS: https://nightly.spacy.io/api/token#has_vector
"""
if "has_vector" in self.doc.user_token_hooks:
return self.doc.user_token_hooks["has_vector"](self)
@ -388,7 +388,7 @@ cdef class Token:
RETURNS (numpy.ndarray[ndim=1, dtype='float32']): A 1D numpy array
representing the token's semantics.
DOCS: https://spacy.io/api/token#vector
DOCS: https://nightly.spacy.io/api/token#vector
"""
if "vector" in self.doc.user_token_hooks:
return self.doc.user_token_hooks["vector"](self)
@ -403,7 +403,7 @@ cdef class Token:
RETURNS (float): The L2 norm of the vector representation.
DOCS: https://spacy.io/api/token#vector_norm
DOCS: https://nightly.spacy.io/api/token#vector_norm
"""
if "vector_norm" in self.doc.user_token_hooks:
return self.doc.user_token_hooks["vector_norm"](self)
@ -426,7 +426,7 @@ cdef class Token:
RETURNS (int): The number of leftward immediate children of the
word, in the syntactic dependency parse.
DOCS: https://spacy.io/api/token#n_lefts
DOCS: https://nightly.spacy.io/api/token#n_lefts
"""
return self.c.l_kids
@ -438,7 +438,7 @@ cdef class Token:
RETURNS (int): The number of rightward immediate children of the
word, in the syntactic dependency parse.
DOCS: https://spacy.io/api/token#n_rights
DOCS: https://nightly.spacy.io/api/token#n_rights
"""
return self.c.r_kids
@ -470,7 +470,7 @@ cdef class Token:
RETURNS (bool / None): Whether the token starts a sentence.
None if unknown.
DOCS: https://spacy.io/api/token#is_sent_start
DOCS: https://nightly.spacy.io/api/token#is_sent_start
"""
def __get__(self):
if self.c.sent_start == 0:
@ -499,7 +499,7 @@ cdef class Token:
RETURNS (bool / None): Whether the token ends a sentence.
None if unknown.
DOCS: https://spacy.io/api/token#is_sent_end
DOCS: https://nightly.spacy.io/api/token#is_sent_end
"""
def __get__(self):
if self.i + 1 == len(self.doc):
@ -521,7 +521,7 @@ cdef class Token:
YIELDS (Token): A left-child of the token.
DOCS: https://spacy.io/api/token#lefts
DOCS: https://nightly.spacy.io/api/token#lefts
"""
cdef int nr_iter = 0
cdef const TokenC* ptr = self.c - (self.i - self.c.l_edge)
@ -541,7 +541,7 @@ cdef class Token:
YIELDS (Token): A right-child of the token.
DOCS: https://spacy.io/api/token#rights
DOCS: https://nightly.spacy.io/api/token#rights
"""
cdef const TokenC* ptr = self.c + (self.c.r_edge - self.i)
tokens = []
@ -563,7 +563,7 @@ cdef class Token:
YIELDS (Token): A child token such that `child.head==self`.
DOCS: https://spacy.io/api/token#children
DOCS: https://nightly.spacy.io/api/token#children
"""
yield from self.lefts
yield from self.rights
@ -576,7 +576,7 @@ cdef class Token:
YIELDS (Token): A descendent token such that
`self.is_ancestor(descendent) or token == self`.
DOCS: https://spacy.io/api/token#subtree
DOCS: https://nightly.spacy.io/api/token#subtree
"""
for word in self.lefts:
yield from word.subtree
@ -607,7 +607,7 @@ cdef class Token:
YIELDS (Token): A sequence of ancestor tokens such that
`ancestor.is_ancestor(self)`.
DOCS: https://spacy.io/api/token#ancestors
DOCS: https://nightly.spacy.io/api/token#ancestors
"""
cdef const TokenC* head_ptr = self.c
# Guard against infinite loop, no token can have
@ -625,7 +625,7 @@ cdef class Token:
descendant (Token): Another token.
RETURNS (bool): Whether this token is the ancestor of the descendant.
DOCS: https://spacy.io/api/token#is_ancestor
DOCS: https://nightly.spacy.io/api/token#is_ancestor
"""
if self.doc is not descendant.doc:
return False
@ -729,7 +729,7 @@ cdef class Token:
RETURNS (tuple): The coordinated tokens.
DOCS: https://spacy.io/api/token#conjuncts
DOCS: https://nightly.spacy.io/api/token#conjuncts
"""
cdef Token word, child
if "conjuncts" in self.doc.user_token_hooks:

View File

@ -76,7 +76,7 @@ class registry(thinc.registry):
lemmatizers = catalogue.create("spacy", "lemmatizers", entry_points=True)
lookups = catalogue.create("spacy", "lookups", entry_points=True)
displacy_colors = catalogue.create("spacy", "displacy_colors", entry_points=True)
assets = catalogue.create("spacy", "assets", entry_points=True)
misc = catalogue.create("spacy", "misc", entry_points=True)
# Callback functions used to manipulate nlp object etc.
callbacks = catalogue.create("spacy", "callbacks")
batchers = catalogue.create("spacy", "batchers", entry_points=True)

View File

@ -44,7 +44,7 @@ cdef class Vectors:
the table need to be assigned - so len(list(vectors.keys())) may be
greater or smaller than vectors.shape[0].
DOCS: https://spacy.io/api/vectors
DOCS: https://nightly.spacy.io/api/vectors
"""
cdef public object name
cdef public object data
@ -59,7 +59,7 @@ cdef class Vectors:
keys (iterable): A sequence of keys, aligned with the data.
name (str): A name to identify the vectors table.
DOCS: https://spacy.io/api/vectors#init
DOCS: https://nightly.spacy.io/api/vectors#init
"""
self.name = name
if data is None:
@ -83,7 +83,7 @@ cdef class Vectors:
RETURNS (tuple): A `(rows, dims)` pair.
DOCS: https://spacy.io/api/vectors#shape
DOCS: https://nightly.spacy.io/api/vectors#shape
"""
return self.data.shape
@ -93,7 +93,7 @@ cdef class Vectors:
RETURNS (int): The vector size.
DOCS: https://spacy.io/api/vectors#size
DOCS: https://nightly.spacy.io/api/vectors#size
"""
return self.data.shape[0] * self.data.shape[1]
@ -103,7 +103,7 @@ cdef class Vectors:
RETURNS (bool): `True` if no slots are available for new keys.
DOCS: https://spacy.io/api/vectors#is_full
DOCS: https://nightly.spacy.io/api/vectors#is_full
"""
return self._unset.size() == 0
@ -114,7 +114,7 @@ cdef class Vectors:
RETURNS (int): The number of keys in the table.
DOCS: https://spacy.io/api/vectors#n_keys
DOCS: https://nightly.spacy.io/api/vectors#n_keys
"""
return len(self.key2row)
@ -127,7 +127,7 @@ cdef class Vectors:
key (int): The key to get the vector for.
RETURNS (ndarray): The vector for the key.
DOCS: https://spacy.io/api/vectors#getitem
DOCS: https://nightly.spacy.io/api/vectors#getitem
"""
i = self.key2row[key]
if i is None:
@ -141,7 +141,7 @@ cdef class Vectors:
key (int): The key to set the vector for.
vector (ndarray): The vector to set.
DOCS: https://spacy.io/api/vectors#setitem
DOCS: https://nightly.spacy.io/api/vectors#setitem
"""
i = self.key2row[key]
self.data[i] = vector
@ -153,7 +153,7 @@ cdef class Vectors:
YIELDS (int): A key in the table.
DOCS: https://spacy.io/api/vectors#iter
DOCS: https://nightly.spacy.io/api/vectors#iter
"""
yield from self.key2row
@ -162,7 +162,7 @@ cdef class Vectors:
RETURNS (int): The number of vectors in the data.
DOCS: https://spacy.io/api/vectors#len
DOCS: https://nightly.spacy.io/api/vectors#len
"""
return self.data.shape[0]
@ -172,7 +172,7 @@ cdef class Vectors:
key (int): The key to check.
RETURNS (bool): Whether the key has a vector entry.
DOCS: https://spacy.io/api/vectors#contains
DOCS: https://nightly.spacy.io/api/vectors#contains
"""
return key in self.key2row
@ -189,7 +189,7 @@ cdef class Vectors:
inplace (bool): Reallocate the memory.
RETURNS (list): The removed items as a list of `(key, row)` tuples.
DOCS: https://spacy.io/api/vectors#resize
DOCS: https://nightly.spacy.io/api/vectors#resize
"""
xp = get_array_module(self.data)
if inplace:
@ -224,7 +224,7 @@ cdef class Vectors:
YIELDS (ndarray): A vector in the table.
DOCS: https://spacy.io/api/vectors#values
DOCS: https://nightly.spacy.io/api/vectors#values
"""
for row, vector in enumerate(range(self.data.shape[0])):
if not self._unset.count(row):
@ -235,7 +235,7 @@ cdef class Vectors:
YIELDS (tuple): A key/vector pair.
DOCS: https://spacy.io/api/vectors#items
DOCS: https://nightly.spacy.io/api/vectors#items
"""
for key, row in self.key2row.items():
yield key, self.data[row]
@ -281,7 +281,7 @@ cdef class Vectors:
row (int / None): The row number of a vector to map the key to.
RETURNS (int): The row the vector was added to.
DOCS: https://spacy.io/api/vectors#add
DOCS: https://nightly.spacy.io/api/vectors#add
"""
# use int for all keys and rows in key2row for more efficient access
# and serialization
@ -368,7 +368,7 @@ cdef class Vectors:
path (str / Path): A path to a directory, which will be created if
it doesn't exists.
DOCS: https://spacy.io/api/vectors#to_disk
DOCS: https://nightly.spacy.io/api/vectors#to_disk
"""
xp = get_array_module(self.data)
if xp is numpy:
@ -396,7 +396,7 @@ cdef class Vectors:
path (str / Path): Directory path, string or Path-like object.
RETURNS (Vectors): The modified object.
DOCS: https://spacy.io/api/vectors#from_disk
DOCS: https://nightly.spacy.io/api/vectors#from_disk
"""
def load_key2row(path):
if path.exists():
@ -432,7 +432,7 @@ cdef class Vectors:
exclude (list): String names of serialization fields to exclude.
RETURNS (bytes): The serialized form of the `Vectors` object.
DOCS: https://spacy.io/api/vectors#to_bytes
DOCS: https://nightly.spacy.io/api/vectors#to_bytes
"""
def serialize_weights():
if hasattr(self.data, "to_bytes"):
@ -453,7 +453,7 @@ cdef class Vectors:
exclude (list): String names of serialization fields to exclude.
RETURNS (Vectors): The `Vectors` object.
DOCS: https://spacy.io/api/vectors#from_bytes
DOCS: https://nightly.spacy.io/api/vectors#from_bytes
"""
def deserialize_weights(b):
if hasattr(self.data, "from_bytes"):

View File

@ -54,7 +54,7 @@ cdef class Vocab:
instance also provides access to the `StringStore`, and owns underlying
C-data that is shared between `Doc` objects.
DOCS: https://spacy.io/api/vocab
DOCS: https://nightly.spacy.io/api/vocab
"""
def __init__(self, lex_attr_getters=None, strings=tuple(), lookups=None,
oov_prob=-20., vectors_name=None, writing_system={},
@ -117,7 +117,7 @@ cdef class Vocab:
available bit will be chosen.
RETURNS (int): The integer ID by which the flag value can be checked.
DOCS: https://spacy.io/api/vocab#add_flag
DOCS: https://nightly.spacy.io/api/vocab#add_flag
"""
if flag_id == -1:
for bit in range(1, 64):
@ -201,7 +201,7 @@ cdef class Vocab:
string (unicode): The ID string.
RETURNS (bool) Whether the string has an entry in the vocabulary.
DOCS: https://spacy.io/api/vocab#contains
DOCS: https://nightly.spacy.io/api/vocab#contains
"""
cdef hash_t int_key
if isinstance(key, bytes):
@ -218,7 +218,7 @@ cdef class Vocab:
YIELDS (Lexeme): An entry in the vocabulary.
DOCS: https://spacy.io/api/vocab#iter
DOCS: https://nightly.spacy.io/api/vocab#iter
"""
cdef attr_t key
cdef size_t addr
@ -241,7 +241,7 @@ cdef class Vocab:
>>> apple = nlp.vocab.strings["apple"]
>>> assert nlp.vocab[apple] == nlp.vocab[u"apple"]
DOCS: https://spacy.io/api/vocab#getitem
DOCS: https://nightly.spacy.io/api/vocab#getitem
"""
cdef attr_t orth
if isinstance(id_or_string, unicode):
@ -309,7 +309,7 @@ cdef class Vocab:
word was mapped to, and `score` the similarity score between the
two words.
DOCS: https://spacy.io/api/vocab#prune_vectors
DOCS: https://nightly.spacy.io/api/vocab#prune_vectors
"""
xp = get_array_module(self.vectors.data)
# Make prob negative so it sorts by rank ascending
@ -349,7 +349,7 @@ cdef class Vocab:
and shape determined by the `vocab.vectors` instance. Usually, a
numpy ndarray of shape (300,) and dtype float32.
DOCS: https://spacy.io/api/vocab#get_vector
DOCS: https://nightly.spacy.io/api/vocab#get_vector
"""
if isinstance(orth, str):
orth = self.strings.add(orth)
@ -396,7 +396,7 @@ cdef class Vocab:
orth (int / unicode): The word.
vector (numpy.ndarray[ndim=1, dtype='float32']): The vector to set.
DOCS: https://spacy.io/api/vocab#set_vector
DOCS: https://nightly.spacy.io/api/vocab#set_vector
"""
if isinstance(orth, str):
orth = self.strings.add(orth)
@ -418,7 +418,7 @@ cdef class Vocab:
orth (int / unicode): The word.
RETURNS (bool): Whether the word has a vector.
DOCS: https://spacy.io/api/vocab#has_vector
DOCS: https://nightly.spacy.io/api/vocab#has_vector
"""
if isinstance(orth, str):
orth = self.strings.add(orth)
@ -431,7 +431,7 @@ cdef class Vocab:
it doesn't exist.
exclude (list): String names of serialization fields to exclude.
DOCS: https://spacy.io/api/vocab#to_disk
DOCS: https://nightly.spacy.io/api/vocab#to_disk
"""
path = util.ensure_path(path)
if not path.exists():
@ -452,7 +452,7 @@ cdef class Vocab:
exclude (list): String names of serialization fields to exclude.
RETURNS (Vocab): The modified `Vocab` object.
DOCS: https://spacy.io/api/vocab#to_disk
DOCS: https://nightly.spacy.io/api/vocab#to_disk
"""
path = util.ensure_path(path)
getters = ["strings", "vectors"]
@ -477,7 +477,7 @@ cdef class Vocab:
exclude (list): String names of serialization fields to exclude.
RETURNS (bytes): The serialized form of the `Vocab` object.
DOCS: https://spacy.io/api/vocab#to_bytes
DOCS: https://nightly.spacy.io/api/vocab#to_bytes
"""
def deserialize_vectors():
if self.vectors is None:
@ -499,7 +499,7 @@ cdef class Vocab:
exclude (list): String names of serialization fields to exclude.
RETURNS (Vocab): The `Vocab` object.
DOCS: https://spacy.io/api/vocab#from_bytes
DOCS: https://nightly.spacy.io/api/vocab#from_bytes
"""
def serialize_vectors(b):
if self.vectors is None:

View File

@ -25,36 +25,6 @@ usage documentation on
## Tok2Vec architectures {#tok2vec-arch source="spacy/ml/models/tok2vec.py"}
### spacy.HashEmbedCNN.v1 {#HashEmbedCNN}
> #### Example Config
>
> ```ini
> [model]
> @architectures = "spacy.HashEmbedCNN.v1"
> pretrained_vectors = null
> width = 96
> depth = 4
> embed_size = 2000
> window_size = 1
> maxout_pieces = 3
> subword_features = true
> ```
Build spaCy's "standard" embedding layer, which uses hash embedding with subword
features and a CNN with layer-normalized maxout.
| Name | Description |
| -------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `width` | The width of the input and output. These are required to be the same, so that residual connections can be used. Recommended values are `96`, `128` or `300`. ~~int~~ |
| `depth` | The number of convolutional layers to use. Recommended values are between `2` and `8`. ~~int~~ |
| `embed_size` | The number of rows in the hash embedding tables. This can be surprisingly small, due to the use of the hash embeddings. Recommended values are between `2000` and `10000`. ~~int~~ |
| `window_size` | The number of tokens on either side to concatenate during the convolutions. The receptive field of the CNN will be `depth * (window_size * 2 + 1)`, so a 4-layer network with a window size of `2` will be sensitive to 17 words at a time. Recommended value is `1`. ~~int~~ |
| `maxout_pieces` | The number of pieces to use in the maxout non-linearity. If `1`, the [`Mish`](https://thinc.ai/docs/api-layers#mish) non-linearity is used instead. Recommended values are `1`-`3`. ~~int~~ |
| `subword_features` | Whether to also embed subword features, specifically the prefix, suffix and word shape. This is recommended for alphabetic languages like English, but not if single-character tokens are used for a language such as Chinese. ~~bool~~ |
| `pretrained_vectors` | Whether to also use static vectors. ~~bool~~ |
| **CREATES** | The model using the architecture. ~~Model[List[Doc], List[Floats2d]]~~ |
### spacy.Tok2Vec.v1 {#Tok2Vec}
> #### Example config
@ -72,7 +42,8 @@ features and a CNN with layer-normalized maxout.
> # ...
> ```
Construct a tok2vec model out of embedding and encoding subnetworks. See the
Construct a tok2vec model out of two subnetworks: one for embedding and one for
encoding. See the
["Embed, Encode, Attend, Predict"](https://explosion.ai/blog/deep-learning-formula-nlp)
blog post for background.
@ -82,6 +53,39 @@ blog post for background.
| `encode` | Encode context into the embeddings, using an architecture such as a CNN, BiLSTM or transformer. For example, [MaxoutWindowEncoder](/api/architectures#MaxoutWindowEncoder). ~~Model[List[Floats2d], List[Floats2d]]~~ |
| **CREATES** | The model using the architecture. ~~Model[List[Doc], List[Floats2d]]~~ |
### spacy.HashEmbedCNN.v1 {#HashEmbedCNN}
> #### Example Config
>
> ```ini
> [model]
> @architectures = "spacy.HashEmbedCNN.v1"
> pretrained_vectors = null
> width = 96
> depth = 4
> embed_size = 2000
> window_size = 1
> maxout_pieces = 3
> subword_features = true
> ```
Build spaCy's "standard" tok2vec layer. This layer is defined by a
[MultiHashEmbed](/api/architectures#MultiHashEmbed) embedding layer that uses
subword features, and a
[MaxoutWindowEncoder](/api/architectures#MaxoutWindowEncoder) encoding layer
consisting of a CNN and a layer-normalized maxout activation function.
| Name | Description |
| -------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `width` | The width of the input and output. These are required to be the same, so that residual connections can be used. Recommended values are `96`, `128` or `300`. ~~int~~ |
| `depth` | The number of convolutional layers to use. Recommended values are between `2` and `8`. ~~int~~ |
| `embed_size` | The number of rows in the hash embedding tables. This can be surprisingly small, due to the use of the hash embeddings. Recommended values are between `2000` and `10000`. ~~int~~ |
| `window_size` | The number of tokens on either side to concatenate during the convolutions. The receptive field of the CNN will be `depth * (window_size * 2 + 1)`, so a 4-layer network with a window size of `2` will be sensitive to 17 words at a time. Recommended value is `1`. ~~int~~ |
| `maxout_pieces` | The number of pieces to use in the maxout non-linearity. If `1`, the [`Mish`](https://thinc.ai/docs/api-layers#mish) non-linearity is used instead. Recommended values are `1`-`3`. ~~int~~ |
| `subword_features` | Whether to also embed subword features, specifically the prefix, suffix and word shape. This is recommended for alphabetic languages like English, but not if single-character tokens are used for a language such as Chinese. ~~bool~~ |
| `pretrained_vectors` | Whether to also use static vectors. ~~bool~~ |
| **CREATES** | The model using the architecture. ~~Model[List[Doc], List[Floats2d]]~~ |
### spacy.Tok2VecListener.v1 {#Tok2VecListener}
> #### Example config
@ -316,7 +320,7 @@ for details and system requirements.
> tokenizer_config = {"use_fast": true}
>
> [model.get_spans]
> @span_getters = "strided_spans.v1"
> @span_getters = "spacy-transformers.strided_spans.v1"
> window = 128
> stride = 96
> ```
@ -669,11 +673,11 @@ into the "real world". This requires 3 main components:
> subword_features = true
>
> [kb_loader]
> @assets = "spacy.EmptyKB.v1"
> @misc = "spacy.EmptyKB.v1"
> entity_vector_length = 64
>
> [get_candidates]
> @assets = "spacy.CandidateGenerator.v1"
> @misc = "spacy.CandidateGenerator.v1"
> ```
The `EntityLinker` model architecture is a Thinc `Model` with a

View File

@ -1,6 +1,6 @@
---
title: Command Line Interface
teaser: Download, train and package models, and debug spaCy
teaser: Download, train and package pipelines, and debug spaCy
source: spacy/cli
menu:
- ['download', 'download']
@ -17,45 +17,47 @@ menu:
---
spaCy's CLI provides a range of helpful commands for downloading and training
models, converting data and debugging your config, data and installation. For a
list of available commands, you can type `python -m spacy --help`. You can also
add the `--help` flag to any command or subcommand to see the description,
pipelines, converting data and debugging your config, data and installation. For
a list of available commands, you can type `python -m spacy --help`. You can
also add the `--help` flag to any command or subcommand to see the description,
available arguments and usage.
## download {#download tag="command"}
Download [models](/usage/models) for spaCy. The downloader finds the
best-matching compatible version and uses `pip install` to download the model as
a package. Direct downloads don't perform any compatibility checks and require
the model name to be specified with its version (e.g. `en_core_web_sm-2.2.0`).
Download [trained pipelines](/usage/models) for spaCy. The downloader finds the
best-matching compatible version and uses `pip install` to download the Python
package. Direct downloads don't perform any compatibility checks and require the
pipeline name to be specified with its version (e.g. `en_core_web_sm-2.2.0`).
> #### Downloading best practices
>
> The `download` command is mostly intended as a convenient, interactive wrapper
> it performs compatibility checks and prints detailed messages in case things
> go wrong. It's **not recommended** to use this command as part of an automated
> process. If you know which model your project needs, you should consider a
> [direct download via pip](/usage/models#download-pip), or uploading the model
> to a local PyPi installation and fetching it straight from there. This will
> also allow you to add it as a versioned package dependency to your project.
> process. If you know which package your project needs, you should consider a
> [direct download via pip](/usage/models#download-pip), or uploading the
> package to a local PyPi installation and fetching it straight from there. This
> will also allow you to add it as a versioned package dependency to your
> project.
```cli
$ python -m spacy download [model] [--direct] [pip_args]
```
| Name | Description |
| ------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| `model` | Model name, e.g. [`en_core_web_sm`](/models/en#en_core_web_sm). ~~str (positional)~~ |
| `--direct`, `-d` | Force direct download of exact model version. ~~bool (flag)~~ |
| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |
| pip args <Tag variant="new">2.1</Tag> | Additional installation options to be passed to `pip install` when installing the model package. For example, `--user` to install to the user home directory or `--no-deps` to not install model dependencies. ~~Any (option/flag)~~ |
| **CREATES** | The installed model package in your `site-packages` directory. |
| Name | Description |
| ------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `model` | Pipeline package name, e.g. [`en_core_web_sm`](/models/en#en_core_web_sm). ~~str (positional)~~ |
| `--direct`, `-d` | Force direct download of exact package version. ~~bool (flag)~~ |
| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |
| pip args <Tag variant="new">2.1</Tag> | Additional installation options to be passed to `pip install` when installing the pipeline package. For example, `--user` to install to the user home directory or `--no-deps` to not install package dependencies. ~~Any (option/flag)~~ |
| **CREATES** | The installed pipeline package in your `site-packages` directory. |
## info {#info tag="command"}
Print information about your spaCy installation, models and local setup, and
generate [Markdown](https://en.wikipedia.org/wiki/Markdown)-formatted markup to
copy-paste into [GitHub issues](https://github.com/explosion/spaCy/issues).
Print information about your spaCy installation, trained pipelines and local
setup, and generate [Markdown](https://en.wikipedia.org/wiki/Markdown)-formatted
markup to copy-paste into
[GitHub issues](https://github.com/explosion/spaCy/issues).
```cli
$ python -m spacy info [--markdown] [--silent]
@ -65,41 +67,41 @@ $ python -m spacy info [--markdown] [--silent]
$ python -m spacy info [model] [--markdown] [--silent]
```
| Name | Description |
| ------------------------------------------------ | ------------------------------------------------------------------------------ |
| `model` | A model, i.e. package name or path (optional). ~~Optional[str] \(positional)~~ |
| `--markdown`, `-md` | Print information as Markdown. ~~bool (flag)~~ |
| `--silent`, `-s` <Tag variant="new">2.0.12</Tag> | Don't print anything, just return the values. ~~bool (flag)~~ |
| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |
| **PRINTS** | Information about your spaCy installation. |
| Name | Description |
| ------------------------------------------------ | ----------------------------------------------------------------------------------------- |
| `model` | A trained pipeline, i.e. package name or path (optional). ~~Optional[str] \(positional)~~ |
| `--markdown`, `-md` | Print information as Markdown. ~~bool (flag)~~ |
| `--silent`, `-s` <Tag variant="new">2.0.12</Tag> | Don't print anything, just return the values. ~~bool (flag)~~ |
| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |
| **PRINTS** | Information about your spaCy installation. |
## validate {#validate new="2" tag="command"}
Find all models installed in the current environment and check whether they are
compatible with the currently installed version of spaCy. Should be run after
upgrading spaCy via `pip install -U spacy` to ensure that all installed models
are can be used with the new version. It will show a list of models and their
installed versions. If any model is out of date, the latest compatible versions
and command for updating are shown.
Find all trained pipeline packages installed in the current environment and
check whether they are compatible with the currently installed version of spaCy.
Should be run after upgrading spaCy via `pip install -U spacy` to ensure that
all installed packages are can be used with the new version. It will show a list
of packages and their installed versions. If any package is out of date, the
latest compatible versions and command for updating are shown.
> #### Automated validation
>
> You can also use the `validate` command as part of your build process or test
> suite, to ensure all models are up to date before proceeding. If incompatible
> models are found, it will return `1`.
> suite, to ensure all packages are up to date before proceeding. If
> incompatible packages are found, it will return `1`.
```cli
$ python -m spacy validate
```
| Name | Description |
| ---------- | --------------------------------------------------------- |
| **PRINTS** | Details about the compatibility of your installed models. |
| Name | Description |
| ---------- | -------------------------------------------------------------------- |
| **PRINTS** | Details about the compatibility of your installed pipeline packages. |
## init {#init new="3"}
The `spacy init` CLI includes helpful commands for initializing training config
files and model directories.
files and pipeline directories.
### init config {#init-config new="3" tag="command"}
@ -125,7 +127,7 @@ $ python -m spacy init config [output_file] [--lang] [--pipeline] [--optimize] [
| ------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `output_file` | Path to output `.cfg` file or `-` to write the config to stdout (so you can pipe it forward to a file). Note that if you're writing to stdout, no additional logging info is printed. ~~Path (positional)~~ |
| `--lang`, `-l` | Optional code of the [language](/usage/models#languages) to use. Defaults to `"en"`. ~~str (option)~~ |
| `--pipeline`, `-p` | Comma-separated list of trainable [pipeline components](/usage/processing-pipelines#built-in) to include in the model. Defaults to `"tagger,parser,ner"`. ~~str (option)~~ |
| `--pipeline`, `-p` | Comma-separated list of trainable [pipeline components](/usage/processing-pipelines#built-in) to include. Defaults to `"tagger,parser,ner"`. ~~str (option)~~ |
| `--optimize`, `-o` | `"efficiency"` or `"accuracy"`. Whether to optimize for efficiency (faster inference, smaller model, lower memory consumption) or higher accuracy (potentially larger and slower model). This will impact the choice of architecture, pretrained weights and related hyperparameters. Defaults to `"efficiency"`. ~~str (option)~~ |
| `--cpu`, `-C` | Whether the model needs to run on CPU. This will impact the choice of architecture, pretrained weights and related hyperparameters. ~~bool (flag)~~ |
| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |
@ -165,36 +167,38 @@ $ python -m spacy init fill-config [base_path] [output_file] [--diff]
| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |
| **CREATES** | Complete and auto-filled config file for training. |
### init model {#init-model new="2" tag="command"}
### init vocab {#init-vocab new="3" tag="command"}
Create a new model directory from raw data, like word frequencies, Brown
clusters and word vectors. Note that in order to populate the model's vocab, you
Create a blank pipeline directory from raw data, like word frequencies, Brown
clusters and word vectors. Note that in order to populate the vocabulary, you
need to pass in a JSONL-formatted
[vocabulary file](/api/data-formats#vocab-jsonl) as `--jsonl-loc` with optional
`id` values that correspond to the vectors table. Just loading in vectors will
not automatically populate the vocab.
<Infobox title="New in v3.0" variant="warning">
<Infobox title="New in v3.0" variant="warning" id="init-model">
The `init-model` command is now available as a subcommand of `spacy init`.
This command was previously called `init-model`.
</Infobox>
```cli
$ python -m spacy init model [lang] [output_dir] [--jsonl-loc] [--vectors-loc] [--prune-vectors]
$ python -m spacy init vocab [lang] [output_dir] [--jsonl-loc] [--vectors-loc] [--prune-vectors] [--vectors-name] [--meta-name] [--base]
```
| Name | Description |
| ------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `lang` | Model language [ISO code](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes), e.g. `en`. ~~str (positional)~~ |
| `output_dir` | Model output directory. Will be created if it doesn't exist. ~~Path (positional)~~ |
| `lang` | Pipeline language [ISO code](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes), e.g. `en`. ~~str (positional)~~ |
| `output_dir` | Pipeline output directory. Will be created if it doesn't exist. ~~Path (positional)~~ |
| `--jsonl-loc`, `-j` | Optional location of JSONL-formatted [vocabulary file](/api/data-formats#vocab-jsonl) with lexical attributes. ~~Optional[Path] \(option)~~ |
| `--vectors-loc`, `-v` | Optional location of vectors. Should be a file where the first row contains the dimensions of the vectors, followed by a space-separated Word2Vec table. File can be provided in `.txt` format or as a zipped text file in `.zip` or `.tar.gz` format. ~~Optional[Path] \(option)~~ |
| `--truncate-vectors`, `-t` <Tag variant="new">2.3</Tag> | Number of vectors to truncate to when reading in vectors file. Defaults to `0` for no truncation. ~~int (option)~~ |
| `--prune-vectors`, `-V` | Number of vectors to prune the vocabulary to. Defaults to `-1` for no pruning. ~~int (option)~~ |
| `--vectors-name`, `-vn` | Name to assign to the word vectors in the `meta.json`, e.g. `en_core_web_md.vectors`. ~~str (option)~~ |
| `--vectors-name`, `-vn` | Name to assign to the word vectors in the `meta.json`, e.g. `en_core_web_md.vectors`. ~~Optional[str] \(option)~~ |
| `--meta-name`, `-mn` | Optional name of the package for the pipeline meta. ~~Optional[str] \(option)~~ |
| `--base`, `-b` | Optional name of or path to base pipeline to start with (mostly relevant for pipelines with custom tokenizers). ~~Optional[str] \(option)~~ |
| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |
| **CREATES** | A spaCy model containing the vocab and vectors. |
| **CREATES** | A spaCy pipeline directory containing the vocab and vectors. |
## convert {#convert tag="command"}
@ -205,7 +209,7 @@ management functions. The converter can be specified on the command line, or
chosen based on the file extension of the input file.
```cli
$ python -m spacy convert [input_file] [output_dir] [--converter] [--file-type] [--n-sents] [--seg-sents] [--model] [--morphology] [--merge-subtokens] [--ner-map] [--lang]
$ python -m spacy convert [input_file] [output_dir] [--converter] [--file-type] [--n-sents] [--seg-sents] [--base] [--morphology] [--merge-subtokens] [--ner-map] [--lang]
```
| Name | Description |
@ -216,7 +220,7 @@ $ python -m spacy convert [input_file] [output_dir] [--converter] [--file-type]
| `--file-type`, `-t` <Tag variant="new">2.1</Tag> | Type of file to create. Either `spacy` (default) for binary [`DocBin`](/api/docbin) data or `json` for v2.x JSON format. ~~str (option)~~ |
| `--n-sents`, `-n` | Number of sentences per document. ~~int (option)~~ |
| `--seg-sents`, `-s` <Tag variant="new">2.2</Tag> | Segment sentences (for `--converter ner`). ~~bool (flag)~~ |
| `--model`, `-b` <Tag variant="new">2.2</Tag> | Model for parser-based sentence segmentation (for `--seg-sents`). ~~Optional[str](option)~~ |
| `--base`, `-b` | Trained spaCy pipeline for sentence segmentation to use as base (for `--seg-sents`). ~~Optional[str](option)~~ |
| `--morphology`, `-m` | Enable appending morphology to tags. ~~bool (flag)~~ |
| `--ner-map`, `-nm` | NER tag mapping (as JSON-encoded dict of entity types). ~~Optional[Path](option)~~ |
| `--lang`, `-l` <Tag variant="new">2.1</Tag> | Language code (if tokenizer required). ~~Optional[str] \(option)~~ |
@ -267,7 +271,7 @@ training -> dropout field required
training -> optimizer field required
training -> optimize extra fields not permitted
{'vectors': 'en_vectors_web_lg', 'seed': 0, 'accumulate_gradient': 1, 'init_tok2vec': None, 'raw_text': None, 'patience': 1600, 'max_epochs': 0, 'max_steps': 20000, 'eval_frequency': 200, 'frozen_components': [], 'optimize': None, 'batcher': {'@batchers': 'batch_by_words.v1', 'discard_oversize': False, 'tolerance': 0.2, 'get_length': None, 'size': {'@schedules': 'compounding.v1', 'start': 100, 'stop': 1000, 'compound': 1.001, 't': 0.0}}, 'dev_corpus': {'@readers': 'spacy.Corpus.v1', 'path': '', 'max_length': 0, 'gold_preproc': False, 'limit': 0}, 'score_weights': {'tag_acc': 0.5, 'dep_uas': 0.25, 'dep_las': 0.25, 'sents_f': 0.0}, 'train_corpus': {'@readers': 'spacy.Corpus.v1', 'path': '', 'max_length': 0, 'gold_preproc': False, 'limit': 0}}
{'vectors': 'en_vectors_web_lg', 'seed': 0, 'accumulate_gradient': 1, 'init_tok2vec': None, 'raw_text': None, 'patience': 1600, 'max_epochs': 0, 'max_steps': 20000, 'eval_frequency': 200, 'frozen_components': [], 'optimize': None, 'batcher': {'@batchers': 'spacy.batch_by_words.v1', 'discard_oversize': False, 'tolerance': 0.2, 'get_length': None, 'size': {'@schedules': 'compounding.v1', 'start': 100, 'stop': 1000, 'compound': 1.001, 't': 0.0}}, 'dev_corpus': {'@readers': 'spacy.Corpus.v1', 'path': '', 'max_length': 0, 'gold_preproc': False, 'limit': 0}, 'score_weights': {'tag_acc': 0.5, 'dep_uas': 0.25, 'dep_las': 0.25, 'sents_f': 0.0}, 'train_corpus': {'@readers': 'spacy.Corpus.v1', 'path': '', 'max_length': 0, 'gold_preproc': False, 'limit': 0}}
If your config contains missing values, you can run the 'init fill-config'
command to fill in all the defaults, if possible:
@ -357,7 +361,7 @@ Module spacy.gold.loggers
File /path/to/spacy/gold/loggers.py (line 8)
[training.batcher]
Registry @batchers
Name batch_by_words.v1
Name spacy.batch_by_words.v1
Module spacy.gold.batchers
File /path/to/spacy/gold/batchers.py (line 49)
[training.batcher.size]
@ -594,11 +598,11 @@ $ python -m spacy debug profile [model] [inputs] [--n-texts]
| Name | Description |
| ----------------- | ---------------------------------------------------------------------------------- |
| `model` | A loadable spaCy model. ~~str (positional)~~ |
| `model` | A loadable spaCy pipeline (package name or path). ~~str (positional)~~ |
| `inputs` | Optional path to input file, or `-` for standard input. ~~Path (positional)~~ |
| `--n-texts`, `-n` | Maximum number of texts to use if available. Defaults to `10000`. ~~int (option)~~ |
| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |
| **PRINTS** | Profiling information for the model. |
| **PRINTS** | Profiling information for the pipeline. |
### debug model {#debug-model new="3" tag="command"}
@ -724,10 +728,10 @@ $ python -m spacy debug model ./config.cfg tagger -l "5,15" -DIM -PAR -P0 -P1 -P
## train {#train tag="command"}
Train a model. Expects data in spaCy's
Train a pipeline. Expects data in spaCy's
[binary format](/api/data-formats#training) and a
[config file](/api/data-formats#config) with all settings and hyperparameters.
Will save out the best model from all epochs, as well as the final model. The
Will save out the best model from all epochs, as well as the final pipeline. The
`--code` argument can be used to provide a Python file that's imported before
the training process starts. This lets you register
[custom functions](/usage/training#custom-functions) and architectures and refer
@ -753,12 +757,12 @@ $ python -m spacy train [config_path] [--output] [--code] [--verbose] [overrides
| Name | Description |
| ----------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| `config_path` | Path to [training config](/api/data-formats#config) file containing all settings and hyperparameters. ~~Path (positional)~~ |
| `--output`, `-o` | Directory to store model in. Will be created if it doesn't exist. ~~Optional[Path] \(positional)~~ |
| `--output`, `-o` | Directory to store trained pipeline in. Will be created if it doesn't exist. ~~Optional[Path] \(positional)~~ |
| `--code`, `-c` | Path to Python file with additional code to be imported. Allows [registering custom functions](/usage/training#custom-functions) for new architectures. ~~Optional[Path] \(option)~~ |
| `--verbose`, `-V` | Show more detailed messages during training. ~~bool (flag)~~ |
| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |
| overrides | Config parameters to override. Should be options starting with `--` that correspond to the config section and value to override, e.g. `--paths.train ./train.spacy`. ~~Any (option/flag)~~ |
| **CREATES** | The final model and the best model. |
| **CREATES** | The final trained pipeline and the best trained pipeline. |
## pretrain {#pretrain new="2.1" tag="command,experimental"}
@ -769,7 +773,7 @@ a component like a CNN, BiLSTM, etc to predict vectors which match the
pretrained ones. The weights are saved to a directory after each epoch. You can
then include a **path to one of these pretrained weights files** in your
[training config](/usage/training#config) as the `init_tok2vec` setting when you
train your model. This technique may be especially helpful if you have little
train your pipeline. This technique may be especially helpful if you have little
labelled data. See the usage docs on [pretraining](/usage/training#pretraining)
for more info.
@ -792,7 +796,7 @@ $ python -m spacy pretrain [texts_loc] [output_dir] [config_path] [--code] [--re
| Name | Description |
| ----------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `texts_loc` | Path to JSONL file with raw texts to learn from, with text provided as the key `"text"` or tokens as the key `"tokens"`. [See here](/api/data-formats#pretrain) for details. ~~Path (positional)~~ |
| `output_dir` | Directory to write models to on each epoch. ~~Path (positional)~~ |
| `output_dir` | Directory to save binary weights to on each epoch. ~~Path (positional)~~ |
| `config_path` | Path to [training config](/api/data-formats#config) file containing all settings and hyperparameters. ~~Path (positional)~~ |
| `--code`, `-c` | Path to Python file with additional code to be imported. Allows [registering custom functions](/usage/training#custom-functions) for new architectures. ~~Optional[Path] \(option)~~ |
| `--resume-path`, `-r` | Path to pretrained weights from which to resume pretraining. ~~Optional[Path] \(option)~~ |
@ -803,7 +807,8 @@ $ python -m spacy pretrain [texts_loc] [output_dir] [config_path] [--code] [--re
## evaluate {#evaluate new="2" tag="command"}
Evaluate a model. Expects a loadable spaCy model and evaluation data in the
Evaluate a trained pipeline. Expects a loadable spaCy pipeline (package name or
path) and evaluation data in the
[binary `.spacy` format](/api/data-formats#binary-training). The
`--gold-preproc` option sets up the evaluation examples with gold-standard
sentences and tokens for the predictions. Gold preprocessing helps the
@ -819,7 +824,7 @@ $ python -m spacy evaluate [model] [data_path] [--output] [--gold-preproc] [--gp
| Name | Description |
| ------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `model` | Model to evaluate. Can be a package or a path to a model data directory. ~~str (positional)~~ |
| `model` | Pipeline to evaluate. Can be a package or a path to a data directory. ~~str (positional)~~ |
| `data_path` | Location of evaluation data in spaCy's [binary format](/api/data-formats#training). ~~Path (positional)~~ |
| `--output`, `-o` | Output JSON file for metrics. If not set, no metrics will be exported. ~~Optional[Path] \(option)~~ |
| `--gold-preproc`, `-G` | Use gold preprocessing. ~~bool (flag)~~ |
@ -831,13 +836,12 @@ $ python -m spacy evaluate [model] [data_path] [--output] [--gold-preproc] [--gp
## package {#package tag="command"}
Generate an installable
[model Python package](/usage/training#models-generating) from an existing model
data directory. All data files are copied over. If the path to a
[`meta.json`](/api/data-formats#meta) is supplied, or a `meta.json` is found in
the input directory, this file is used. Otherwise, the data can be entered
directly from the command line. spaCy will then create a `.tar.gz` archive file
that you can distribute and install with `pip install`.
Generate an installable [Python package](/usage/training#models-generating) from
an existing pipeline data directory. All data files are copied over. If the path
to a [`meta.json`](/api/data-formats#meta) is supplied, or a `meta.json` is
found in the input directory, this file is used. Otherwise, the data can be
entered directly from the command line. spaCy will then create a `.tar.gz`
archive file that you can distribute and install with `pip install`.
<Infobox title="New in v3.0" variant="warning">
@ -855,13 +859,13 @@ $ python -m spacy package [input_dir] [output_dir] [--meta-path] [--create-meta]
>
> ```cli
> $ python -m spacy package /input /output
> $ cd /output/en_model-0.0.0
> $ pip install dist/en_model-0.0.0.tar.gz
> $ cd /output/en_pipeline-0.0.0
> $ pip install dist/en_pipeline-0.0.0.tar.gz
> ```
| Name | Description |
| ------------------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `input_dir` | Path to directory containing model data. ~~Path (positional)~~ |
| `input_dir` | Path to directory containing pipeline data. ~~Path (positional)~~ |
| `output_dir` | Directory to create package folder in. ~~Path (positional)~~ |
| `--meta-path`, `-m` <Tag variant="new">2</Tag> | Path to [`meta.json`](/api/data-formats#meta) file (optional). ~~Optional[Path] \(option)~~ |
| `--create-meta`, `-C` <Tag variant="new">2</Tag> | Create a `meta.json` file on the command line, even if one already exists in the directory. If an existing file is found, its entries will be shown as the defaults in the command line prompt. ~~bool (flag)~~ |
@ -869,13 +873,13 @@ $ python -m spacy package [input_dir] [output_dir] [--meta-path] [--create-meta]
| `--version`, `-v` <Tag variant="new">3</Tag> | Package version to override in meta. Useful when training new versions, as it doesn't require editing the meta template. ~~Optional[str] \(option)~~ |
| `--force`, `-f` | Force overwriting of existing folder in output directory. ~~bool (flag)~~ |
| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |
| **CREATES** | A Python package containing the spaCy model. |
| **CREATES** | A Python package containing the spaCy pipeline. |
## project {#project new="3"}
The `spacy project` CLI includes subcommands for working with
[spaCy projects](/usage/projects), end-to-end workflows for building and
deploying custom spaCy models.
deploying custom spaCy pipelines.
### project clone {#project-clone tag="command"}
@ -1015,9 +1019,9 @@ Download all files or directories listed as `outputs` for commands, unless they
are not already present locally. When searching for files in the remote, `pull`
won't just look at the output path, but will also consider the **command
string** and the **hashes of the dependencies**. For instance, let's say you've
previously pushed a model checkpoint to the remote, but now you've changed some
previously pushed a checkpoint to the remote, but now you've changed some
hyper-parameters. Because you've changed the inputs to the command, if you run
`pull`, you won't retrieve the stale result. If you train your model and push
`pull`, you won't retrieve the stale result. If you train your pipeline and push
the outputs to the remote, the outputs will be saved alongside the prior
outputs, so if you change the config back, you'll be able to fetch back the
result.

View File

@ -6,18 +6,18 @@ menu:
- ['Training Data', 'training']
- ['Pretraining Data', 'pretraining']
- ['Vocabulary', 'vocab-jsonl']
- ['Model Meta', 'meta']
- ['Pipeline Meta', 'meta']
---
This section documents input and output formats of data used by spaCy, including
the [training config](/usage/training#config), training data and lexical
vocabulary data. For an overview of label schemes used by the models, see the
[models directory](/models). Each model documents the label schemes used in its
components, depending on the data it was trained on.
[models directory](/models). Each trained pipeline documents the label schemes
used in its components, depending on the data it was trained on.
## Training config {#config new="3"}
Config files define the training process and model pipeline and can be passed to
Config files define the training process and pipeline and can be passed to
[`spacy train`](/api/cli#train). They use
[Thinc's configuration system](https://thinc.ai/docs/usage-config) under the
hood. For details on how to use training configs, see the
@ -74,16 +74,16 @@ your config and check that it's valid, you can run the
Defines the `nlp` object, its tokenizer and
[processing pipeline](/usage/processing-pipelines) component names.
| Name | Description |
| ------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `lang` | Model language [ISO code](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes). Defaults to `null`. ~~str~~ |
| `pipeline` | Names of pipeline components in order. Should correspond to sections in the `[components]` block, e.g. `[components.ner]`. See docs on [defining components](/usage/training#config-components). Defaults to `[]`. ~~List[str]~~ |
| `disabled` | Names of pipeline components that are loaded but disabled by default and not run as part of the pipeline. Should correspond to components listed in `pipeline`. After a model is loaded, disabled components can be enabled using [`Language.enable_pipe`](/api/language#enable_pipe). ~~List[str]~~ |
| `load_vocab_data` | Whether to load additional lexeme and vocab data from [`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data) if available. Defaults to `true`. ~~bool~~ |
| `before_creation` | Optional [callback](/usage/training#custom-code-nlp-callbacks) to modify `Language` subclass before it's initialized. Defaults to `null`. ~~Optional[Callable[[Type[Language]], Type[Language]]]~~ |
| `after_creation` | Optional [callback](/usage/training#custom-code-nlp-callbacks) to modify `nlp` object right after it's initialized. Defaults to `null`. ~~Optional[Callable[[Language], Language]]~~ |
| `after_pipeline_creation` | Optional [callback](/usage/training#custom-code-nlp-callbacks) to modify `nlp` object after the pipeline components have been added. Defaults to `null`. ~~Optional[Callable[[Language], Language]]~~ |
| `tokenizer` | The tokenizer to use. Defaults to [`Tokenizer`](/api/tokenizer). ~~Callable[[str], Doc]~~ |
| Name | Description |
| ------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `lang` | Pipeline language [ISO code](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes). Defaults to `null`. ~~str~~ |
| `pipeline` | Names of pipeline components in order. Should correspond to sections in the `[components]` block, e.g. `[components.ner]`. See docs on [defining components](/usage/training#config-components). Defaults to `[]`. ~~List[str]~~ |
| `disabled` | Names of pipeline components that are loaded but disabled by default and not run as part of the pipeline. Should correspond to components listed in `pipeline`. After a pipeline is loaded, disabled components can be enabled using [`Language.enable_pipe`](/api/language#enable_pipe). ~~List[str]~~ |
| `load_vocab_data` | Whether to load additional lexeme and vocab data from [`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data) if available. Defaults to `true`. ~~bool~~ |
| `before_creation` | Optional [callback](/usage/training#custom-code-nlp-callbacks) to modify `Language` subclass before it's initialized. Defaults to `null`. ~~Optional[Callable[[Type[Language]], Type[Language]]]~~ |
| `after_creation` | Optional [callback](/usage/training#custom-code-nlp-callbacks) to modify `nlp` object right after it's initialized. Defaults to `null`. ~~Optional[Callable[[Language], Language]]~~ |
| `after_pipeline_creation` | Optional [callback](/usage/training#custom-code-nlp-callbacks) to modify `nlp` object after the pipeline components have been added. Defaults to `null`. ~~Optional[Callable[[Language], Language]]~~ |
| `tokenizer` | The tokenizer to use. Defaults to [`Tokenizer`](/api/tokenizer). ~~Callable[[str], Doc]~~ |
### components {#config-components tag="section"}
@ -105,8 +105,8 @@ This section includes definitions of the
[pipeline components](/usage/processing-pipelines) and their models, if
available. Components in this section can be referenced in the `pipeline` of the
`[nlp]` block. Component blocks need to specify either a `factory` (named
function to use to create component) or a `source` (name of path of pretrained
model to copy components from). See the docs on
function to use to create component) or a `source` (name of path of trained
pipeline to copy components from). See the docs on
[defining pipeline components](/usage/training#config-components) for details.
### paths, system {#config-variables tag="variables"}
@ -145,7 +145,7 @@ process that are used when you run [`spacy train`](/api/cli#train).
| `score_weights` | Score names shown in metrics mapped to their weight towards the final weighted score. See [here](/usage/training#metrics) for details. Defaults to `{}`. ~~Dict[str, float]~~ |
| `seed` | The random seed. Defaults to variable `${system.seed}`. ~~int~~ |
| `train_corpus` | Callable that takes the current `nlp` object and yields [`Example`](/api/example) objects. Defaults to [`Corpus`](/api/corpus). ~~Callable[[Language], Iterator[Example]]~~ |
| `vectors` | Model name or path to model containing pretrained word vectors to use, e.g. created with [`init model`](/api/cli#init-model). Defaults to `null`. ~~Optional[str]~~ |
| `vectors` | Name or path of pipeline containing pretrained word vectors to use, e.g. created with [`init vocab`](/api/cli#init-vocab). Defaults to `null`. ~~Optional[str]~~ |
### pretraining {#config-pretraining tag="section,optional"}
@ -184,7 +184,7 @@ run [`spacy pretrain`](/api/cli#pretrain).
The main data format used in spaCy v3.0 is a **binary format** created by
serializing a [`DocBin`](/api/docbin), which represents a collection of `Doc`
objects. This means that you can train spaCy models using the same format it
objects. This means that you can train spaCy pipelines using the same format it
outputs: annotated `Doc` objects. The binary format is extremely **efficient in
storage**, especially when packing multiple documents together.
@ -286,8 +286,8 @@ a dictionary of gold-standard annotations.
[internal training API](/usage/training#api) and they're expected when you call
[`nlp.update`](/api/language#update). However, for most use cases, you
**shouldn't** have to write your own training scripts. It's recommended to train
your models via the [`spacy train`](/api/cli#train) command with a config file
to keep track of your settings and hyperparameters and your own
your pipelines via the [`spacy train`](/api/cli#train) command with a config
file to keep track of your settings and hyperparameters and your own
[registered functions](/usage/training/#custom-code) to customize the setup.
</Infobox>
@ -406,15 +406,15 @@ in line-by-line, while still making it easy to represent newlines in the data.
## Lexical data for vocabulary {#vocab-jsonl new="2"}
To populate a model's vocabulary, you can use the
[`spacy init model`](/api/cli#init-model) command and load in a
To populate a pipeline's vocabulary, you can use the
[`spacy init vocab`](/api/cli#init-vocab) command and load in a
[newline-delimited JSON](http://jsonlines.org/) (JSONL) file containing one
lexical entry per line via the `--jsonl-loc` option. The first line defines the
language and vocabulary settings. All other lines are expected to be JSON
objects describing an individual lexeme. The lexical attributes will be then set
as attributes on spaCy's [`Lexeme`](/api/lexeme#attributes) object. The `vocab`
command outputs a ready-to-use spaCy model with a `Vocab` containing the lexical
data.
command outputs a ready-to-use spaCy pipeline with a `Vocab` containing the
lexical data.
```python
### First line
@ -459,11 +459,11 @@ Here's an example of the 20 most frequent lexemes in the English training data:
https://github.com/explosion/spaCy/tree/master/examples/training/vocab-data.jsonl
```
## Model meta {#meta}
## Pipeline meta {#meta}
The model meta is available as the file `meta.json` and exported automatically
when you save an `nlp` object to disk. Its contents are available as
[`nlp.meta`](/api/language#meta).
The pipeline meta is available as the file `meta.json` and exported
automatically when you save an `nlp` object to disk. Its contents are available
as [`nlp.meta`](/api/language#meta).
<Infobox variant="warning" title="Changed in v3.0">
@ -473,8 +473,8 @@ creating a Python package with [`spacy package`](/api/cli#package). How to set
up the `nlp` object is now defined in the
[`config.cfg`](/api/data-formats#config), which includes detailed information
about the pipeline components and their model architectures, and all other
settings and hyperparameters used to train the model. It's the **single source
of truth** used for loading a model.
settings and hyperparameters used to train the pipeline. It's the **single
source of truth** used for loading a pipeline.
</Infobox>
@ -482,12 +482,12 @@ of truth** used for loading a model.
>
> ```json
> {
> "name": "example_model",
> "name": "example_pipeline",
> "lang": "en",
> "version": "1.0.0",
> "spacy_version": ">=3.0.0,<3.1.0",
> "parent_package": "spacy",
> "description": "Example model for spaCy",
> "description": "Example pipeline for spaCy",
> "author": "You",
> "email": "you@example.com",
> "url": "https://example.com",
@ -510,23 +510,23 @@ of truth** used for loading a model.
> }
> ```
| Name | Description |
| ---------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| `lang` | Model language [ISO code](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes). Defaults to `"en"`. ~~str~~ |
| `name` | Model name, e.g. `"core_web_sm"`. The final model package name will be `{lang}_{name}`. Defaults to `"model"`. ~~str~~ |
| `version` | Model version. Will be used to version a Python package created with [`spacy package`](/api/cli#package). Defaults to `"0.0.0"`. ~~str~~ |
| `spacy_version` | spaCy version range the model is compatible with. Defaults to the spaCy version used to create the model, up to next minor version, which is the default compatibility for the available [pretrained models](/models). For instance, a model trained with v3.0.0 will have the version range `">=3.0.0,<3.1.0"`. ~~str~~ |
| `parent_package` | Name of the spaCy package. Typically `"spacy"` or `"spacy_nightly"`. Defaults to `"spacy"`. ~~str~~ |
| `description` | Model description. Also used for Python package. Defaults to `""`. ~~str~~ |
| `author` | Model author name. Also used for Python package. Defaults to `""`. ~~str~~ |
| `email` | Model author email. Also used for Python package. Defaults to `""`. ~~str~~ |
| `url` | Model author URL. Also used for Python package. Defaults to `""`. ~~str~~ |
| `license` | Model license. Also used for Python package. Defaults to `""`. ~~str~~ |
| `sources` | Data sources used to train the model. Typically a list of dicts with the keys `"name"`, `"url"`, `"author"` and `"license"`. [See here](https://github.com/explosion/spacy-models/tree/master/meta) for examples. Defaults to `None`. ~~Optional[List[Dict[str, str]]]~~ |
| `vectors` | Information about the word vectors included with the model. Typically a dict with the keys `"width"`, `"vectors"` (number of vectors), `"keys"` and `"name"`. ~~Dict[str, Any]~~ |
| `pipeline` | Names of pipeline component names in the model, in order. Corresponds to [`nlp.pipe_names`](/api/language#pipe_names). Only exists for reference and is not used to create the components. This information is defined in the [`config.cfg`](/api/data-formats#config). Defaults to `[]`. ~~List[str]~~ |
| `labels` | Label schemes of the trained pipeline components, keyed by component name. Corresponds to [`nlp.pipe_labels`](/api/language#pipe_labels). [See here](https://github.com/explosion/spacy-models/tree/master/meta) for examples. Defaults to `{}`. ~~Dict[str, Dict[str, List[str]]]~~ |
| `accuracy` | Training accuracy, added automatically by [`spacy train`](/api/cli#train). Dictionary of [score names](/usage/training#metrics) mapped to scores. Defaults to `{}`. ~~Dict[str, Union[float, Dict[str, float]]]~~ |
| `speed` | Model speed, added automatically by [`spacy train`](/api/cli#train). Typically a dictionary with the keys `"cpu"`, `"gpu"` and `"nwords"` (words per second). Defaults to `{}`. ~~Dict[str, Optional[Union[float, str]]]~~ |
| `spacy_git_version` <Tag variant="new">3</Tag> | Git commit of [`spacy`](https://github.com/explosion/spaCy) used to create model. ~~str~~ |
| other | Any other custom meta information you want to add. The data is preserved in [`nlp.meta`](/api/language#meta). ~~Any~~ |
| Name | Description |
| ---------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `lang` | Pipeline language [ISO code](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes). Defaults to `"en"`. ~~str~~ |
| `name` | Pipeline name, e.g. `"core_web_sm"`. The final package name will be `{lang}_{name}`. Defaults to `"pipeline"`. ~~str~~ |
| `version` | Pipeline version. Will be used to version a Python package created with [`spacy package`](/api/cli#package). Defaults to `"0.0.0"`. ~~str~~ |
| `spacy_version` | spaCy version range the package is compatible with. Defaults to the spaCy version used to create the pipeline, up to next minor version, which is the default compatibility for the available [trained pipelines](/models). For instance, a pipeline trained with v3.0.0 will have the version range `">=3.0.0,<3.1.0"`. ~~str~~ |
| `parent_package` | Name of the spaCy package. Typically `"spacy"` or `"spacy_nightly"`. Defaults to `"spacy"`. ~~str~~ |
| `description` | Pipeline description. Also used for Python package. Defaults to `""`. ~~str~~ |
| `author` | Pipeline author name. Also used for Python package. Defaults to `""`. ~~str~~ |
| `email` | Pipeline author email. Also used for Python package. Defaults to `""`. ~~str~~ |
| `url` | Pipeline author URL. Also used for Python package. Defaults to `""`. ~~str~~ |
| `license` | Pipeline license. Also used for Python package. Defaults to `""`. ~~str~~ |
| `sources` | Data sources used to train the pipeline. Typically a list of dicts with the keys `"name"`, `"url"`, `"author"` and `"license"`. [See here](https://github.com/explosion/spacy-models/tree/master/meta) for examples. Defaults to `None`. ~~Optional[List[Dict[str, str]]]~~ |
| `vectors` | Information about the word vectors included with the pipeline. Typically a dict with the keys `"width"`, `"vectors"` (number of vectors), `"keys"` and `"name"`. ~~Dict[str, Any]~~ |
| `pipeline` | Names of pipeline component names, in order. Corresponds to [`nlp.pipe_names`](/api/language#pipe_names). Only exists for reference and is not used to create the components. This information is defined in the [`config.cfg`](/api/data-formats#config). Defaults to `[]`. ~~List[str]~~ |
| `labels` | Label schemes of the trained pipeline components, keyed by component name. Corresponds to [`nlp.pipe_labels`](/api/language#pipe_labels). [See here](https://github.com/explosion/spacy-models/tree/master/meta) for examples. Defaults to `{}`. ~~Dict[str, Dict[str, List[str]]]~~ |
| `accuracy` | Training accuracy, added automatically by [`spacy train`](/api/cli#train). Dictionary of [score names](/usage/training#metrics) mapped to scores. Defaults to `{}`. ~~Dict[str, Union[float, Dict[str, float]]]~~ |
| `speed` | Inference speed, added automatically by [`spacy train`](/api/cli#train). Typically a dictionary with the keys `"cpu"`, `"gpu"` and `"nwords"` (words per second). Defaults to `{}`. ~~Dict[str, Optional[Union[float, str]]]~~ |
| `spacy_git_version` <Tag variant="new">3</Tag> | Git commit of [`spacy`](https://github.com/explosion/spaCy) used to create pipeline. ~~str~~ |
| other | Any other custom meta information you want to add. The data is preserved in [`nlp.meta`](/api/language#meta). ~~Any~~ |

View File

@ -13,8 +13,8 @@ An `EntityLinker` component disambiguates textual mentions (tagged as named
entities) to unique identifiers, grounding the named entities into the "real
world". It requires a `KnowledgeBase`, as well as a function to generate
plausible candidates from that `KnowledgeBase` given a certain textual mention,
and a ML model to pick the right candidate, given the local context of the
mention.
and a machine learning model to pick the right candidate, given the local
context of the mention.
## Config and implementation {#config}
@ -34,8 +34,8 @@ architectures and their arguments and hyperparameters.
> "incl_prior": True,
> "incl_context": True,
> "model": DEFAULT_NEL_MODEL,
> "kb_loader": {'@assets': 'spacy.EmptyKB.v1', 'entity_vector_length': 64},
> "get_candidates": {'@assets': 'spacy.CandidateGenerator.v1'},
> "kb_loader": {'@misc': 'spacy.EmptyKB.v1', 'entity_vector_length': 64},
> "get_candidates": {'@misc': 'spacy.CandidateGenerator.v1'},
> }
> nlp.add_pipe("entity_linker", config=config)
> ```
@ -66,7 +66,7 @@ https://github.com/explosion/spaCy/blob/develop/spacy/pipeline/entity_linker.py
> entity_linker = nlp.add_pipe("entity_linker", config=config)
>
> # Construction via add_pipe with custom KB and candidate generation
> config = {"kb": {"@assets": "my_kb.v1"}}
> config = {"kb": {"@misc": "my_kb.v1"}}
> entity_linker = nlp.add_pipe("entity_linker", config=config)
>
> # Construction from class

View File

@ -7,9 +7,9 @@ source: spacy/language.py
Usually you'll load this once per process as `nlp` and pass the instance around
your application. The `Language` class is created when you call
[`spacy.load()`](/api/top-level#spacy.load) and contains the shared vocabulary
and [language data](/usage/adding-languages), optional model data loaded from a
[model package](/models) or a path, and a
[`spacy.load`](/api/top-level#spacy.load) and contains the shared vocabulary and
[language data](/usage/adding-languages), optional binary weights, e.g. provided
by a [trained pipeline](/models), and the
[processing pipeline](/usage/processing-pipelines) containing components like
the tagger or parser that are called on a document in order. You can also add
your own processing pipeline components that take a `Doc` object, modify it and
@ -37,7 +37,7 @@ Initialize a `Language` object.
| `vocab` | A `Vocab` object. If `True`, a vocab is created using the default language data settings. ~~Vocab~~ |
| _keyword-only_ | |
| `max_length` | Maximum number of characters allowed in a single text. Defaults to `10 ** 6`. ~~int~~ |
| `meta` | Custom meta data for the `Language` class. Is written to by models to add model meta data. ~~dict~~ |
| `meta` | Custom meta data for the `Language` class. Is written to by pipelines to add meta data. ~~dict~~ |
| `create_tokenizer` | Optional function that receives the `nlp` object and returns a tokenizer. ~~Callable[[Language], Callable[[str], Doc]]~~ |
## Language.from_config {#from_config tag="classmethod" new="3"}
@ -232,7 +232,7 @@ tuples of `Doc` and `GoldParse` objects.
## Language.resume_training {#resume_training tag="method,experimental" new="3"}
Continue training a pretrained model. Create and return an optimizer, and
Continue training a trained pipeline. Create and return an optimizer, and
initialize "rehearsal" for any pipeline component that has a `rehearse` method.
Rehearsal is used to prevent models from "forgetting" their initialized
"knowledge". To perform rehearsal, collect samples of text you want the models
@ -314,7 +314,7 @@ the "catastrophic forgetting" problem. This feature is experimental.
## Language.evaluate {#evaluate tag="method"}
Evaluate a model's pipeline components.
Evaluate a pipeline's components.
<Infobox variant="warning" title="Changed in v3.0">
@ -386,24 +386,24 @@ component, adds it to the pipeline and returns it.
> nlp.add_pipe("component", before="ner")
> component = nlp.add_pipe("component", name="custom_name", last=True)
>
> # Add component from source model
> # Add component from source pipeline
> source_nlp = spacy.load("en_core_web_sm")
> nlp.add_pipe("ner", source=source_nlp)
> ```
| Name | Description |
| ------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `factory_name` | Name of the registered component factory. ~~str~~ |
| `name` | Optional unique name of pipeline component instance. If not set, the factory name is used. An error is raised if the name already exists in the pipeline. ~~Optional[str]~~ |
| _keyword-only_ | |
| `before` | Component name or index to insert component directly before. ~~Optional[Union[str, int]]~~ |
| `after` | Component name or index to insert component directly after. ~~Optional[Union[str, int]]~~ |
| `first` | Insert component first / not first in the pipeline. ~~Optional[bool]~~ |
| `last` | Insert component last / not last in the pipeline. ~~Optional[bool]~~ |
| `config` <Tag variant="new">3</Tag> | Optional config parameters to use for this component. Will be merged with the `default_config` specified by the component factory. ~~Optional[Dict[str, Any]]~~ |
| `source` <Tag variant="new">3</Tag> | Optional source model to copy component from. If a source is provided, the `factory_name` is interpreted as the name of the component in the source pipeline. Make sure that the vocab, vectors and settings of the source model match the target model. ~~Optional[Language]~~ |
| `validate` <Tag variant="new">3</Tag> | Whether to validate the component config and arguments against the types expected by the factory. Defaults to `True`. ~~bool~~ |
| **RETURNS** | The pipeline component. ~~Callable[[Doc], Doc]~~ |
| Name | Description |
| ------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `factory_name` | Name of the registered component factory. ~~str~~ |
| `name` | Optional unique name of pipeline component instance. If not set, the factory name is used. An error is raised if the name already exists in the pipeline. ~~Optional[str]~~ |
| _keyword-only_ | |
| `before` | Component name or index to insert component directly before. ~~Optional[Union[str, int]]~~ |
| `after` | Component name or index to insert component directly after. ~~Optional[Union[str, int]]~~ |
| `first` | Insert component first / not first in the pipeline. ~~Optional[bool]~~ |
| `last` | Insert component last / not last in the pipeline. ~~Optional[bool]~~ |
| `config` <Tag variant="new">3</Tag> | Optional config parameters to use for this component. Will be merged with the `default_config` specified by the component factory. ~~Optional[Dict[str, Any]]~~ |
| `source` <Tag variant="new">3</Tag> | Optional source pipeline to copy component from. If a source is provided, the `factory_name` is interpreted as the name of the component in the source pipeline. Make sure that the vocab, vectors and settings of the source pipeline match the target pipeline. ~~Optional[Language]~~ |
| `validate` <Tag variant="new">3</Tag> | Whether to validate the component config and arguments against the types expected by the factory. Defaults to `True`. ~~bool~~ |
| **RETURNS** | The pipeline component. ~~Callable[[Doc], Doc]~~ |
## Language.create_pipe {#create_pipe tag="method" new="2"}
@ -790,9 +790,10 @@ token.ent_iob, token.ent_type
## Language.meta {#meta tag="property"}
Custom meta data for the Language class. If a model is loaded, contains meta
data of the model. The `Language.meta` is also what's serialized as the
[`meta.json`](/api/data-formats#meta) when you save an `nlp` object to disk.
Custom meta data for the Language class. If a trained pipeline is loaded, this
contains meta data of the pipeline. The `Language.meta` is also what's
serialized as the [`meta.json`](/api/data-formats#meta) when you save an `nlp`
object to disk.
> #### Example
>
@ -827,13 +828,15 @@ subclass of the built-in `dict`. It supports the additional methods `to_disk`
## Language.to_disk {#to_disk tag="method" new="2"}
Save the current state to a directory. If a model is loaded, this will **include
the model**.
Save the current state to a directory. Under the hood, this method delegates to
the `to_disk` methods of the individual pipeline components, if available. This
means that if a trained pipeline is loaded, all components and their weights
will be saved to disk.
> #### Example
>
> ```python
> nlp.to_disk("/path/to/models")
> nlp.to_disk("/path/to/pipeline")
> ```
| Name | Description |
@ -844,22 +847,28 @@ the model**.
## Language.from_disk {#from_disk tag="method" new="2"}
Loads state from a directory. Modifies the object in place and returns it. If
the saved `Language` object contains a model, the model will be loaded. Note
that this method is commonly used via the subclasses like `English` or `German`
to make language-specific functionality like the
[lexical attribute getters](/usage/adding-languages#lex-attrs) available to the
loaded object.
Loads state from a directory, including all data that was saved with the
`Language` object. Modifies the object in place and returns it.
<Infobox variant="warning" title="Important note">
Keep in mind that this method **only loads serialized state** and doesn't set up
the `nlp` object. This means that it requires the correct language class to be
initialized and all pipeline components to be added to the pipeline. If you want
to load a serialized pipeline from a directory, you should use
[`spacy.load`](/api/top-level#spacy.load), which will set everything up for you.
</Infobox>
> #### Example
>
> ```python
> from spacy.language import Language
> nlp = Language().from_disk("/path/to/model")
> nlp = Language().from_disk("/path/to/pipeline")
>
> # using language-specific subclass
> # Using language-specific subclass
> from spacy.lang.en import English
> nlp = English().from_disk("/path/to/en_model")
> nlp = English().from_disk("/path/to/pipeline")
> ```
| Name | Description |
@ -924,7 +933,7 @@ available to the loaded object.
| `components` <Tag variant="new">3</Tag> | List of all available `(name, component)` tuples, including components that are currently disabled. ~~List[Tuple[str, Callable[[Doc], Doc]]]~~ |
| `component_names` <Tag variant="new">3</Tag> | List of all available component names, including components that are currently disabled. ~~List[str]~~ |
| `disabled` <Tag variant="new">3</Tag> | Names of components that are currently disabled and don't run as part of the pipeline. ~~List[str]~~ |
| `path` <Tag variant="new">2</Tag> | Path to the model data directory, if a model is loaded. Otherwise `None`. ~~Optional[Path]~~ |
| `path` <Tag variant="new">2</Tag> | Path to the pipeline data directory, if a pipeline is loaded from a path or package. Otherwise `None`. ~~Optional[Path]~~ |
## Class attributes {#class-attributes}
@ -1004,7 +1013,7 @@ serialization by passing in the string names via the `exclude` argument.
>
> ```python
> data = nlp.to_bytes(exclude=["tokenizer", "vocab"])
> nlp.from_disk("./model-data", exclude=["ner"])
> nlp.from_disk("/pipeline", exclude=["ner"])
> ```
| Name | Description |

View File

@ -286,7 +286,7 @@ context, the original parameters are restored.
## Pipe.add_label {#add_label tag="method"}
Add a new label to the pipe. It's possible to extend pretrained models with new
Add a new label to the pipe. It's possible to extend trained models with new
labels, but care should be taken to avoid the "catastrophic forgetting" problem.
> #### Example

View File

@ -12,14 +12,14 @@ menu:
## spaCy {#spacy hidden="true"}
### spacy.load {#spacy.load tag="function" model="any"}
### spacy.load {#spacy.load tag="function"}
Load a model using the name of an installed
[model package](/usage/training#models-generating), a string path or a
`Path`-like object. spaCy will try resolving the load argument in this order. If
a model is loaded from a model name, spaCy will assume it's a Python package and
import it and call the model's own `load()` method. If a model is loaded from a
path, spaCy will assume it's a data directory, load its
Load a pipeline using the name of an installed
[package](/usage/saving-loading#models), a string path or a `Path`-like object.
spaCy will try resolving the load argument in this order. If a pipeline is
loaded from a string name, spaCy will assume it's a Python package and import it
and call the package's own `load()` method. If a pipeline is loaded from a path,
spaCy will assume it's a data directory, load its
[`config.cfg`](/api/data-formats#config) and use the language and pipeline
information to construct the `Language` class. The data will be loaded in via
[`Language.from_disk`](/api/language#from_disk).
@ -36,38 +36,38 @@ specified separately using the new `exclude` keyword argument.
>
> ```python
> nlp = spacy.load("en_core_web_sm") # package
> nlp = spacy.load("/path/to/en") # string path
> nlp = spacy.load(Path("/path/to/en")) # pathlib Path
> nlp = spacy.load("/path/to/pipeline") # string path
> nlp = spacy.load(Path("/path/to/pipeline")) # pathlib Path
>
> nlp = spacy.load("en_core_web_sm", exclude=["parser", "tagger"])
> ```
| Name | Description |
| ------------------------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `name` | Model to load, i.e. package name or path. ~~Union[str, Path]~~ |
| `name` | Pipeline to load, i.e. package name or path. ~~Union[str, Path]~~ |
| _keyword-only_ | |
| `disable` | Names of pipeline components to [disable](/usage/processing-pipelines#disabling). Disabled pipes will be loaded but they won't be run unless you explicitly enable them by calling [nlp.enable_pipe](/api/language#enable_pipe). ~~List[str]~~ |
| `exclude` <Tag variant="new">3</Tag> | Names of pipeline components to [exclude](/usage/processing-pipelines#disabling). Excluded components won't be loaded. ~~List[str]~~ |
| `config` <Tag variant="new">3</Tag> | Optional config overrides, either as nested dict or dict keyed by section value in dot notation, e.g. `"components.name.value"`. ~~Union[Dict[str, Any], Config]~~ |
| **RETURNS** | A `Language` object with the loaded model. ~~Language~~ |
| **RETURNS** | A `Language` object with the loaded pipeline. ~~Language~~ |
Essentially, `spacy.load()` is a convenience wrapper that reads the model's
Essentially, `spacy.load()` is a convenience wrapper that reads the pipeline's
[`config.cfg`](/api/data-formats#config), uses the language and pipeline
information to construct a `Language` object, loads in the model data and
returns it.
weights, and returns it.
```python
### Abstract example
cls = util.get_lang_class(lang) # get language for ID, e.g. "en"
nlp = cls() # initialize the language
cls = spacy.util.get_lang_class(lang) # 1. Get Language class, e.g. English
nlp = cls() # 2. Initialize it
for name in pipeline:
nlp.add_pipe(name) # add component to pipeline
nlp.from_disk(model_data_path) # load in model data
nlp.add_pipe(name) # 3. Add the component to the pipeline
nlp.from_disk(data_path) # 4. Load in the binary data
```
### spacy.blank {#spacy.blank tag="function" new="2"}
Create a blank model of a given language class. This function is the twin of
Create a blank pipeline of a given language class. This function is the twin of
`spacy.load()`.
> #### Example
@ -85,9 +85,7 @@ Create a blank model of a given language class. This function is the twin of
### spacy.info {#spacy.info tag="function"}
The same as the [`info` command](/api/cli#info). Pretty-print information about
your installation, models and local setup from within spaCy. To get the model
meta data as a dictionary instead, you can use the `meta` attribute on your
`nlp` object with a loaded model, e.g. `nlp.meta`.
your installation, installed pipelines and local setup from within spaCy.
> #### Example
>
@ -97,12 +95,12 @@ meta data as a dictionary instead, you can use the `meta` attribute on your
> markdown = spacy.info(markdown=True, silent=True)
> ```
| Name | Description |
| -------------- | ------------------------------------------------------------------ |
| `model` | A model, i.e. a package name or path (optional). ~~Optional[str]~~ |
| _keyword-only_ | |
| `markdown` | Print information as Markdown. ~~bool~~ |
| `silent` | Don't print anything, just return. ~~bool~~ |
| Name | Description |
| -------------- | ---------------------------------------------------------------------------- |
| `model` | Optional pipeline, i.e. a package name or path (optional). ~~Optional[str]~~ |
| _keyword-only_ | |
| `markdown` | Print information as Markdown. ~~bool~~ |
| `silent` | Don't print anything, just return. ~~bool~~ |
### spacy.explain {#spacy.explain tag="function"}
@ -133,7 +131,7 @@ list of available terms, see
Allocate data and perform operations on [GPU](/usage/#gpu), if available. If
data has already been allocated on CPU, it will not be moved. Ideally, this
function should be called right after importing spaCy and _before_ loading any
models.
pipelines.
> #### Example
>
@ -152,7 +150,7 @@ models.
Allocate data and perform operations on [GPU](/usage/#gpu). Will raise an error
if no GPU is available. If data has already been allocated on CPU, it will not
be moved. Ideally, this function should be called right after importing spaCy
and _before_ loading any models.
and _before_ loading any pipelines.
> #### Example
>
@ -271,9 +269,9 @@ If a setting is not present in the options, the default value will be used.
| `template` <Tag variant="new">2.2</Tag> | Optional template to overwrite the HTML used to render entity spans. Should be a format string and can use `{bg}`, `{text}` and `{label}`. See [`templates.py`](https://github.com/explosion/spaCy/blob/master/spacy/displacy/templates.py) for examples. ~~Optional[str]~~ |
By default, displaCy comes with colors for all entity types used by
[spaCy models](/models). If you're using custom entity types, you can use the
`colors` setting to add your own colors for them. Your application or model
package can also expose a
[spaCy's trained pipelines](/models). If you're using custom entity types, you
can use the `colors` setting to add your own colors for them. Your application
or pipeline package can also expose a
[`spacy_displacy_colors` entry point](/usage/saving-loading#entry-points-displacy)
to add custom labels and their colors automatically.
@ -309,7 +307,6 @@ factories.
| Registry name | Description |
| ----------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `architectures` | Registry for functions that create [model architectures](/api/architectures). Can be used to register custom model architectures and reference them in the `config.cfg`. |
| `assets` | Registry for data assets, knowledge bases etc. |
| `batchers` | Registry for training and evaluation [data batchers](#batchers). |
| `callbacks` | Registry for custom callbacks to [modify the `nlp` object](/usage/training#custom-code-nlp-callbacks) before training. |
| `displacy_colors` | Registry for custom color scheme for the [`displacy` NER visualizer](/usage/visualizers). Automatically reads from [entry points](/usage/saving-loading#entry-points). |
@ -320,6 +317,7 @@ factories.
| `loggers` | Registry for functions that log [training results](/usage/training). |
| `lookups` | Registry for large lookup tables available via `vocab.lookups`. |
| `losses` | Registry for functions that create [losses](https://thinc.ai/docs/api-loss). |
| `misc` | Registry for miscellaneous functions that return data assets, knowledge bases or anything else you may need. |
| `optimizers` | Registry for functions that create [optimizers](https://thinc.ai/docs/api-optimizers). |
| `readers` | Registry for training and evaluation data readers like [`Corpus`](/api/corpus). |
| `schedules` | Registry for functions that create [schedules](https://thinc.ai/docs/api-schedules). |
@ -366,7 +364,7 @@ results to a [Weights & Biases](https://www.wandb.com/) dashboard. Instead of
using one of the built-in loggers listed here, you can also
[implement your own](/usage/training#custom-logging).
#### spacy.ConsoleLogger.v1 {#ConsoleLogger tag="registered function"}
#### spacy.ConsoleLogger {#ConsoleLogger tag="registered function"}
> #### Example config
>
@ -412,7 +410,7 @@ start decreasing across epochs.
</Accordion>
#### spacy.WandbLogger.v1 {#WandbLogger tag="registered function"}
#### spacy.WandbLogger {#WandbLogger tag="registered function"}
> #### Installation
>
@ -468,7 +466,7 @@ Instead of using one of the built-in batchers listed here, you can also
[implement your own](/usage/training#custom-code-readers-batchers), which may or
may not use a custom schedule.
#### batch_by_words.v1 {#batch_by_words tag="registered function"}
#### batch_by_words {#batch_by_words tag="registered function"}
Create minibatches of roughly a given number of words. If any examples are
longer than the specified batch length, they will appear in a batch by
@ -480,7 +478,7 @@ themselves, or be discarded if `discard_oversize` is set to `True`. The argument
>
> ```ini
> [training.batcher]
> @batchers = "batch_by_words.v1"
> @batchers = "spacy.batch_by_words.v1"
> size = 100
> tolerance = 0.2
> discard_oversize = false
@ -495,13 +493,13 @@ themselves, or be discarded if `discard_oversize` is set to `True`. The argument
| `discard_oversize` | Whether to discard sequences that by themselves exceed the tolerated size. ~~bool~~ |
| `get_length` | Optional function that receives a sequence item and returns its length. Defaults to the built-in `len()` if not set. ~~Optional[Callable[[Any], int]]~~ |
#### batch_by_sequence.v1 {#batch_by_sequence tag="registered function"}
#### batch_by_sequence {#batch_by_sequence tag="registered function"}
> #### Example config
>
> ```ini
> [training.batcher]
> @batchers = "batch_by_sequence.v1"
> @batchers = "spacy.batch_by_sequence.v1"
> size = 32
> get_length = null
> ```
@ -513,13 +511,13 @@ Create a batcher that creates batches of the specified size.
| `size` | The target number of items per batch. Can also be a block referencing a schedule, e.g. [`compounding`](https://thinc.ai/docs/api-schedules/#compounding). ~~Union[int, Sequence[int]]~~ |
| `get_length` | Optional function that receives a sequence item and returns its length. Defaults to the built-in `len()` if not set. ~~Optional[Callable[[Any], int]]~~ |
#### batch_by_padded.v1 {#batch_by_padded tag="registered function"}
#### batch_by_padded {#batch_by_padded tag="registered function"}
> #### Example config
>
> ```ini
> [training.batcher]
> @batchers = "batch_by_padded.v1"
> @batchers = "spacy.batch_by_padded.v1"
> size = 100
> buffer = 256
> discard_oversize = false
@ -666,8 +664,8 @@ loaded lazily, to avoid expensive setup code associated with the language data.
### util.load_model {#util.load_model tag="function" new="2"}
Load a model from a package or data path. If called with a package name, spaCy
will assume the model is a Python package and import and call its `load()`
Load a pipeline from a package or data path. If called with a string name, spaCy
will assume the pipeline is a Python package and import and call its `load()`
method. If called with a path, spaCy will assume it's a data directory, read the
language and pipeline settings from the [`config.cfg`](/api/data-formats#config)
and create a `Language` object. The model data will then be loaded in via
@ -683,16 +681,16 @@ and create a `Language` object. The model data will then be loaded in via
| Name | Description |
| ------------------------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `name` | Package name or model path. ~~str~~ |
| `name` | Package name or path. ~~str~~ |
| `vocab` <Tag variant="new">3</Tag> | Optional shared vocab to pass in on initialization. If `True` (default), a new `Vocab` object will be created. ~~Union[Vocab, bool]~~. |
| `disable` | Names of pipeline components to [disable](/usage/processing-pipelines#disabling). Disabled pipes will be loaded but they won't be run unless you explicitly enable them by calling [nlp.enable_pipe](/api/language#enable_pipe). ~~List[str]~~ |
| `exclude` <Tag variant="new">3</Tag> | Names of pipeline components to [exclude](/usage/processing-pipelines#disabling). Excluded components won't be loaded. ~~List[str]~~ |
| `config` <Tag variant="new">3</Tag> | Config overrides as nested dict or flat dict keyed by section values in dot notation, e.g. `"nlp.pipeline"`. ~~Union[Dict[str, Any], Config]~~ |
| **RETURNS** | `Language` class with the loaded model. ~~Language~~ |
| **RETURNS** | `Language` class with the loaded pipeline. ~~Language~~ |
### util.load_model_from_init_py {#util.load_model_from_init_py tag="function" new="2"}
A helper function to use in the `load()` method of a model package's
A helper function to use in the `load()` method of a pipeline package's
[`__init__.py`](https://github.com/explosion/spacy-models/tree/master/template/model/xx_model_name/__init__.py).
> #### Example
@ -706,70 +704,72 @@ A helper function to use in the `load()` method of a model package's
| Name | Description |
| ------------------------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `init_file` | Path to model's `__init__.py`, i.e. `__file__`. ~~Union[str, Path]~~ |
| `init_file` | Path to package's `__init__.py`, i.e. `__file__`. ~~Union[str, Path]~~ |
| `vocab` <Tag variant="new">3</Tag> | Optional shared vocab to pass in on initialization. If `True` (default), a new `Vocab` object will be created. ~~Union[Vocab, bool]~~. |
| `disable` | Names of pipeline components to [disable](/usage/processing-pipelines#disabling). Disabled pipes will be loaded but they won't be run unless you explicitly enable them by calling [nlp.enable_pipe](/api/language#enable_pipe). ~~List[str]~~ |
| `exclude` <Tag variant="new">3</Tag> | Names of pipeline components to [exclude](/usage/processing-pipelines#disabling). Excluded components won't be loaded. ~~List[str]~~ |
| `config` <Tag variant="new">3</Tag> | Config overrides as nested dict or flat dict keyed by section values in dot notation, e.g. `"nlp.pipeline"`. ~~Union[Dict[str, Any], Config]~~ |
| **RETURNS** | `Language` class with the loaded model. ~~Language~~ |
| **RETURNS** | `Language` class with the loaded pipeline. ~~Language~~ |
### util.load_config {#util.load_config tag="function" new="3"}
Load a model's [`config.cfg`](/api/data-formats#config) from a file path. The
config typically includes details about the model pipeline and how its
components are created, as well as all training settings and hyperparameters.
Load a pipeline's [`config.cfg`](/api/data-formats#config) from a file path. The
config typically includes details about the components and how they're created,
as well as all training settings and hyperparameters.
> #### Example
>
> ```python
> config = util.load_config("/path/to/model/config.cfg")
> config = util.load_config("/path/to/config.cfg")
> print(config.to_str())
> ```
| Name | Description |
| ------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `path` | Path to the model's `config.cfg`. ~~Union[str, Path]~~ |
| `path` | Path to the pipeline's `config.cfg`. ~~Union[str, Path]~~ |
| `overrides` | Optional config overrides to replace in loaded config. Can be provided as nested dict, or as flat dict with keys in dot notation, e.g. `"nlp.pipeline"`. ~~Dict[str, Any]~~ |
| `interpolate` | Whether to interpolate the config and replace variables like `${paths.train}` with their values. Defaults to `False`. ~~bool~~ |
| **RETURNS** | The model's config. ~~Config~~ |
| **RETURNS** | The pipeline's config. ~~Config~~ |
### util.load_meta {#util.load_meta tag="function" new="3"}
Get a model's [`meta.json`](/api/data-formats#meta) from a file path and
validate its contents.
Get a pipeline's [`meta.json`](/api/data-formats#meta) from a file path and
validate its contents. The meta typically includes details about author,
licensing, data sources and version.
> #### Example
>
> ```python
> meta = util.load_meta("/path/to/model/meta.json")
> meta = util.load_meta("/path/to/meta.json")
> ```
| Name | Description |
| ----------- | ----------------------------------------------------- |
| `path` | Path to the model's `meta.json`. ~~Union[str, Path]~~ |
| **RETURNS** | The model's meta data. ~~Dict[str, Any]~~ |
| Name | Description |
| ----------- | -------------------------------------------------------- |
| `path` | Path to the pipeline's `meta.json`. ~~Union[str, Path]~~ |
| **RETURNS** | The pipeline's meta data. ~~Dict[str, Any]~~ |
### util.get_installed_models {#util.get_installed_models tag="function" new="3"}
List all model packages installed in the current environment. This will include
any spaCy model that was packaged with [`spacy package`](/api/cli#package).
Under the hood, model packages expose a Python entry point that spaCy can check,
without having to load the model.
List all pipeline packages installed in the current environment. This will
include any spaCy pipeline that was packaged with
[`spacy package`](/api/cli#package). Under the hood, pipeline packages expose a
Python entry point that spaCy can check, without having to load the `nlp`
object.
> #### Example
>
> ```python
> model_names = util.get_installed_models()
> names = util.get_installed_models()
> ```
| Name | Description |
| ----------- | ---------------------------------------------------------------------------------- |
| **RETURNS** | The string names of the models installed in the current environment. ~~List[str]~~ |
| Name | Description |
| ----------- | ------------------------------------------------------------------------------------- |
| **RETURNS** | The string names of the pipelines installed in the current environment. ~~List[str]~~ |
### util.is_package {#util.is_package tag="function"}
Check if string maps to a package installed via pip. Mainly used to validate
[model packages](/usage/models).
[pipeline packages](/usage/models).
> #### Example
>
@ -786,7 +786,8 @@ Check if string maps to a package installed via pip. Mainly used to validate
### util.get_package_path {#util.get_package_path tag="function" new="2"}
Get path to an installed package. Mainly used to resolve the location of
[model packages](/usage/models). Currently imports the package to find its path.
[pipeline packages](/usage/models). Currently imports the package to find its
path.
> #### Example
>
@ -795,10 +796,10 @@ Get path to an installed package. Mainly used to resolve the location of
> # /usr/lib/python3.6/site-packages/en_core_web_sm
> ```
| Name | Description |
| -------------- | ----------------------------------------- |
| `package_name` | Name of installed package. ~~str~~ |
| **RETURNS** | Path to model package directory. ~~Path~~ |
| Name | Description |
| -------------- | -------------------------------------------- |
| `package_name` | Name of installed package. ~~str~~ |
| **RETURNS** | Path to pipeline package directory. ~~Path~~ |
### util.is_in_jupyter {#util.is_in_jupyter tag="function" new="2"}

View File

@ -453,7 +453,7 @@ using the `@spacy.registry.span_getters` decorator.
> #### Example
>
> ```python
> @spacy.registry.span_getters("sent_spans.v1")
> @spacy.registry.span_getters("custom_sent_spans")
> def configure_get_sent_spans() -> Callable:
> def get_sent_spans(docs: Iterable[Doc]) -> List[List[Span]]:
> return [list(doc.sents) for doc in docs]
@ -472,7 +472,7 @@ using the `@spacy.registry.span_getters` decorator.
>
> ```ini
> [transformer.model.get_spans]
> @span_getters = "doc_spans.v1"
> @span_getters = "spacy-transformers.doc_spans.v1"
> ```
Create a span getter that uses the whole document as its spans. This is the best
@ -485,7 +485,7 @@ texts.
>
> ```ini
> [transformer.model.get_spans]
> @span_getters = "sent_spans.v1"
> @span_getters = "spacy-transformers.sent_spans.v1"
> ```
Create a span getter that uses sentence boundary markers to extract the spans.
@ -500,7 +500,7 @@ more meaningful windows to attend over.
>
> ```ini
> [transformer.model.get_spans]
> @span_getters = "strided_spans.v1"
> @span_getters = "spacy-transformers.strided_spans.v1"
> window = 128
> stride = 96
> ```

View File

@ -1,6 +1,6 @@
---
title: Models
teaser: Downloadable pretrained models for spaCy
title: Trained Models & Pipelines
teaser: Downloadable trained pipelines and weights for spaCy
menu:
- ['Quickstart', 'quickstart']
- ['Conventions', 'conventions']
@ -8,15 +8,15 @@ menu:
<!-- Update page, refer to new /api/architectures and training docs -->
The models directory includes two types of pretrained models:
This directory includes two types of packages:
1. **Core models:** General-purpose pretrained models to predict named entities,
part-of-speech tags and syntactic dependencies. Can be used out-of-the-box
and fine-tuned on more specific data.
2. **Starter models:** Transfer learning starter packs with pretrained weights
you can initialize your models with to achieve better accuracy. They can
1. **Trained pipelines:** General-purpose spaCy pipelines to predict named
entities, part-of-speech tags and syntactic dependencies. Can be used
out-of-the-box and fine-tuned on more specific data.
2. **Starters:** Transfer learning starter packs with pretrained weights you can
initialize your pipeline models with to achieve better accuracy. They can
include word vectors (which will be used as features during training) or
other pretrained representations like BERT. These models don't include
other pretrained representations like BERT. These packages don't include
components for specific tasks like NER or text classification and are
intended to be used as base models when training your own models.
@ -28,43 +28,42 @@ import QuickstartModels from 'widgets/quickstart-models.js'
<Infobox title="Installation and usage" emoji="📖">
For more details on how to use models with spaCy, see the
[usage guide on models](/usage/models).
For more details on how to use trained pipelines with spaCy, see the
[usage guide](/usage/models).
</Infobox>
## Model naming conventions {#conventions}
## Package naming conventions {#conventions}
In general, spaCy expects all model packages to follow the naming convention of
`[lang`\_[name]]. For spaCy's models, we also chose to divide the name into
three components:
In general, spaCy expects all pipeline packages to follow the naming convention
of `[lang`\_[name]]. For spaCy's pipelines, we also chose to divide the name
into three components:
1. **Type:** Model capabilities (e.g. `core` for general-purpose model with
1. **Type:** Capabilities (e.g. `core` for general-purpose pipeline with
vocabulary, syntax, entities and word vectors, or `depent` for only vocab,
syntax and entities).
2. **Genre:** Type of text the model is trained on, e.g. `web` or `news`.
3. **Size:** Model size indicator, `sm`, `md` or `lg`.
2. **Genre:** Type of text the pipeline is trained on, e.g. `web` or `news`.
3. **Size:** Package size indicator, `sm`, `md` or `lg`.
For example, [`en_core_web_sm`](/models/en#en_core_web_sm) is a small English
model trained on written web text (blogs, news, comments), that includes
pipeline trained on written web text (blogs, news, comments), that includes
vocabulary, vectors, syntax and entities.
### Model versioning {#model-versioning}
### Package versioning {#model-versioning}
Additionally, the model versioning reflects both the compatibility with spaCy,
as well as the major and minor model version. A model version `a.b.c` translates
to:
Additionally, the pipeline package versioning reflects both the compatibility
with spaCy, as well as the major and minor version. A package version `a.b.c`
translates to:
- `a`: **spaCy major version**. For example, `2` for spaCy v2.x.
- `b`: **Model major version**. Models with a different major version can't be
loaded by the same code. For example, changing the width of the model, adding
hidden layers or changing the activation changes the model major version.
- `c`: **Model minor version**. Same model structure, but different parameter
values, e.g. from being trained on different data, for different numbers of
iterations, etc.
- `b`: **Package major version**. Pipelines with a different major version can't
be loaded by the same code. For example, changing the width of the model,
adding hidden layers or changing the activation changes the major version.
- `c`: **Package minor version**. Same pipeline structure, but different
parameter values, e.g. from being trained on different data, for different
numbers of iterations, etc.
For a detailed compatibility overview, see the
[`compatibility.json`](https://github.com/explosion/spacy-models/tree/master/compatibility.json)
in the models repository. This is also the source of spaCy's internal
compatibility check, performed when you run the [`download`](/api/cli#download)
command.
[`compatibility.json`](https://github.com/explosion/spacy-models/tree/master/compatibility.json).
This is also the source of spaCy's internal compatibility check, performed when
you run the [`download`](/api/cli#download) command.

View File

@ -1,9 +1,9 @@
When you call `nlp` on a text, spaCy first tokenizes the text to produce a `Doc`
object. The `Doc` is then processed in several different steps this is also
referred to as the **processing pipeline**. The pipeline used by the
[default models](/models) typically include a tagger, a lemmatizer, a parser and
an entity recognizer. Each pipeline component returns the processed `Doc`, which
is then passed on to the next component.
[trained pipelines](/models) typically include a tagger, a lemmatizer, a parser
and an entity recognizer. Each pipeline component returns the processed `Doc`,
which is then passed on to the next component.
![The processing pipeline](../../images/pipeline.svg)
@ -23,14 +23,15 @@ is then passed on to the next component.
| **textcat** | [`TextCategorizer`](/api/textcategorizer) | `Doc.cats` | Assign document labels. |
| **custom** | [custom components](/usage/processing-pipelines#custom-components) | `Doc._.xxx`, `Token._.xxx`, `Span._.xxx` | Assign custom attributes, methods or properties. |
The processing pipeline always **depends on the statistical model** and its
capabilities. For example, a pipeline can only include an entity recognizer
component if the model includes data to make predictions of entity labels. This
is why each model will specify the pipeline to use in its meta data and
[config](/usage/training#config), as a simple list containing the component
names:
The capabilities of a processing pipeline always depend on the components, their
models and how they were trained. For example, a pipeline for named entity
recognition needs to include a trained named entity recognizer component with a
statistical model and weights that enable it to **make predictions** of entity
labels. This is why each pipeline specifies its components and their settings in
the [config](/usage/training#config):
```ini
[nlp]
pipeline = ["tagger", "parser", "ner"]
```

View File

@ -1,9 +1,9 @@
After tokenization, spaCy can **parse** and **tag** a given `Doc`. This is where
the statistical model comes in, which enables spaCy to **make a prediction** of
which tag or label most likely applies in this context. A model consists of
binary data and is produced by showing a system enough examples for it to make
predictions that generalize across the language for example, a word following
"the" in English is most likely a noun.
the trained pipeline and its statistical models come in, which enable spaCy to
**make predictions** of which tag or label most likely applies in this context.
A trained component includes binary data that is produced by showing a system
enough examples for it to make predictions that generalize across the language
for example, a word following "the" in English is most likely a noun.
Linguistic annotations are available as
[`Token` attributes](/api/token#attributes). Like many NLP libraries, spaCy
@ -25,7 +25,8 @@ for token in doc:
> - **Text:** The original word text.
> - **Lemma:** The base form of the word.
> - **POS:** The simple [UPOS](https://universaldependencies.org/docs/u/pos/) part-of-speech tag.
> - **POS:** The simple [UPOS](https://universaldependencies.org/docs/u/pos/)
> part-of-speech tag.
> - **Tag:** The detailed part-of-speech tag.
> - **Dep:** Syntactic dependency, i.e. the relation between tokens.
> - **Shape:** The word shape capitalization, punctuation, digits.

View File

@ -1,9 +1,9 @@
If you've been modifying the pipeline, vocabulary, vectors and entities, or made
updates to the model, you'll eventually want to **save your progress** for
example, everything that's in your `nlp` object. This means you'll have to
translate its contents and structure into a format that can be saved, like a
file or a byte string. This process is called serialization. spaCy comes with
**built-in serialization methods** and supports the
updates to the component models, you'll eventually want to **save your
progress** for example, everything that's in your `nlp` object. This means
you'll have to translate its contents and structure into a format that can be
saved, like a file or a byte string. This process is called serialization. spaCy
comes with **built-in serialization methods** and supports the
[Pickle protocol](https://www.diveinto.org/python3/serializing.html#dump).
> #### What's pickle?

View File

@ -1,25 +1,25 @@
spaCy's tagger, parser, text categorizer and many other components are powered
by **statistical models**. Every "decision" these components make for example,
which part-of-speech tag to assign, or whether a word is a named entity is a
**prediction** based on the model's current **weight values**. The weight
values are estimated based on examples the model has seen
during **training**. To train a model, you first need training data examples
of text, and the labels you want the model to predict. This could be a
part-of-speech tag, a named entity or any other information.
**prediction** based on the model's current **weight values**. The weight values
are estimated based on examples the model has seen during **training**. To train
a model, you first need training data examples of text, and the labels you
want the model to predict. This could be a part-of-speech tag, a named entity or
any other information.
Training is an iterative process in which the model's predictions are compared
Training is an iterative process in which the model's predictions are compared
against the reference annotations in order to estimate the **gradient of the
loss**. The gradient of the loss is then used to calculate the gradient of the
weights through [backpropagation](https://thinc.ai/backprop101). The gradients
indicate how the weight values should be changed so that the model's
predictions become more similar to the reference labels over time.
indicate how the weight values should be changed so that the model's predictions
become more similar to the reference labels over time.
> - **Training data:** Examples and their annotations.
> - **Text:** The input text the model should predict a label for.
> - **Label:** The label the model should predict.
> - **Gradient:** The direction and rate of change for a numeric value.
> Minimising the gradient of the weights should result in predictions that
> are closer to the reference labels on the training data.
> Minimising the gradient of the weights should result in predictions that are
> closer to the reference labels on the training data.
![The training process](../../images/training.svg)

View File

@ -24,12 +24,12 @@ array([2.02280000e-01, -7.66180009e-02, 3.70319992e-01,
<Infobox title="Important note" variant="warning">
To make them compact and fast, spaCy's small [models](/models) (all packages
that end in `sm`) **don't ship with word vectors**, and only include
To make them compact and fast, spaCy's small [pipeline packages](/models) (all
packages that end in `sm`) **don't ship with word vectors**, and only include
context-sensitive **tensors**. This means you can still use the `similarity()`
methods to compare documents, spans and tokens but the result won't be as
good, and individual tokens won't have any vectors assigned. So in order to use
_real_ word vectors, you need to download a larger model:
_real_ word vectors, you need to download a larger pipeline package:
```diff
- python -m spacy download en_core_web_sm
@ -38,11 +38,11 @@ _real_ word vectors, you need to download a larger model:
</Infobox>
Models that come with built-in word vectors make them available as the
[`Token.vector`](/api/token#vector) attribute. [`Doc.vector`](/api/doc#vector)
and [`Span.vector`](/api/span#vector) will default to an average of their token
vectors. You can also check if a token has a vector assigned, and get the L2
norm, which can be used to normalize vectors.
Pipeline packages that come with built-in word vectors make them available as
the [`Token.vector`](/api/token#vector) attribute.
[`Doc.vector`](/api/doc#vector) and [`Span.vector`](/api/span#vector) will
default to an average of their token vectors. You can also check if a token has
a vector assigned, and get the L2 norm, which can be used to normalize vectors.
```python
### {executable="true"}
@ -62,12 +62,12 @@ for token in tokens:
> - **OOV**: Out-of-vocabulary
The words "dog", "cat" and "banana" are all pretty common in English, so they're
part of the model's vocabulary, and come with a vector. The word "afskfsd" on
part of the pipeline's vocabulary, and come with a vector. The word "afskfsd" on
the other hand is a lot less common and out-of-vocabulary so its vector
representation consists of 300 dimensions of `0`, which means it's practically
nonexistent. If your application will benefit from a **large vocabulary** with
more vectors, you should consider using one of the larger models or loading in a
full vector package, for example,
more vectors, you should consider using one of the larger pipeline packages or
loading in a full vector package, for example,
[`en_vectors_web_lg`](/models/en-starters#en_vectors_web_lg), which includes
over **1 million unique vectors**.
@ -82,7 +82,7 @@ Each [`Doc`](/api/doc), [`Span`](/api/span), [`Token`](/api/token) and
method that lets you compare it with another object, and determine the
similarity. Of course similarity is always subjective whether two words, spans
or documents are similar really depends on how you're looking at it. spaCy's
similarity model usually assumes a pretty general-purpose definition of
similarity implementation usually assumes a pretty general-purpose definition of
similarity.
> #### 📝 Things to try
@ -99,7 +99,7 @@ similarity.
### {executable="true"}
import spacy
nlp = spacy.load("en_core_web_md") # make sure to use larger model!
nlp = spacy.load("en_core_web_md") # make sure to use larger package!
doc1 = nlp("I like salty fries and hamburgers.")
doc2 = nlp("Fast food tastes very good.")
@ -143,10 +143,9 @@ us that builds on top of spaCy and lets you train and query more interesting and
detailed word vectors. It combines noun phrases like "fast food" or "fair game"
and includes the part-of-speech tags and entity labels. The library also
includes annotation recipes for our annotation tool [Prodigy](https://prodi.gy)
that let you evaluate vector models and create terminology lists. For more
details, check out
[our blog post](https://explosion.ai/blog/sense2vec-reloaded). To explore the
semantic similarities across all Reddit comments of 2015 and 2019, see the
[interactive demo](https://explosion.ai/demos/sense2vec).
that let you evaluate vectors and create terminology lists. For more details,
check out [our blog post](https://explosion.ai/blog/sense2vec-reloaded). To
explore the semantic similarities across all Reddit comments of 2015 and 2019,
see the [interactive demo](https://explosion.ai/demos/sense2vec).
</Infobox>

View File

@ -331,7 +331,7 @@ name = "bert-base-cased"
tokenizer_config = {"use_fast": true}
[components.transformer.model.get_spans]
@span_getters = "doc_spans.v1"
@span_getters = "spacy-transformers.doc_spans.v1"
[components.transformer.annotation_setter]
@annotation_setters = "spacy-transformers.null_annotation_setter.v1"
@ -369,8 +369,9 @@ all defaults.
To change any of the settings, you can edit the `config.cfg` and re-run the
training. To change any of the functions, like the span getter, you can replace
the name of the referenced function e.g. `@span_getters = "sent_spans.v1"` to
process sentences. You can also register your own functions using the
the name of the referenced function e.g.
`@span_getters = "spacy-transformers.sent_spans.v1"` to process sentences. You
can also register your own functions using the
[`span_getters` registry](/api/top-level#registry). For instance, the following
custom function returns [`Span`](/api/span) objects following sentence
boundaries, unless a sentence succeeds a certain amount of tokens, in which case

View File

@ -35,10 +35,10 @@ Using pip, spaCy releases are available as source packages and binary wheels.
$ pip install -U spacy
```
> #### Download models
> #### Download pipelines
>
> After installation you need to download a language model. For more info and
> available models, see the [docs on models](/models).
> After installation you typically want to download a trained pipeline. For more
> info and available packages, see the [models directory](/models).
>
> ```cli
> $ python -m spacy download en_core_web_sm
@ -54,7 +54,7 @@ To install additional data tables for lemmatization you can run
[`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data)
separately. The lookups package is needed to provide normalization and
lemmatization data for new models and to lemmatize in languages that don't yet
come with pretrained models and aren't powered by third-party libraries.
come with trained pipelines and aren't powered by third-party libraries.
</Infobox>
@ -88,23 +88,21 @@ and pull requests to the recipe and setup are always appreciated.
> spaCy v2.x to v3.x may still require some changes to your code base. For
> details see the sections on [backwards incompatibilities](/usage/v3#incompat)
> and [migrating](/usage/v3#migrating). Also remember to download the new
> models, and retrain your own models.
> trained pipelines, and retrain your own pipelines.
When updating to a newer version of spaCy, it's generally recommended to start
with a clean virtual environment. If you're upgrading to a new major version,
make sure you have the latest **compatible models** installed, and that there
are no old and incompatible model packages left over in your environment, as
this can often lead to unexpected results and errors. If you've trained your own
models, keep in mind that your train and runtime inputs must match. This means
you'll have to **retrain your models** with the new version.
make sure you have the latest **compatible trained pipelines** installed, and
that there are no old and incompatible packages left over in your environment,
as this can often lead to unexpected results and errors. If you've trained your
own models, keep in mind that your train and runtime inputs must match. This
means you'll have to **retrain your pipelines** with the new version.
spaCy also provides a [`validate`](/api/cli#validate) command, which lets you
verify that all installed models are compatible with your spaCy version. If
incompatible models are found, tips and installation instructions are printed.
The command is also useful to detect out-of-sync model links resulting from
links created in different virtual environments. It's recommended to run the
command with `python -m` to make sure you're executing the correct version of
spaCy.
verify that all installed pipeline packages are compatible with your spaCy
version. If incompatible packages are found, tips and installation instructions
are printed. It's recommended to run the command with `python -m` to make sure
you're executing the correct version of spaCy.
```cli
$ pip install -U spacy
@ -132,8 +130,8 @@ $ pip install -U spacy[cuda92]
Once you have a GPU-enabled installation, the best way to activate it is to call
[`spacy.prefer_gpu`](/api/top-level#spacy.prefer_gpu) or
[`spacy.require_gpu()`](/api/top-level#spacy.require_gpu) somewhere in your
script before any models have been loaded. `require_gpu` will raise an error if
no GPU is available.
script before any pipelines have been loaded. `require_gpu` will raise an error
if no GPU is available.
```python
import spacy
@ -238,16 +236,16 @@ installing, loading and using spaCy, as well as their solutions.
<Accordion title="No compatible model found" id="compatible-model">
```
No compatible model found for [lang] (spaCy vX.X.X).
No compatible package found for [lang] (spaCy vX.X.X).
```
This usually means that the model you're trying to download does not exist, or
isn't available for your version of spaCy. Check the
This usually means that the trained pipeline you're trying to download does not
exist, or isn't available for your version of spaCy. Check the
[compatibility table](https://github.com/explosion/spacy-models/tree/master/compatibility.json)
to see which models are available for your spaCy version. If you're using an old
version, consider upgrading to the latest release. Note that while spaCy
to see which packages are available for your spaCy version. If you're using an
old version, consider upgrading to the latest release. Note that while spaCy
supports tokenization for [a variety of languages](/usage/models#languages), not
all of them come with statistical models. To only use the tokenizer, import the
all of them come with trained pipelines. To only use the tokenizer, import the
language's `Language` class instead, for example
`from spacy.lang.fr import French`.
@ -259,7 +257,7 @@ language's `Language` class instead, for example
no such option: --no-cache-dir
```
The `download` command uses pip to install the models and sets the
The `download` command uses pip to install the pipeline packages and sets the
`--no-cache-dir` flag to prevent it from requiring too much memory.
[This setting](https://pip.pypa.io/en/stable/reference/pip_install/#caching)
requires pip v6.0 or newer. Run `pip install -U pip` to upgrade to the latest
@ -323,19 +321,19 @@ also run `which python` to find out where your Python executable is located.
</Accordion>
<Accordion title="Import error: No module named [model]" id="import-error-models">
<Accordion title="Import error: No module named [name]" id="import-error-models">
```
ImportError: No module named 'en_core_web_sm'
```
As of spaCy v1.7, all models can be installed as Python packages. This means
that they'll become importable modules of your application. If this fails, it's
usually a sign that the package is not installed in the current environment. Run
`pip list` or `pip freeze` to check which model packages you have installed, and
install the [correct models](/models) if necessary. If you're importing a model
manually at the top of a file, make sure to use the name of the package, not the
shortcut link you've created.
As of spaCy v1.7, all trained pipelines can be installed as Python packages.
This means that they'll become importable modules of your application. If this
fails, it's usually a sign that the package is not installed in the current
environment. Run `pip list` or `pip freeze` to check which pipeline packages you
have installed, and install the [correct package](/models) if necessary. If
you're importing a package manually at the top of a file, make sure to use the
full name of the package.
</Accordion>

View File

@ -3,57 +3,79 @@ title: Layers and Model Architectures
teaser: Power spaCy components with custom neural networks
menu:
- ['Type Signatures', 'type-sigs']
- ['Defining Sublayers', 'sublayers']
- ['Swapping Architectures', 'swap-architectures']
- ['PyTorch & TensorFlow', 'frameworks']
- ['Thinc Models', 'thinc']
- ['Trainable Components', 'components']
next: /usage/projects
---
A **model architecture** is a function that wires up a
[Thinc `Model`](https://thinc.ai/docs/api-model) instance, which you can then
use in a component or as a layer of a larger network. You can use Thinc as a
thin wrapper around frameworks such as PyTorch, TensorFlow or MXNet, or you can
implement your logic in Thinc directly. spaCy's built-in components will never
construct their `Model` instances themselves, so you won't have to subclass the
component to change its model architecture. You can just **update the config**
so that it refers to a different registered function. Once the component has
been created, its model instance has already been assigned, so you cannot change
its model architecture. The architecture is like a recipe for the network, and
you can't change the recipe once the dish has already been prepared. You have to
make a new one.
> #### Example
>
> ```python
> from thinc.api import Model, chain
>
> @spacy.registry.architectures.register("model.v1")
> def build_model(width: int, classes: int) -> Model:
> tok2vec = build_tok2vec(width)
> output_layer = build_output_layer(width, classes)
> model = chain(tok2vec, output_layer)
> return model
> ```
![Diagram of a pipeline component with its model](../images/layers-architectures.svg)
A **model architecture** is a function that wires up a
[Thinc `Model`](https://thinc.ai/docs/api-model) instance. It describes the
neural network that is run internally as part of a component in a spaCy
pipeline. To define the actual architecture, you can implement your logic in
Thinc directly, or you can use Thinc as a thin wrapper around frameworks such as
PyTorch, TensorFlow and MXNet. Each Model can also be used as a sublayer of a
larger network, allowing you to freely combine implementations from different
frameworks into one `Thinc` Model.
spaCy's built-in components require a `Model` instance to be passed to them via
the config system. To change the model architecture of an existing component,
you just need to [**update the config**](#swap-architectures) so that it refers
to a different registered function. Once the component has been created from
this config, you won't be able to change it anymore. The architecture is like a
recipe for the network, and you can't change the recipe once the dish has
already been prepared. You have to make a new one.
```ini
### config.cfg (excerpt)
[components.tagger]
factory = "tagger"
[components.tagger.model]
@architectures = "model.v1"
width = 512
classes = 16
```
## Type signatures {#type-sigs}
<!-- TODO: update example, maybe simplify definition? -->
> #### Example
>
> ```python
> @spacy.registry.architectures.register("spacy.Tagger.v1")
> def build_tagger_model(
> tok2vec: Model[List[Doc], List[Floats2d]], nO: Optional[int] = None
> ) -> Model[List[Doc], List[Floats2d]]:
> t2v_width = tok2vec.get_dim("nO") if tok2vec.has_dim("nO") else None
> output_layer = Softmax(nO, t2v_width, init_W=zero_init)
> softmax = with_array(output_layer)
> model = chain(tok2vec, softmax)
> model.set_ref("tok2vec", tok2vec)
> model.set_ref("softmax", output_layer)
> model.set_ref("output_layer", output_layer)
> from typing import List
> from thinc.api import Model, chain
> from thinc.types import Floats2d
> def chain_model(
> tok2vec: Model[List[Doc], List[Floats2d]],
> layer1: Model[List[Floats2d], Floats2d],
> layer2: Model[Floats2d, Floats2d]
> ) -> Model[List[Doc], Floats2d]:
> model = chain(tok2vec, layer1, layer2)
> return model
> ```
The Thinc `Model` class is a **generic type** that can specify its input and
The Thinc `Model` class is a **generic type** that can specify its input and
output types. Python uses a square-bracket notation for this, so the type
~~Model[List, Dict]~~ says that each batch of inputs to the model will be a
list, and the outputs will be a dictionary. Both `typing.List` and `typing.Dict`
are also generics, allowing you to be more specific about the data. For
instance, you can write ~~Model[List[Doc], Dict[str, float]]~~ to specify that
the model expects a list of [`Doc`](/api/doc) objects as input, and returns a
dictionary mapping strings to floats. Some of the most common types you'll see
are:
list, and the outputs will be a dictionary. You can be even more specific and
write for instance~~Model[List[Doc], Dict[str, float]]~~ to specify that the
model expects a list of [`Doc`](/api/doc) objects as input, and returns a
dictionary mapping of strings to floats. Some of the most common types you'll
see are:
| Type | Description |
| ------------------ | ---------------------------------------------------------------------------------------------------- |
@ -62,7 +84,7 @@ are:
| ~~Ints2d~~ | A two-dimensional `numpy` or `cupy` array of integers. Common dtypes include uint64, int32 and int8. |
| ~~List[Floats2d]~~ | A list of two-dimensional arrays, generally with one array per `Doc` and one row per token. |
| ~~Ragged~~ | A container to handle variable-length sequence data in an unpadded contiguous array. |
| ~~Padded~~ | A container to handle variable-length sequence data in a passed contiguous array. |
| ~~Padded~~ | A container to handle variable-length sequence data in a padded contiguous array. |
The model type signatures help you figure out which model architectures and
components can **fit together**. For instance, the
@ -78,10 +100,10 @@ interchangeably. There are many other ways they could be incompatible. However,
if the types don't match, they almost surely _won't_ be compatible. This little
bit of validation goes a long way, especially if you
[configure your editor](https://thinc.ai/docs/usage-type-checking) or other
tools to highlight these errors early. Thinc will also verify that your types
match correctly when your config file is processed at the beginning of training.
tools to highlight these errors early. The config file is also validated at the
beginning of training, to verify that all the types match correctly.
<Infobox title="Tip: Static type checking in your editor" emoji="💡">
<Accordion title="Tip: Static type checking in your editor">
If you're using a modern editor like Visual Studio Code, you can
[set up `mypy`](https://thinc.ai/docs/usage-type-checking#install) with the
@ -90,86 +112,144 @@ code.
[![](../images/thinc_mypy.jpg)](https://thinc.ai/docs/usage-type-checking#linting)
</Infobox>
</Accordion>
## Defining sublayers {#sublayers}
## Swapping model architectures {#swap-architectures}
Model architecture functions often accept **sublayers as arguments**, so that
If no model is specified for the [`TextCategorizer`](/api/textcategorizer), the
[TextCatEnsemble](/api/architectures#TextCatEnsemble) architecture is used by
default. This architecture combines a simpel bag-of-words model with a neural
network, usually resulting in the most accurate results, but at the cost of
speed. The config file for this model would look something like this:
```ini
### config.cfg (excerpt)
[components.textcat]
factory = "textcat"
labels = []
[components.textcat.model]
@architectures = "spacy.TextCatEnsemble.v1"
exclusive_classes = false
pretrained_vectors = null
width = 64
conv_depth = 2
embed_size = 2000
window_size = 1
ngram_size = 1
dropout = 0
nO = null
```
spaCy has two additional built-in `textcat` architectures, and you can easily
use those by swapping out the definition of the textcat's model. For instance,
to use the simple and fast bag-of-words model
[TextCatBOW](/api/architectures#TextCatBOW), you can change the config to:
```ini
### config.cfg (excerpt) {highlight="6-10"}
[components.textcat]
factory = "textcat"
labels = []
[components.textcat.model]
@architectures = "spacy.TextCatBOW.v1"
exclusive_classes = false
ngram_size = 1
no_output_layer = false
nO = null
```
For details on all pre-defined architectures shipped with spaCy and how to
configure them, check out the [model architectures](/api/architectures)
documentation.
### Defining sublayers {#sublayers}
Model architecture functions often accept **sublayers as arguments**, so that
you can try **substituting a different layer** into the network. Depending on
how the architecture function is structured, you might be able to define your
network structure entirely through the [config system](/usage/training#config),
using layers that have already been defined. The
[transformers documentation](/usage/embeddings-transformers#transformers)
section shows a common example of swapping in a different sublayer.
using layers that have already been defined.
In most neural network models for NLP, the most important parts of the network
are what we refer to as the
[embed and encode](https://explosion.ai/blog/embed-encode-attend-predict) steps.
[embed and encode](https://explosion.ai/blog/deep-learning-formula-nlp) steps.
These steps together compute dense, context-sensitive representations of the
tokens. Most of spaCy's default architectures accept a
[`tok2vec` embedding layer](/api/architectures#tok2vec-arch) as an argument, so
you can control this important part of the network separately. This makes it
easy to **switch between** transformer, CNN, BiLSTM or other feature extraction
approaches. And if you want to define your own solution, all you need to do is
register a ~~Model[List[Doc], List[Floats2d]]~~ architecture function, and
you'll be able to try it out in any of spaCy components.
tokens, and their combination forms a typical
[`Tok2Vec`](/api/architectures#Tok2Vec) layer:
<!-- TODO: example of switching sublayers -->
```ini
### config.cfg (excerpt)
[components.tok2vec]
factory = "tok2vec"
### Registering new architectures
[components.tok2vec.model]
@architectures = "spacy.Tok2Vec.v1"
- Recap concept, link to config docs.
[components.tok2vec.model.embed]
@architectures = "spacy.MultiHashEmbed.v1"
# ...
[components.tok2vec.model.encode]
@architectures = "spacy.MaxoutWindowEncoder.v1"
# ...
```
By defining these sublayers specifically, it becomes straightforward to swap out
a sublayer for another one, for instance changing the first sublayer to a
character embedding with the [CharacterEmbed](/api/architectures#CharacterEmbed)
architecture:
```ini
### config.cfg (excerpt)
[components.tok2vec.model.embed]
@architectures = "spacy.CharacterEmbed.v1"
# ...
[components.tok2vec.model.encode]
@architectures = "spacy.MaxoutWindowEncoder.v1"
# ...
```
Most of spaCy's default architectures accept a `tok2vec` layer as a sublayer
within the larger task-specific neural network. This makes it easy to **switch
between** transformer, CNN, BiLSTM or other feature extraction approaches. The
[transformers documentation](/usage/embeddings-transformers#training-custom-model)
section shows an example of swapping out a model's standard `tok2vec` layer with
a transformer. And if you want to define your own solution, all you need to do
is register a ~~Model[List[Doc], List[Floats2d]]~~ architecture function, and
you'll be able to try it out in any of the spaCy components.
## Wrapping PyTorch, TensorFlow and other frameworks {#frameworks}
<!-- TODO: this is copied over from the Thinc docs and we probably want to shorten it and make it more spaCy-specific -->
Thinc allows you to [wrap models](https://thinc.ai/docs/usage-frameworks)
written in other machine learning frameworks like PyTorch, TensorFlow and MXNet
using a unified [`Model`](https://thinc.ai/docs/api-model) API. As well as
**wrapping whole models**, Thinc lets you call into an external framework for
just **part of your model**: you can have a model where you use PyTorch just for
the transformer layers, using "native" Thinc layers to do fiddly input and
output transformations and add on task-specific "heads", as efficiency is less
of a consideration for those parts of the network.
Thinc allows you to wrap models written in other machine learning frameworks
like PyTorch, TensorFlow and MXNet using a unified
[`Model`](https://thinc.ai/docs/api-model) API. As well as **wrapping whole
models**, Thinc lets you call into an external framework for just **part of your
model**: you can have a model where you use PyTorch just for the transformer
layers, using "native" Thinc layers to do fiddly input and output
transformations and add on task-specific "heads", as efficiency is less of a
consideration for those parts of the network.
<!-- TODO: custom tagger implemented in PyTorch, wrapped as Thinc model, link off to project (with notebook?) -->
Thinc uses a special class, [`Shim`](https://thinc.ai/docs/api-model#shim), to
hold references to external objects. This allows each wrapper space to define a
custom type, with whatever attributes and methods are helpful, to assist in
managing the communication between Thinc and the external library. The
[`Model`](https://thinc.ai/docs/api-model#model) class holds `shim` instances in
a separate list, and communicates with the shims about updates, serialization,
changes of device, etc.
## Implementing models in Thinc {#thinc}
The wrapper will receive each batch of inputs, convert them into a suitable form
for the underlying model instance, and pass them over to the shim, which will
**manage the actual communication** with the model. The output is then passed
back into the wrapper, and converted for use in the rest of the network. The
equivalent procedure happens during backpropagation. Array conversion is handled
via the [DLPack](https://github.com/dmlc/dlpack) standard wherever possible, so
that data can be passed between the frameworks **without copying the data back**
to the host device unnecessarily.
| Framework | Wrapper layer | Shim | DLPack |
| -------------- | ------------------------------------------------------------------------- | --------------------------------------------------------- | --------------- |
| **PyTorch** | [`PyTorchWrapper`](https://thinc.ai/docs/api-layers#pytorchwrapper) | [`PyTorchShim`](https://thinc.ai/docs/api-model#shims) | ✅ |
| **TensorFlow** | [`TensorFlowWrapper`](https://thinc.ai/docs/api-layers#tensorflowwrapper) | [`TensorFlowShim`](https://thinc.ai/docs/api-model#shims) | ❌ <sup>1</sup> |
| **MXNet** | [`MXNetWrapper`](https://thinc.ai/docs/api-layers#mxnetwrapper) | [`MXNetShim`](https://thinc.ai/docs/api-model#shims) | ✅ |
1. DLPack support in TensorFlow is now
[available](<(https://github.com/tensorflow/tensorflow/issues/24453)>) but
still experimental.
<!-- TODO:
- Explain concept
- Link off to notebook
-->
<!-- TODO: use same example as above, custom tagger, but implemented in Thinc, link off to Thinc docs where appropriate -->
## Models for trainable components {#components}
<!-- TODO:
- Interaction with `predict`, `get_loss` and `set_annotations`
- Initialization life-cycle with `begin_training`.
- Link to relation extraction notebook.
Example: relation extraction component (implemented as project template)
-->
![Diagram of a pipeline component with its model](../images/layers-architectures.svg)
```python
def update(self, examples):

View File

@ -132,7 +132,7 @@ language can extend the `Lemmatizer` as part of its
### {executable="true"}
import spacy
# English models include a rule-based lemmatizer
# English pipelines include a rule-based lemmatizer
nlp = spacy.load("en_core_web_sm")
lemmatizer = nlp.get_pipe("lemmatizer")
print(lemmatizer.mode) # 'rule'
@ -156,14 +156,14 @@ component.
The data for spaCy's lemmatizers is distributed in the package
[`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data). The
provided models already include all the required tables, but if you are creating
new models, you'll probably want to install `spacy-lookups-data` to provide the
data when the lemmatizer is initialized.
provided trained pipelines already include all the required tables, but if you
are creating new pipelines, you'll probably want to install `spacy-lookups-data`
to provide the data when the lemmatizer is initialized.
### Lookup lemmatizer {#lemmatizer-lookup}
For models without a tagger or morphologizer, a lookup lemmatizer can be added
to the pipeline as long as a lookup table is provided, typically through
For pipelines without a tagger or morphologizer, a lookup lemmatizer can be
added to the pipeline as long as a lookup table is provided, typically through
[`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data). The
lookup lemmatizer looks up the token surface form in the lookup table without
reference to the token's part-of-speech or context.
@ -178,9 +178,9 @@ nlp.add_pipe("lemmatizer", config={"mode": "lookup"})
### Rule-based lemmatizer {#lemmatizer-rule}
When training models that include a component that assigns POS (a morphologizer
or a tagger with a [POS mapping](#mappings-exceptions)), a rule-based lemmatizer
can be added using rule tables from
When training pipelines that include a component that assigns part-of-speech
tags (a morphologizer or a tagger with a [POS mapping](#mappings-exceptions)), a
rule-based lemmatizer can be added using rule tables from
[`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data):
```python
@ -366,10 +366,10 @@ sequence of tokens. You can walk up the tree with the
> #### Projective vs. non-projective
>
> For the [default English model](/models/en), the parse tree is **projective**,
> which means that there are no crossing brackets. The tokens returned by
> `.subtree` are therefore guaranteed to be contiguous. This is not true for the
> German model, which has many
> For the [default English pipelines](/models/en), the parse tree is
> **projective**, which means that there are no crossing brackets. The tokens
> returned by `.subtree` are therefore guaranteed to be contiguous. This is not
> true for the German pipelines, which have many
> [non-projective dependencies](https://explosion.ai/blog/german-model#word-order).
```python
@ -497,26 +497,27 @@ displaCy in our [online demo](https://explosion.ai/demos/displacy)..
### Disabling the parser {#disabling}
In the [default models](/models), the parser is loaded and enabled as part of
the [standard processing pipeline](/usage/processing-pipelines). If you don't
need any of the syntactic information, you should disable the parser. Disabling
the parser will make spaCy load and run much faster. If you want to load the
parser, but need to disable it for specific documents, you can also control its
use on the `nlp` object.
In the [trained pipelines](/models) provided by spaCy, the parser is loaded and
enabled by default as part of the
[standard processing pipeline](/usage/processing-pipelines). If you don't need
any of the syntactic information, you should disable the parser. Disabling the
parser will make spaCy load and run much faster. If you want to load the parser,
but need to disable it for specific documents, you can also control its use on
the `nlp` object. For more details, see the usage guide on
[disabling pipeline components](/usage/processing-pipelines/#disabling).
```python
nlp = spacy.load("en_core_web_sm", disable=["parser"])
nlp = English().from_disk("/model", disable=["parser"])
doc = nlp("I don't want parsed", disable=["parser"])
```
## Named Entity Recognition {#named-entities}
spaCy features an extremely fast statistical entity recognition system, that
assigns labels to contiguous spans of tokens. The default model identifies a
variety of named and numeric entities, including companies, locations,
organizations and products. You can add arbitrary classes to the entity
recognition system, and update the model with new examples.
assigns labels to contiguous spans of tokens. The default
[trained pipelines](/models) can indentify a variety of named and numeric
entities, including companies, locations, organizations and products. You can
add arbitrary classes to the entity recognition system, and update the model
with new examples.
### Named Entity Recognition 101 {#named-entities-101}
@ -669,7 +670,7 @@ responsibility for ensuring that the data is left in a consistent state.
<Infobox title="Annotation scheme">
For details on the entity types available in spaCy's pretrained models, see the
For details on the entity types available in spaCy's trained pipelines, see the
"label scheme" sections of the individual models in the
[models directory](/models).
@ -710,9 +711,8 @@ import DisplacyEntHtml from 'images/displacy-ent2.html'
To ground the named entities into the "real world", spaCy provides functionality
to perform entity linking, which resolves a textual entity to a unique
identifier from a knowledge base (KB). You can create your own
[`KnowledgeBase`](/api/kb) and
[train a new Entity Linking model](/usage/training#entity-linker) using that
custom-made KB.
[`KnowledgeBase`](/api/kb) and [train](/usage/training) a new
[`EntityLinker`](/api/entitylinker) using that custom knowledge base.
### Accessing entity identifiers {#entity-linking-accessing model="entity linking"}
@ -724,7 +724,7 @@ object, or the `ent_kb_id` and `ent_kb_id_` attributes of a
```python
import spacy
nlp = spacy.load("my_custom_el_model")
nlp = spacy.load("my_custom_el_pipeline")
doc = nlp("Ada Lovelace was born in London")
# Document level
@ -1042,13 +1042,15 @@ function that behaves the same way.
<Infobox title="Important note" variant="warning">
If you're using a statistical model, writing to the
If you've loaded a trained pipeline, writing to the
[`nlp.Defaults`](/api/language#defaults) or `English.Defaults` directly won't
work, since the regular expressions are read from the model and will be compiled
when you load it. If you modify `nlp.Defaults`, you'll only see the effect if
you call [`spacy.blank`](/api/top-level#spacy.blank). If you want to modify the
tokenizer loaded from a statistical model, you should modify `nlp.tokenizer`
directly.
work, since the regular expressions are read from the pipeline data and will be
compiled when you load it. If you modify `nlp.Defaults`, you'll only see the
effect if you call [`spacy.blank`](/api/top-level#spacy.blank). If you want to
modify the tokenizer loaded from a trained pipeline, you should modify
`nlp.tokenizer` directly. If you're training your own pipeline, you can register
[callbacks](/usage/training/#custom-code-nlp-callbacks) to modify the `nlp`
object before training.
</Infobox>
@ -1218,11 +1220,11 @@ print(doc.text, [token.text for token in doc])
<Infobox title="Important note on tokenization and models" variant="warning">
Keep in mind that your model's result may be less accurate if the tokenization
Keep in mind that your models' results may be less accurate if the tokenization
during training differs from the tokenization at runtime. So if you modify a
pretrained model's tokenization afterwards, it may produce very different
predictions. You should therefore train your model with the **same tokenizer**
it will be using at runtime. See the docs on
trained pipeline's tokenization afterwards, it may produce very different
predictions. You should therefore train your pipeline with the **same
tokenizer** it will be using at runtime. See the docs on
[training with custom tokenization](#custom-tokenizer-training) for details.
</Infobox>
@ -1231,7 +1233,7 @@ it will be using at runtime. See the docs on
spaCy's [training config](/usage/training#config) describe the settings,
hyperparameters, pipeline and tokenizer used for constructing and training the
model. The `[nlp.tokenizer]` block refers to a **registered function** that
pipeline. The `[nlp.tokenizer]` block refers to a **registered function** that
takes the `nlp` object and returns a tokenizer. Here, we're registering a
function called `whitespace_tokenizer` in the
[`@tokenizers` registry](/api/registry). To make sure spaCy knows how to
@ -1626,11 +1628,11 @@ spaCy provides four alternatives for sentence segmentation:
Unlike other libraries, spaCy uses the dependency parse to determine sentence
boundaries. This is usually the most accurate approach, but it requires a
**statistical model** that provides accurate predictions. If your texts are
**trained pipeline** that provides accurate predictions. If your texts are
closer to general-purpose news or web text, this should work well out-of-the-box
with spaCy's provided models. For social media or conversational text that
doesn't follow the same rules, your application may benefit from a custom model
or rule-based component.
with spaCy's provided trained pipelines. For social media or conversational text
that doesn't follow the same rules, your application may benefit from a custom
trained or rule-based component.
```python
### {executable="true"}
@ -1652,8 +1654,8 @@ parses consistent with the sentence boundaries.
The [`SentenceRecognizer`](/api/sentencerecognizer) is a simple statistical
component that only provides sentence boundaries. Along with being faster and
smaller than the parser, its primary advantage is that it's easier to train
custom models because it only requires annotated sentence boundaries rather than
full dependency parses.
because it only requires annotated sentence boundaries rather than full
dependency parses.
<!-- TODO: update/confirm usage once we have final models trained -->
@ -1685,7 +1687,7 @@ need sentence boundaries without dependency parses.
import spacy
from spacy.lang.en import English
nlp = English() # just the language with no model
nlp = English() # just the language with no pipeline
nlp.add_pipe("sentencizer")
doc = nlp("This is a sentence. This is another sentence.")
for sent in doc.sents:
@ -1827,11 +1829,11 @@ or Tomas Mikolov's original
[Word2vec implementation](https://code.google.com/archive/p/word2vec/). Most
word vector libraries output an easy-to-read text-based format, where each line
consists of the word followed by its vector. For everyday use, we want to
convert the vectors model into a binary format that loads faster and takes up
less space on disk. The easiest way to do this is the
[`init model`](/api/cli#init-model) command-line utility. This will output a
spaCy model in the directory `/tmp/la_vectors_wiki_lg`, giving you access to
some nice Latin vectors. You can then pass the directory path to
convert the vectors into a binary format that loads faster and takes up less
space on disk. The easiest way to do this is the
[`init vocab`](/api/cli#init-vocab) command-line utility. This will output a
blank spaCy pipeline in the directory `/tmp/la_vectors_wiki_lg`, giving you
access to some nice Latin vectors. You can then pass the directory path to
[`spacy.load`](/api/top-level#spacy.load).
> #### Usage example
@ -1845,7 +1847,7 @@ some nice Latin vectors. You can then pass the directory path to
```cli
$ wget https://s3-us-west-1.amazonaws.com/fasttext-vectors/word-vectors-v2/cc.la.300.vec.gz
$ python -m spacy init model en /tmp/la_vectors_wiki_lg --vectors-loc cc.la.300.vec.gz
$ python -m spacy init vocab en /tmp/la_vectors_wiki_lg --vectors-loc cc.la.300.vec.gz
```
<Accordion title="How to optimize vector coverage" id="custom-vectors-coverage" spaced>
@ -1853,13 +1855,13 @@ $ python -m spacy init model en /tmp/la_vectors_wiki_lg --vectors-loc cc.la.300.
To help you strike a good balance between coverage and memory usage, spaCy's
[`Vectors`](/api/vectors) class lets you map **multiple keys** to the **same
row** of the table. If you're using the
[`spacy init model`](/api/cli#init-model) command to create a vocabulary,
[`spacy init vocab`](/api/cli#init-vocab) command to create a vocabulary,
pruning the vectors will be taken care of automatically if you set the
`--prune-vectors` flag. You can also do it manually in the following steps:
1. Start with a **word vectors model** that covers a huge vocabulary. For
1. Start with a **word vectors package** that covers a huge vocabulary. For
instance, the [`en_vectors_web_lg`](/models/en-starters#en_vectors_web_lg)
model provides 300-dimensional GloVe vectors for over 1 million terms of
starter provides 300-dimensional GloVe vectors for over 1 million terms of
English.
2. If your vocabulary has values set for the `Lexeme.prob` attribute, the
lexemes will be sorted by descending probability to determine which vectors
@ -1900,17 +1902,17 @@ the two words.
In the example above, the vector for "Shore" was removed and remapped to the
vector of "coast", which is deemed about 73% similar. "Leaving" was remapped to
the vector of "leaving", which is identical. If you're using the
[`init model`](/api/cli#init-model) command, you can set the `--prune-vectors`
[`init vocab`](/api/cli#init-vocab) command, you can set the `--prune-vectors`
option to easily reduce the size of the vectors as you add them to a spaCy
model:
pipeline:
```cli
$ python -m spacy init model en /tmp/la_vectors_web_md --vectors-loc la.300d.vec.tgz --prune-vectors 10000
$ python -m spacy init vocab en /tmp/la_vectors_web_md --vectors-loc la.300d.vec.tgz --prune-vectors 10000
```
This will create a spaCy model with vectors for the first 10,000 words in the
vectors model. All other words in the vectors model are mapped to the closest
vector among those retained.
This will create a blank spaCy pipeline with vectors for the first 10,000 words
in the vectors. All other words in the vectors are mapped to the closest vector
among those retained.
</Accordion>
@ -1925,8 +1927,8 @@ possible. You can modify the vectors via the [`Vocab`](/api/vocab) or
if you have vectors in an arbitrary format, as you can read in the vectors with
your own logic, and just set them with a simple loop. This method is likely to
be slower than approaches that work with the whole vectors table at once, but
it's a great approach for once-off conversions before you save out your model to
disk.
it's a great approach for once-off conversions before you save out your `nlp`
object to disk.
```python
### Adding vectors
@ -1978,14 +1980,14 @@ print(nlp2.lang, [token.is_stop for token in nlp2("custom stop")])
The [`@spacy.registry.languages`](/api/top-level#registry) decorator lets you
register a custom language class and assign it a string name. This means that
you can call [`spacy.blank`](/api/top-level#spacy.blank) with your custom
language name, and even train models with it and refer to it in your
language name, and even train pipelines with it and refer to it in your
[training config](/usage/training#config).
> #### Config usage
>
> After registering your custom language class using the `languages` registry,
> you can refer to it in your [training config](/usage/training#config). This
> means spaCy will train your model using the custom subclass.
> means spaCy will train your pipeline using the custom subclass.
>
> ```ini
> [nlp]

View File

@ -8,25 +8,24 @@ menu:
- ['Production Use', 'production']
---
spaCy's models can be installed as **Python packages**. This means that they're
a component of your application, just like any other module. They're versioned
and can be defined as a dependency in your `requirements.txt`. Models can be
installed from a download URL or a local directory, manually or via
[pip](https://pypi.python.org/pypi/pip). Their data can be located anywhere on
your file system.
spaCy's trained pipelines can be installed as **Python packages**. This means
that they're a component of your application, just like any other module.
They're versioned and can be defined as a dependency in your `requirements.txt`.
Trained pipelines can be installed from a download URL or a local directory,
manually or via [pip](https://pypi.python.org/pypi/pip). Their data can be
located anywhere on your file system.
> #### Important note
>
> If you're upgrading to spaCy v3.x, you need to **download the new models**. If
> you've trained statistical models that use spaCy's annotations, you should
> **retrain your models** after updating spaCy. If you don't retrain, you may
> suffer train/test skew, which might decrease your accuracy.
> If you're upgrading to spaCy v3.x, you need to **download the new pipeline
> packages**. If you've trained your own pipelines, you need to **retrain** them
> after updating spaCy.
## Quickstart {hidden="true"}
import QuickstartModels from 'widgets/quickstart-models.js'
<QuickstartModels title="Quickstart" id="quickstart" description="Install a default model, get the code to load it from within spaCy and an example to test it. For more options, see the section on available models below." />
<QuickstartModels title="Quickstart" id="quickstart" description="Install a default trained pipeline package, get the code to load it from within spaCy and an example to test it. For more options, see the section on available packages below." />
## Language support {#languages}
@ -34,14 +33,14 @@ spaCy currently provides support for the following languages. You can help by
[improving the existing language data](/usage/adding-languages#language-data)
and extending the tokenization patterns.
[See here](https://github.com/explosion/spaCy/issues/3056) for details on how to
contribute to model development.
contribute to development.
> #### Usage note
>
> If a model is available for a language, you can download it using the
> [`spacy download`](/api/cli#download) command. In order to use languages that
> don't yet come with a model, you have to import them directly, or use
> [`spacy.blank`](/api/top-level#spacy.blank):
> If a trained pipeline is available for a language, you can download it using
> the [`spacy download`](/api/cli#download) command. In order to use languages
> that don't yet come with a trained pipeline, you have to import them directly,
> or use [`spacy.blank`](/api/top-level#spacy.blank):
>
> ```python
> from spacy.lang.fi import Finnish
@ -73,13 +72,13 @@ import Languages from 'widgets/languages.js'
> nlp = spacy.blank("xx")
> ```
spaCy also supports models trained on more than one language. This is especially
useful for named entity recognition. The language ID used for multi-language or
language-neutral models is `xx`. The language class, a generic subclass
containing only the base language data, can be found in
spaCy also supports pipelines trained on more than one language. This is
especially useful for named entity recognition. The language ID used for
multi-language or language-neutral pipelines is `xx`. The language class, a
generic subclass containing only the base language data, can be found in
[`lang/xx`](https://github.com/explosion/spaCy/tree/master/spacy/lang/xx).
To train a model using the neutral multi-language class, you can set
To train a pipeline using the neutral multi-language class, you can set
`lang = "xx"` in your [training config](/usage/training#config). You can also
import the `MultiLanguage` class directly, or call
[`spacy.blank("xx")`](/api/top-level#spacy.blank) for lazy-loading.
@ -111,7 +110,7 @@ The Chinese language class supports three word segmentation options:
3. **PKUSeg**: As of spaCy v2.3.0, support for
[PKUSeg](https://github.com/lancopku/PKUSeg-python) has been added to support
better segmentation for Chinese OntoNotes and the provided
[Chinese models](/models/zh). Enable PKUSeg with the tokenizer option
[Chinese pipelines](/models/zh). Enable PKUSeg with the tokenizer option
`{"segmenter": "pkuseg"}`.
<Infobox variant="warning">
@ -169,9 +168,9 @@ nlp.tokenizer.pkuseg_update_user_dict([], reset=True)
</Accordion>
<Accordion title="Details on pretrained and custom Chinese models" spaced>
<Accordion title="Details on trained and custom Chinese pipelines" spaced>
The [Chinese models](/models/zh) provided by spaCy include a custom `pkuseg`
The [Chinese pipelines](/models/zh) provided by spaCy include a custom `pkuseg`
model trained only on
[Chinese OntoNotes 5.0](https://catalog.ldc.upenn.edu/LDC2013T19), since the
models provided by `pkuseg` include data restricted to research use. For
@ -208,29 +207,29 @@ nlp = Chinese(meta={"tokenizer": {"config": {"pkuseg_model": "/path/to/pkuseg_mo
The Japanese language class uses
[SudachiPy](https://github.com/WorksApplications/SudachiPy) for word
segmentation and part-of-speech tagging. The default Japanese language class and
the provided Japanese models use SudachiPy split mode `A`. The `meta` argument
of the `Japanese` language class can be used to configure the split mode to `A`,
`B` or `C`.
the provided Japanese pipelines use SudachiPy split mode `A`. The `meta`
argument of the `Japanese` language class can be used to configure the split
mode to `A`, `B` or `C`.
<Infobox variant="warning">
If you run into errors related to `sudachipy`, which is currently under active
development, we suggest downgrading to `sudachipy==0.4.5`, which is the version
used for training the current [Japanese models](/models/ja).
used for training the current [Japanese pipelines](/models/ja).
</Infobox>
## Installing and using models {#download}
## Installing and using trained pipelines {#download}
The easiest way to download a model is via spaCy's
The easiest way to download a trained pipeline is via spaCy's
[`download`](/api/cli#download) command. It takes care of finding the
best-matching model compatible with your spaCy installation.
best-matching package compatible with your spaCy installation.
> #### Important note for v3.0
>
> Note that as of spaCy v3.0, model shortcut links that create (potentially
> Note that as of spaCy v3.0, shortcut links like `en` that create (potentially
> brittle) symlinks in your spaCy installation are **deprecated**. To download
> and load an installed model, use its full name:
> and load an installed pipeline package, use its full name:
>
> ```diff
> - python -m spacy download en
@ -243,14 +242,14 @@ best-matching model compatible with your spaCy installation.
> ```
```cli
# Download best-matching version of a model for your spaCy installation
# Download best-matching version of a package for your spaCy installation
$ python -m spacy download en_core_web_sm
# Download exact model version
# Download exact package version
$ python -m spacy download en_core_web_sm-3.0.0 --direct
```
The download command will [install the model](/usage/models#download-pip) via
The download command will [install the package](/usage/models#download-pip) via
pip and place the package in your `site-packages` directory.
```cli
@ -266,11 +265,11 @@ doc = nlp("This is a sentence.")
### Installation via pip {#download-pip}
To download a model directly using [pip](https://pypi.python.org/pypi/pip),
point `pip install` to the URL or local path of the archive file. To find the
direct link to a model, head over to the
[model releases](https://github.com/explosion/spacy-models/releases), right
click on the archive link and copy it to your clipboard.
To download a trained pipeline directly using
[pip](https://pypi.python.org/pypi/pip), point `pip install` to the URL or local
path of the archive file. To find the direct link to a package, head over to the
[releases](https://github.com/explosion/spacy-models/releases), right click on
the archive link and copy it to your clipboard.
```bash
# With external URL
@ -280,60 +279,61 @@ $ pip install https://github.com/explosion/spacy-models/releases/download/en_cor
$ pip install /Users/you/en_core_web_sm-3.0.0.tar.gz
```
By default, this will install the model into your `site-packages` directory. You
can then use `spacy.load()` to load it via its package name or
By default, this will install the pipeline package into your `site-packages`
directory. You can then use `spacy.load` to load it via its package name or
[import it](#usage-import) explicitly as a module. If you need to download
models as part of an automated process, we recommend using pip with a direct
link, instead of relying on spaCy's [`download`](/api/cli#download) command.
pipeline packages as part of an automated process, we recommend using pip with a
direct link, instead of relying on spaCy's [`download`](/api/cli#download)
command.
You can also add the direct download link to your application's
`requirements.txt`. For more details, see the section on
[working with models in production](#production).
[working with pipeline packages in production](#production).
### Manual download and installation {#download-manual}
In some cases, you might prefer downloading the data manually, for example to
place it into a custom directory. You can download the model via your browser
place it into a custom directory. You can download the package via your browser
from the [latest releases](https://github.com/explosion/spacy-models/releases),
or configure your own download script using the URL of the archive file. The
archive consists of a model directory that contains another directory with the
model data.
archive consists of a package directory that contains another directory with the
pipeline data.
```yaml
### Directory structure {highlight="6"}
└── en_core_web_md-3.0.0.tar.gz # downloaded archive
├── setup.py # setup file for pip installation
├── meta.json # copy of model meta
└── en_core_web_md # 📦 model package
├── meta.json # copy of pipeline meta
└── en_core_web_md # 📦 pipeline package
├── __init__.py # init for pip installation
└── en_core_web_md-3.0.0 # model data
├── config.cfg # model config
├── meta.json # model meta
└── en_core_web_md-3.0.0 # pipeline data
├── config.cfg # pipeline config
├── meta.json # pipeline meta
└── ... # directories with component data
```
You can place the **model package directory** anywhere on your local file
You can place the **pipeline package directory** anywhere on your local file
system.
### Using models with spaCy {#usage}
### Using trained pipelines with spaCy {#usage}
To load a model, use [`spacy.load`](/api/top-level#spacy.load) with the model's
package name or a path to the data directory:
To load a pipeline package, use [`spacy.load`](/api/top-level#spacy.load) with
the package name or a path to the data directory:
> #### Important note for v3.0
>
> Note that as of spaCy v3.0, model shortcut links that create (potentially
> brittle) symlinks in your spaCy installation are **deprecated**. To load an
> installed model, use its full name:
> Note that as of spaCy v3.0, shortcut links like `en` that create (potentially
> brittle) symlinks in your spaCy installation are **deprecated**. To download
> and load an installed pipeline package, use its full name:
>
> ```diff
> - nlp = spacy.load("en")
> + nlp = spacy.load("en_core_web_sm")
> - python -m spacy download en
> + python -m spacy dowmload en_core_web_sm
> ```
```python
import spacy
nlp = spacy.load("en_core_web_sm") # load model package "en_core_web_sm"
nlp = spacy.load("en_core_web_sm") # load package "en_core_web_sm"
nlp = spacy.load("/path/to/en_core_web_sm") # load package from a directory
doc = nlp("This is a sentence.")
@ -342,17 +342,18 @@ doc = nlp("This is a sentence.")
<Infobox title="Tip: Preview model info" emoji="💡">
You can use the [`info`](/api/cli#info) command or
[`spacy.info()`](/api/top-level#spacy.info) method to print a model's meta data
before loading it. Each `Language` object with a loaded model also exposes the
model's meta data as the attribute `meta`. For example, `nlp.meta['version']`
will return the model's version.
[`spacy.info()`](/api/top-level#spacy.info) method to print a pipeline
packages's meta data before loading it. Each `Language` object with a loaded
pipeline also exposes the pipeline's meta data as the attribute `meta`. For
example, `nlp.meta['version']` will return the package version.
</Infobox>
### Importing models as modules {#usage-import}
### Importing pipeline packages as modules {#usage-import}
If you've installed a model via spaCy's downloader, or directly via pip, you can
also `import` it and then call its `load()` method with no arguments:
If you've installed a trained pipeline via [`spacy download`](/api/cli#download)
or directly via pip, you can also `import` it and then call its `load()` method
with no arguments:
```python
### {executable="true"}
@ -362,51 +363,38 @@ nlp = en_core_web_sm.load()
doc = nlp("This is a sentence.")
```
How you choose to load your models ultimately depends on personal preference.
However, **for larger code bases**, we usually recommend native imports, as this
will make it easier to integrate models with your existing build process,
continuous integration workflow and testing framework. It'll also prevent you
from ever trying to load a model that is not installed, as your code will raise
an `ImportError` immediately, instead of failing somewhere down the line when
calling `spacy.load()`.
How you choose to load your trained pipelines ultimately depends on personal
preference. However, **for larger code bases**, we usually recommend native
imports, as this will make it easier to integrate pipeline packages with your
existing build process, continuous integration workflow and testing framework.
It'll also prevent you from ever trying to load a package that is not installed,
as your code will raise an `ImportError` immediately, instead of failing
somewhere down the line when calling `spacy.load()`. For more details, see the
section on [working with pipeline packages in production](#production).
For more details, see the section on
[working with models in production](#production).
## Using trained pipelines in production {#production}
### Using your own models {#own-models}
If you've trained your own model, for example for
[additional languages](/usage/adding-languages) or
[custom named entities](/usage/training#ner), you can save its state using the
[`Language.to_disk()`](/api/language#to_disk) method. To make the model more
convenient to deploy, we recommend wrapping it as a Python package.
For more information and a detailed guide on how to package your model, see the
documentation on [saving and loading models](/usage/saving-loading#models).
## Using models in production {#production}
If your application depends on one or more models, you'll usually want to
integrate them into your continuous integration workflow and build process.
While spaCy provides a range of useful helpers for downloading, linking and
loading models, the underlying functionality is entirely based on native Python
packages. This allows your application to handle a model like any other package
dependency.
If your application depends on one or more trained pipeline packages, you'll
usually want to integrate them into your continuous integration workflow and
build process. While spaCy provides a range of useful helpers for downloading
and loading pipeline packages, the underlying functionality is entirely based on
native Python packaging. This allows your application to handle a spaCy pipeline
like any other package dependency.
<!-- TODO: reference relevant spaCy project -->
### Downloading and requiring model dependencies {#models-download}
### Downloading and requiring package dependencies {#models-download}
spaCy's built-in [`download`](/api/cli#download) command is mostly intended as a
convenient, interactive wrapper. It performs compatibility checks and prints
detailed error messages and warnings. However, if you're downloading models as
part of an automated build process, this only adds an unnecessary layer of
complexity. If you know which models your application needs, you should be
specifying them directly.
detailed error messages and warnings. However, if you're downloading pipeline
packages as part of an automated build process, this only adds an unnecessary
layer of complexity. If you know which packages your application needs, you
should be specifying them directly.
Because all models are valid Python packages, you can add them to your
Because pipeline packages are valid Python packages, you can add them to your
application's `requirements.txt`. If you're running your own internal PyPi
installation, you can upload the models there. pip's
installation, you can upload the pipeline packages there. pip's
[requirements file format](https://pip.pypa.io/en/latest/reference/pip_install/#requirements-file-format)
supports both package names to download via a PyPi server, as well as direct
URLs.
@ -422,17 +410,17 @@ the download URL. This way, the package won't be re-downloaded and overwritten
if it's already installed - just like when you're downloading a package from
PyPi.
All models are versioned and specify their spaCy dependency. This ensures
cross-compatibility and lets you specify exact version requirements for each
model. If you've trained your own model, you can use the
[`package`](/api/cli#package) command to generate the required meta data and
turn it into a loadable package.
All pipeline packages are versioned and specify their spaCy dependency. This
ensures cross-compatibility and lets you specify exact version requirements for
each pipeline. If you've [trained](/usage/training) your own pipeline, you can
use the [`spacy package`](/api/cli#package) command to generate the required
meta data and turn it into a loadable package.
### Loading and testing models {#models-loading}
### Loading and testing pipeline packages {#models-loading}
Models are regular Python packages, so you can also import them as a package
using Python's native `import` syntax, and then call the `load` method to load
the model data and return an `nlp` object:
Pipeline packages are regular Python packages, so you can also import them as a
package using Python's native `import` syntax, and then call the `load` method
to load the data and return an `nlp` object:
```python
import en_core_web_sm
@ -440,16 +428,17 @@ nlp = en_core_web_sm.load()
```
In general, this approach is recommended for larger code bases, as it's more
"native", and doesn't depend on symlinks or rely on spaCy's loader to resolve
string names to model packages. If a model can't be imported, Python will raise
an `ImportError` immediately. And if a model is imported but not used, any
linter will catch that.
"native", and doesn't rely on spaCy's loader to resolve string names to
packages. If a package can't be imported, Python will raise an `ImportError`
immediately. And if a package is imported but not used, any linter will catch
that.
Similarly, it'll give you more flexibility when writing tests that require
loading models. For example, instead of writing your own `try` and `except`
loading pipelines. For example, instead of writing your own `try` and `except`
logic around spaCy's loader, you can use
[pytest](http://pytest.readthedocs.io/en/latest/)'s
[`importorskip()`](https://docs.pytest.org/en/latest/builtin.html#_pytest.outcomes.importorskip)
method to only run a test if a specific model or model version is installed.
Each model package exposes a `__version__` attribute which you can also use to
perform your own version compatibility checks before loading a model.
method to only run a test if a specific pipeline package or version is
installed. Each pipeline package package exposes a `__version__` attribute which
you can also use to perform your own version compatibility checks before loading
it.

Some files were not shown because too many files have changed in this diff Show More