Merge branch 'develop' into feature/dependency-matcher-v3

This commit is contained in:
Adriane Boyd 2020-09-04 13:03:30 +02:00 committed by GitHub
commit b927893309
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
113 changed files with 1854 additions and 1685 deletions

View File

@ -36,7 +36,7 @@ max_length = 0
limit = 0 limit = 0
[training.batcher] [training.batcher]
@batchers = "batch_by_words.v1" @batchers = "spacy.batch_by_words.v1"
discard_oversize = false discard_oversize = false
tolerance = 0.2 tolerance = 0.2

View File

@ -35,7 +35,7 @@ max_length = 0
limit = 0 limit = 0
[training.batcher] [training.batcher]
@batchers = "batch_by_words.v1" @batchers = "spacy.batch_by_words.v1"
discard_oversize = false discard_oversize = false
tolerance = 0.2 tolerance = 0.2

View File

@ -24,7 +24,7 @@ redirects = [
{from = "/docs/usage/customizing-tokenizer", to = "/usage/linguistic-features#tokenization", force = true}, {from = "/docs/usage/customizing-tokenizer", to = "/usage/linguistic-features#tokenization", force = true},
{from = "/docs/usage/language-processing-pipeline", to = "/usage/processing-pipelines", force = true}, {from = "/docs/usage/language-processing-pipeline", to = "/usage/processing-pipelines", force = true},
{from = "/docs/usage/customizing-pipeline", to = "/usage/processing-pipelines", force = true}, {from = "/docs/usage/customizing-pipeline", to = "/usage/processing-pipelines", force = true},
{from = "/docs/usage/training-ner", to = "/usage/training#ner", force = true}, {from = "/docs/usage/training-ner", to = "/usage/training", force = true},
{from = "/docs/usage/tutorials", to = "/usage/examples", force = true}, {from = "/docs/usage/tutorials", to = "/usage/examples", force = true},
{from = "/docs/usage/data-model", to = "/api", force = true}, {from = "/docs/usage/data-model", to = "/api", force = true},
{from = "/docs/usage/cli", to = "/api/cli", force = true}, {from = "/docs/usage/cli", to = "/api/cli", force = true},

View File

@ -29,9 +29,9 @@ from .project.document import project_document # noqa: F401
@app.command("link", no_args_is_help=True, deprecated=True, hidden=True) @app.command("link", no_args_is_help=True, deprecated=True, hidden=True)
def link(*args, **kwargs): def link(*args, **kwargs):
"""As of spaCy v3.0, model symlinks are deprecated. You can load models """As of spaCy v3.0, symlinks like "en" are deprecated. You can load trained
using their full names or from a directory path.""" pipeline packages using their full names or from a directory path."""
msg.warn( msg.warn(
"As of spaCy v3.0, model symlinks are deprecated. You can load models " "As of spaCy v3.0, model symlinks are deprecated. You can load trained "
"using their full names or from a directory path." "pipeline packages using their full names or from a directory path."
) )

View File

@ -25,7 +25,7 @@ COMMAND = "python -m spacy"
NAME = "spacy" NAME = "spacy"
HELP = """spaCy Command-line Interface HELP = """spaCy Command-line Interface
DOCS: https://spacy.io/api/cli DOCS: https://nightly.spacy.io/api/cli
""" """
PROJECT_HELP = f"""Command-line interface for spaCy projects and templates. PROJECT_HELP = f"""Command-line interface for spaCy projects and templates.
You'd typically start by cloning a project template to a local directory and You'd typically start by cloning a project template to a local directory and
@ -36,7 +36,7 @@ DEBUG_HELP = """Suite of helpful commands for debugging and profiling. Includes
commands to check and validate your config files, training and evaluation data, commands to check and validate your config files, training and evaluation data,
and custom model implementations. and custom model implementations.
""" """
INIT_HELP = """Commands for initializing configs and models.""" INIT_HELP = """Commands for initializing configs and pipeline packages."""
# Wrappers for Typer's annotations. Initially created to set defaults and to # Wrappers for Typer's annotations. Initially created to set defaults and to
# keep the names short, but not needed at the moment. # keep the names short, but not needed at the moment.

View File

@ -44,7 +44,7 @@ def convert_cli(
file_type: FileTypes = Opt("spacy", "--file-type", "-t", help="Type of data to produce"), file_type: FileTypes = Opt("spacy", "--file-type", "-t", help="Type of data to produce"),
n_sents: int = Opt(1, "--n-sents", "-n", help="Number of sentences per doc (0 to disable)"), n_sents: int = Opt(1, "--n-sents", "-n", help="Number of sentences per doc (0 to disable)"),
seg_sents: bool = Opt(False, "--seg-sents", "-s", help="Segment sentences (for -c ner)"), seg_sents: bool = Opt(False, "--seg-sents", "-s", help="Segment sentences (for -c ner)"),
model: Optional[str] = Opt(None, "--model", "-b", help="Model for sentence segmentation (for -s)"), model: Optional[str] = Opt(None, "--model", "--base", "-b", help="Trained spaCy pipeline for sentence segmentation to use as base (for --seg-sents)"),
morphology: bool = Opt(False, "--morphology", "-m", help="Enable appending morphology to tags"), morphology: bool = Opt(False, "--morphology", "-m", help="Enable appending morphology to tags"),
merge_subtokens: bool = Opt(False, "--merge-subtokens", "-T", help="Merge CoNLL-U subtokens"), merge_subtokens: bool = Opt(False, "--merge-subtokens", "-T", help="Merge CoNLL-U subtokens"),
converter: str = Opt("auto", "--converter", "-c", help=f"Converter: {tuple(CONVERTERS.keys())}"), converter: str = Opt("auto", "--converter", "-c", help=f"Converter: {tuple(CONVERTERS.keys())}"),
@ -61,6 +61,8 @@ def convert_cli(
If no output_dir is specified and the output format is JSON, the data If no output_dir is specified and the output format is JSON, the data
is written to stdout, so you can pipe them forward to a JSON file: is written to stdout, so you can pipe them forward to a JSON file:
$ spacy convert some_file.conllu --file-type json > some_file.json $ spacy convert some_file.conllu --file-type json > some_file.json
DOCS: https://nightly.spacy.io/api/cli#convert
""" """
if isinstance(file_type, FileTypes): if isinstance(file_type, FileTypes):
# We get an instance of the FileTypes from the CLI so we need its string value # We get an instance of the FileTypes from the CLI so we need its string value
@ -261,6 +263,6 @@ def _get_converter(msg, converter, input_path):
msg.warn( msg.warn(
"Can't automatically detect NER format. " "Can't automatically detect NER format. "
"Conversion may not succeed. " "Conversion may not succeed. "
"See https://spacy.io/api/cli#convert" "See https://nightly.spacy.io/api/cli#convert"
) )
return converter return converter

View File

@ -31,6 +31,8 @@ def debug_config_cli(
Similar as with the 'train' command, you can override settings from the config Similar as with the 'train' command, you can override settings from the config
as command line options. For instance, --training.batch_size 128 overrides as command line options. For instance, --training.batch_size 128 overrides
the value of "batch_size" in the block "[training]". the value of "batch_size" in the block "[training]".
DOCS: https://nightly.spacy.io/api/cli#debug-config
""" """
overrides = parse_config_overrides(ctx.args) overrides = parse_config_overrides(ctx.args)
import_code(code_path) import_code(code_path)

View File

@ -18,7 +18,7 @@ from .. import util
NEW_LABEL_THRESHOLD = 50 NEW_LABEL_THRESHOLD = 50
# Minimum number of expected occurrences of dependency labels # Minimum number of expected occurrences of dependency labels
DEP_LABEL_THRESHOLD = 20 DEP_LABEL_THRESHOLD = 20
# Minimum number of expected examples to train a blank model # Minimum number of expected examples to train a new pipeline
BLANK_MODEL_MIN_THRESHOLD = 100 BLANK_MODEL_MIN_THRESHOLD = 100
BLANK_MODEL_THRESHOLD = 2000 BLANK_MODEL_THRESHOLD = 2000
@ -47,6 +47,8 @@ def debug_data_cli(
Analyze, debug and validate your training and development data. Outputs Analyze, debug and validate your training and development data. Outputs
useful stats, and can help you find problems like invalid entity annotations, useful stats, and can help you find problems like invalid entity annotations,
cyclic dependencies, low data labels and more. cyclic dependencies, low data labels and more.
DOCS: https://nightly.spacy.io/api/cli#debug-data
""" """
if ctx.command.name == "debug-data": if ctx.command.name == "debug-data":
msg.warn( msg.warn(
@ -148,7 +150,7 @@ def debug_data(
msg.text(f"Language: {config['nlp']['lang']}") msg.text(f"Language: {config['nlp']['lang']}")
msg.text(f"Training pipeline: {', '.join(pipeline)}") msg.text(f"Training pipeline: {', '.join(pipeline)}")
if resume_components: if resume_components:
msg.text(f"Components from other models: {', '.join(resume_components)}") msg.text(f"Components from other pipelines: {', '.join(resume_components)}")
if frozen_components: if frozen_components:
msg.text(f"Frozen components: {', '.join(frozen_components)}") msg.text(f"Frozen components: {', '.join(frozen_components)}")
msg.text(f"{len(train_dataset)} training docs") msg.text(f"{len(train_dataset)} training docs")
@ -164,9 +166,7 @@ def debug_data(
# TODO: make this feedback more fine-grained and report on updated # TODO: make this feedback more fine-grained and report on updated
# components vs. blank components # components vs. blank components
if not resume_components and len(train_dataset) < BLANK_MODEL_THRESHOLD: if not resume_components and len(train_dataset) < BLANK_MODEL_THRESHOLD:
text = ( text = f"Low number of examples to train a new pipeline ({len(train_dataset)})"
f"Low number of examples to train from a blank model ({len(train_dataset)})"
)
if len(train_dataset) < BLANK_MODEL_MIN_THRESHOLD: if len(train_dataset) < BLANK_MODEL_MIN_THRESHOLD:
msg.fail(text) msg.fail(text)
else: else:
@ -214,7 +214,7 @@ def debug_data(
show=verbose, show=verbose,
) )
else: else:
msg.info("No word vectors present in the model") msg.info("No word vectors present in the package")
if "ner" in factory_names: if "ner" in factory_names:
# Get all unique NER labels present in the data # Get all unique NER labels present in the data

View File

@ -30,6 +30,8 @@ def debug_model_cli(
""" """
Analyze a Thinc model implementation. Includes checks for internal structure Analyze a Thinc model implementation. Includes checks for internal structure
and activations during training. and activations during training.
DOCS: https://nightly.spacy.io/api/cli#debug-model
""" """
if use_gpu >= 0: if use_gpu >= 0:
msg.info("Using GPU") msg.info("Using GPU")

View File

@ -17,16 +17,19 @@ from ..errors import OLD_MODEL_SHORTCUTS
def download_cli( def download_cli(
# fmt: off # fmt: off
ctx: typer.Context, ctx: typer.Context,
model: str = Arg(..., help="Name of model to download"), model: str = Arg(..., help="Name of pipeline package to download"),
direct: bool = Opt(False, "--direct", "-d", "-D", help="Force direct download of name + version"), direct: bool = Opt(False, "--direct", "-d", "-D", help="Force direct download of name + version"),
# fmt: on # fmt: on
): ):
""" """
Download compatible model from default download path using pip. If --direct Download compatible trained pipeline from the default download path using
flag is set, the command expects the full model name with version. pip. If --direct flag is set, the command expects the full package name with
For direct downloads, the compatibility check will be skipped. All version. For direct downloads, the compatibility check will be skipped. All
additional arguments provided to this command will be passed to `pip install` additional arguments provided to this command will be passed to `pip install`
on model installation. on package installation.
DOCS: https://nightly.spacy.io/api/cli#download
AVAILABLE PACKAGES: https://spacy.io/models
""" """
download(model, direct, *ctx.args) download(model, direct, *ctx.args)
@ -34,11 +37,11 @@ def download_cli(
def download(model: str, direct: bool = False, *pip_args) -> None: def download(model: str, direct: bool = False, *pip_args) -> None:
if not is_package("spacy") and "--no-deps" not in pip_args: if not is_package("spacy") and "--no-deps" not in pip_args:
msg.warn( msg.warn(
"Skipping model package dependencies and setting `--no-deps`. " "Skipping pipeline package dependencies and setting `--no-deps`. "
"You don't seem to have the spaCy package itself installed " "You don't seem to have the spaCy package itself installed "
"(maybe because you've built from source?), so installing the " "(maybe because you've built from source?), so installing the "
"model dependencies would cause spaCy to be downloaded, which " "package dependencies would cause spaCy to be downloaded, which "
"probably isn't what you want. If the model package has other " "probably isn't what you want. If the pipeline package has other "
"dependencies, you'll have to install them manually." "dependencies, you'll have to install them manually."
) )
pip_args = pip_args + ("--no-deps",) pip_args = pip_args + ("--no-deps",)
@ -53,7 +56,7 @@ def download(model: str, direct: bool = False, *pip_args) -> None:
if model in OLD_MODEL_SHORTCUTS: if model in OLD_MODEL_SHORTCUTS:
msg.warn( msg.warn(
f"As of spaCy v3.0, shortcuts like '{model}' are deprecated. Please" f"As of spaCy v3.0, shortcuts like '{model}' are deprecated. Please"
f"use the full model name '{OLD_MODEL_SHORTCUTS[model]}' instead." f"use the full pipeline package name '{OLD_MODEL_SHORTCUTS[model]}' instead."
) )
model_name = OLD_MODEL_SHORTCUTS[model] model_name = OLD_MODEL_SHORTCUTS[model]
compatibility = get_compatibility() compatibility = get_compatibility()
@ -61,7 +64,7 @@ def download(model: str, direct: bool = False, *pip_args) -> None:
download_model(dl_tpl.format(m=model_name, v=version), pip_args) download_model(dl_tpl.format(m=model_name, v=version), pip_args)
msg.good( msg.good(
"Download and installation successful", "Download and installation successful",
f"You can now load the model via spacy.load('{model_name}')", f"You can now load the package via spacy.load('{model_name}')",
) )
@ -71,16 +74,16 @@ def get_compatibility() -> dict:
if r.status_code != 200: if r.status_code != 200:
msg.fail( msg.fail(
f"Server error ({r.status_code})", f"Server error ({r.status_code})",
f"Couldn't fetch compatibility table. Please find a model for your spaCy " f"Couldn't fetch compatibility table. Please find a package for your spaCy "
f"installation (v{about.__version__}), and download it manually. " f"installation (v{about.__version__}), and download it manually. "
f"For more details, see the documentation: " f"For more details, see the documentation: "
f"https://spacy.io/usage/models", f"https://nightly.spacy.io/usage/models",
exits=1, exits=1,
) )
comp_table = r.json() comp_table = r.json()
comp = comp_table["spacy"] comp = comp_table["spacy"]
if version not in comp: if version not in comp:
msg.fail(f"No compatible models found for v{version} of spaCy", exits=1) msg.fail(f"No compatible packages found for v{version} of spaCy", exits=1)
return comp[version] return comp[version]
@ -88,7 +91,7 @@ def get_version(model: str, comp: dict) -> str:
model = get_base_version(model) model = get_base_version(model)
if model not in comp: if model not in comp:
msg.fail( msg.fail(
f"No compatible model found for '{model}' (spaCy v{about.__version__})", f"No compatible package found for '{model}' (spaCy v{about.__version__})",
exits=1, exits=1,
) )
return comp[model][0] return comp[model][0]

View File

@ -26,13 +26,16 @@ def evaluate_cli(
# fmt: on # fmt: on
): ):
""" """
Evaluate a model. Expects a loadable spaCy model and evaluation data in the Evaluate a trained pipeline. Expects a loadable spaCy pipeline and evaluation
binary .spacy format. The --gold-preproc option sets up the evaluation data in the binary .spacy format. The --gold-preproc option sets up the
examples with gold-standard sentences and tokens for the predictions. Gold evaluation examples with gold-standard sentences and tokens for the
preprocessing helps the annotations align to the tokenization, and may predictions. Gold preprocessing helps the annotations align to the
result in sequences of more consistent length. However, it may reduce tokenization, and may result in sequences of more consistent length. However,
runtime accuracy due to train/test skew. To render a sample of dependency it may reduce runtime accuracy due to train/test skew. To render a sample of
parses in a HTML file, set as output directory as the displacy_path argument. dependency parses in a HTML file, set as output directory as the
displacy_path argument.
DOCS: https://nightly.spacy.io/api/cli#evaluate
""" """
evaluate( evaluate(
model, model,

View File

@ -12,15 +12,17 @@ from .. import about
@app.command("info") @app.command("info")
def info_cli( def info_cli(
# fmt: off # fmt: off
model: Optional[str] = Arg(None, help="Optional model name"), model: Optional[str] = Arg(None, help="Optional loadable spaCy pipeline"),
markdown: bool = Opt(False, "--markdown", "-md", help="Generate Markdown for GitHub issues"), markdown: bool = Opt(False, "--markdown", "-md", help="Generate Markdown for GitHub issues"),
silent: bool = Opt(False, "--silent", "-s", "-S", help="Don't print anything (just return)"), silent: bool = Opt(False, "--silent", "-s", "-S", help="Don't print anything (just return)"),
# fmt: on # fmt: on
): ):
""" """
Print info about spaCy installation. If a model is speficied as an argument, Print info about spaCy installation. If a pipeline is speficied as an argument,
print model information. Flag --markdown prints details in Markdown for easy print its meta information. Flag --markdown prints details in Markdown for easy
copy-pasting to GitHub issues. copy-pasting to GitHub issues.
DOCS: https://nightly.spacy.io/api/cli#info
""" """
info(model, markdown=markdown, silent=silent) info(model, markdown=markdown, silent=silent)
@ -30,14 +32,16 @@ def info(
) -> Union[str, dict]: ) -> Union[str, dict]:
msg = Printer(no_print=silent, pretty=not silent) msg = Printer(no_print=silent, pretty=not silent)
if model: if model:
title = f"Info about model '{model}'" title = f"Info about pipeline '{model}'"
data = info_model(model, silent=silent) data = info_model(model, silent=silent)
else: else:
title = "Info about spaCy" title = "Info about spaCy"
data = info_spacy() data = info_spacy()
raw_data = {k.lower().replace(" ", "_"): v for k, v in data.items()} raw_data = {k.lower().replace(" ", "_"): v for k, v in data.items()}
if "Models" in data and isinstance(data["Models"], dict): if "Pipelines" in data and isinstance(data["Pipelines"], dict):
data["Models"] = ", ".join(f"{n} ({v})" for n, v in data["Models"].items()) data["Pipelines"] = ", ".join(
f"{n} ({v})" for n, v in data["Pipelines"].items()
)
markdown_data = get_markdown(data, title=title) markdown_data = get_markdown(data, title=title)
if markdown: if markdown:
if not silent: if not silent:
@ -63,7 +67,7 @@ def info_spacy() -> Dict[str, any]:
"Location": str(Path(__file__).parent.parent), "Location": str(Path(__file__).parent.parent),
"Platform": platform.platform(), "Platform": platform.platform(),
"Python version": platform.python_version(), "Python version": platform.python_version(),
"Models": all_models, "Pipelines": all_models,
} }
@ -81,7 +85,7 @@ def info_model(model: str, *, silent: bool = True) -> Dict[str, Any]:
model_path = model model_path = model
meta_path = model_path / "meta.json" meta_path = model_path / "meta.json"
if not meta_path.is_file(): if not meta_path.is_file():
msg.fail("Can't find model meta.json", meta_path, exits=1) msg.fail("Can't find pipeline meta.json", meta_path, exits=1)
meta = srsly.read_json(meta_path) meta = srsly.read_json(meta_path)
if model_path.resolve() != model_path: if model_path.resolve() != model_path:
meta["source"] = str(model_path.resolve()) meta["source"] = str(model_path.resolve())

View File

@ -27,7 +27,7 @@ def init_config_cli(
# fmt: off # fmt: off
output_file: Path = Arg(..., help="File to save config.cfg to or - for stdout (will only output config and no additional logging info)", allow_dash=True), output_file: Path = Arg(..., help="File to save config.cfg to or - for stdout (will only output config and no additional logging info)", allow_dash=True),
lang: Optional[str] = Opt("en", "--lang", "-l", help="Two-letter code of the language to use"), lang: Optional[str] = Opt("en", "--lang", "-l", help="Two-letter code of the language to use"),
pipeline: Optional[str] = Opt("tagger,parser,ner", "--pipeline", "-p", help="Comma-separated names of trainable pipeline components to include in the model (without 'tok2vec' or 'transformer')"), pipeline: Optional[str] = Opt("tagger,parser,ner", "--pipeline", "-p", help="Comma-separated names of trainable pipeline components to include (without 'tok2vec' or 'transformer')"),
optimize: Optimizations = Opt(Optimizations.efficiency.value, "--optimize", "-o", help="Whether to optimize for efficiency (faster inference, smaller model, lower memory consumption) or higher accuracy (potentially larger and slower model). This will impact the choice of architecture, pretrained weights and related hyperparameters."), optimize: Optimizations = Opt(Optimizations.efficiency.value, "--optimize", "-o", help="Whether to optimize for efficiency (faster inference, smaller model, lower memory consumption) or higher accuracy (potentially larger and slower model). This will impact the choice of architecture, pretrained weights and related hyperparameters."),
cpu: bool = Opt(False, "--cpu", "-C", help="Whether the model needs to run on CPU. This will impact the choice of architecture, pretrained weights and related hyperparameters."), cpu: bool = Opt(False, "--cpu", "-C", help="Whether the model needs to run on CPU. This will impact the choice of architecture, pretrained weights and related hyperparameters."),
# fmt: on # fmt: on
@ -37,6 +37,8 @@ def init_config_cli(
specified via the CLI arguments, this command generates a config with the specified via the CLI arguments, this command generates a config with the
optimal settings for you use case. This includes the choice of architecture, optimal settings for you use case. This includes the choice of architecture,
pretrained weights and related hyperparameters. pretrained weights and related hyperparameters.
DOCS: https://nightly.spacy.io/api/cli#init-config
""" """
if isinstance(optimize, Optimizations): # instance of enum from the CLI if isinstance(optimize, Optimizations): # instance of enum from the CLI
optimize = optimize.value optimize = optimize.value
@ -59,6 +61,8 @@ def init_fill_config_cli(
functions for their default values and update the base config. This command functions for their default values and update the base config. This command
can be used with a config generated via the training quickstart widget: can be used with a config generated via the training quickstart widget:
https://nightly.spacy.io/usage/training#quickstart https://nightly.spacy.io/usage/training#quickstart
DOCS: https://nightly.spacy.io/api/cli#init-fill-config
""" """
fill_config(output_file, base_path, pretraining=pretraining, diff=diff) fill_config(output_file, base_path, pretraining=pretraining, diff=diff)
@ -168,7 +172,7 @@ def save_config(
output_file.parent.mkdir(parents=True) output_file.parent.mkdir(parents=True)
config.to_disk(output_file, interpolate=False) config.to_disk(output_file, interpolate=False)
msg.good("Saved config", output_file) msg.good("Saved config", output_file)
msg.text("You can now add your data and train your model:") msg.text("You can now add your data and train your pipeline:")
variables = ["--paths.train ./train.spacy", "--paths.dev ./dev.spacy"] variables = ["--paths.train ./train.spacy", "--paths.dev ./dev.spacy"]
if not no_print: if not no_print:
print(f"{COMMAND} train {output_file.parts[-1]} {' '.join(variables)}") print(f"{COMMAND} train {output_file.parts[-1]} {' '.join(variables)}")

View File

@ -28,7 +28,7 @@ except ImportError:
DEFAULT_OOV_PROB = -20 DEFAULT_OOV_PROB = -20
@init_cli.command("model") @init_cli.command("vocab")
@app.command( @app.command(
"init-model", "init-model",
context_settings={"allow_extra_args": True, "ignore_unknown_options": True}, context_settings={"allow_extra_args": True, "ignore_unknown_options": True},
@ -37,8 +37,8 @@ DEFAULT_OOV_PROB = -20
def init_model_cli( def init_model_cli(
# fmt: off # fmt: off
ctx: typer.Context, # This is only used to read additional arguments ctx: typer.Context, # This is only used to read additional arguments
lang: str = Arg(..., help="Model language"), lang: str = Arg(..., help="Pipeline language"),
output_dir: Path = Arg(..., help="Model output directory"), output_dir: Path = Arg(..., help="Pipeline output directory"),
freqs_loc: Optional[Path] = Arg(None, help="Location of words frequencies file", exists=True), freqs_loc: Optional[Path] = Arg(None, help="Location of words frequencies file", exists=True),
clusters_loc: Optional[Path] = Opt(None, "--clusters-loc", "-c", help="Optional location of brown clusters data", exists=True), clusters_loc: Optional[Path] = Opt(None, "--clusters-loc", "-c", help="Optional location of brown clusters data", exists=True),
jsonl_loc: Optional[Path] = Opt(None, "--jsonl-loc", "-j", help="Location of JSONL-formatted attributes file", exists=True), jsonl_loc: Optional[Path] = Opt(None, "--jsonl-loc", "-j", help="Location of JSONL-formatted attributes file", exists=True),
@ -46,19 +46,22 @@ def init_model_cli(
prune_vectors: int = Opt(-1, "--prune-vectors", "-V", help="Optional number of vectors to prune to"), prune_vectors: int = Opt(-1, "--prune-vectors", "-V", help="Optional number of vectors to prune to"),
truncate_vectors: int = Opt(0, "--truncate-vectors", "-t", help="Optional number of vectors to truncate to when reading in vectors file"), truncate_vectors: int = Opt(0, "--truncate-vectors", "-t", help="Optional number of vectors to truncate to when reading in vectors file"),
vectors_name: Optional[str] = Opt(None, "--vectors-name", "-vn", help="Optional name for the word vectors, e.g. en_core_web_lg.vectors"), vectors_name: Optional[str] = Opt(None, "--vectors-name", "-vn", help="Optional name for the word vectors, e.g. en_core_web_lg.vectors"),
model_name: Optional[str] = Opt(None, "--model-name", "-mn", help="Optional name for the model meta"), model_name: Optional[str] = Opt(None, "--meta-name", "-mn", help="Optional name of the package for the pipeline meta"),
base_model: Optional[str] = Opt(None, "--base-model", "-b", help="Base model (for languages with custom tokenizers)") base_model: Optional[str] = Opt(None, "--base", "-b", help="Name of or path to base pipeline to start with (mostly relevant for pipelines with custom tokenizers)")
# fmt: on # fmt: on
): ):
""" """
Create a new model from raw data. If vectors are provided in Word2Vec format, Create a new blank pipeline directory with vocab and vectors from raw data.
they can be either a .txt or zipped as a .zip or .tar.gz. If vectors are provided in Word2Vec format, they can be either a .txt or
zipped as a .zip or .tar.gz.
DOCS: https://nightly.spacy.io/api/cli#init-vocab
""" """
if ctx.command.name == "init-model": if ctx.command.name == "init-model":
msg.warn( msg.warn(
"The init-model command is now available via the 'init model' " "The init-model command is now called 'init vocab'. You can run "
"subcommand (without the hyphen). You can run python -m spacy init " "'python -m spacy init --help' for an overview of the other "
"--help for an overview of the other available initialization commands." "available initialization commands."
) )
init_model( init_model(
lang, lang,
@ -115,10 +118,10 @@ def init_model(
msg.fail("Can't find words frequencies file", freqs_loc, exits=1) msg.fail("Can't find words frequencies file", freqs_loc, exits=1)
lex_attrs = read_attrs_from_deprecated(msg, freqs_loc, clusters_loc) lex_attrs = read_attrs_from_deprecated(msg, freqs_loc, clusters_loc)
with msg.loading("Creating model..."): with msg.loading("Creating blank pipeline..."):
nlp = create_model(lang, lex_attrs, name=model_name, base_model=base_model) nlp = create_model(lang, lex_attrs, name=model_name, base_model=base_model)
msg.good("Successfully created model") msg.good("Successfully created blank pipeline")
if vectors_loc is not None: if vectors_loc is not None:
add_vectors( add_vectors(
msg, nlp, vectors_loc, truncate_vectors, prune_vectors, vectors_name msg, nlp, vectors_loc, truncate_vectors, prune_vectors, vectors_name
@ -242,7 +245,8 @@ def add_vectors(
if vectors_data is not None: if vectors_data is not None:
nlp.vocab.vectors = Vectors(data=vectors_data, keys=vector_keys) nlp.vocab.vectors = Vectors(data=vectors_data, keys=vector_keys)
if name is None: if name is None:
nlp.vocab.vectors.name = f"{nlp.meta['lang']}_model.vectors" # TODO: Is this correct? Does this matter?
nlp.vocab.vectors.name = f"{nlp.meta['lang']}_{nlp.meta['name']}.vectors"
else: else:
nlp.vocab.vectors.name = name nlp.vocab.vectors.name = name
nlp.meta["vectors"]["name"] = nlp.vocab.vectors.name nlp.meta["vectors"]["name"] = nlp.vocab.vectors.name

View File

@ -14,23 +14,25 @@ from .. import about
@app.command("package") @app.command("package")
def package_cli( def package_cli(
# fmt: off # fmt: off
input_dir: Path = Arg(..., help="Directory with model data", exists=True, file_okay=False), input_dir: Path = Arg(..., help="Directory with pipeline data", exists=True, file_okay=False),
output_dir: Path = Arg(..., help="Output parent directory", exists=True, file_okay=False), output_dir: Path = Arg(..., help="Output parent directory", exists=True, file_okay=False),
meta_path: Optional[Path] = Opt(None, "--meta-path", "--meta", "-m", help="Path to meta.json", exists=True, dir_okay=False), meta_path: Optional[Path] = Opt(None, "--meta-path", "--meta", "-m", help="Path to meta.json", exists=True, dir_okay=False),
create_meta: bool = Opt(False, "--create-meta", "-c", "-C", help="Create meta.json, even if one exists"), create_meta: bool = Opt(False, "--create-meta", "-c", "-C", help="Create meta.json, even if one exists"),
version: Optional[str] = Opt(None, "--version", "-v", help="Package version to override meta"), version: Optional[str] = Opt(None, "--version", "-v", help="Package version to override meta"),
no_sdist: bool = Opt(False, "--no-sdist", "-NS", help="Don't build .tar.gz sdist, can be set if you want to run this step manually"), no_sdist: bool = Opt(False, "--no-sdist", "-NS", help="Don't build .tar.gz sdist, can be set if you want to run this step manually"),
force: bool = Opt(False, "--force", "-f", "-F", help="Force overwriting existing model in output directory"), force: bool = Opt(False, "--force", "-f", "-F", help="Force overwriting existing data in output directory"),
# fmt: on # fmt: on
): ):
""" """
Generate an installable Python package for a model. Includes model data, Generate an installable Python package for a pipeline. Includes binary data,
meta and required installation files. A new directory will be created in the meta and required installation files. A new directory will be created in the
specified output directory, and model data will be copied over. If specified output directory, and the data will be copied over. If
--create-meta is set and a meta.json already exists in the output directory, --create-meta is set and a meta.json already exists in the output directory,
the existing values will be used as the defaults in the command-line prompt. the existing values will be used as the defaults in the command-line prompt.
After packaging, "python setup.py sdist" is run in the package directory, After packaging, "python setup.py sdist" is run in the package directory,
which will create a .tar.gz archive that can be installed via "pip install". which will create a .tar.gz archive that can be installed via "pip install".
DOCS: https://nightly.spacy.io/api/cli#package
""" """
package( package(
input_dir, input_dir,
@ -59,14 +61,14 @@ def package(
output_path = util.ensure_path(output_dir) output_path = util.ensure_path(output_dir)
meta_path = util.ensure_path(meta_path) meta_path = util.ensure_path(meta_path)
if not input_path or not input_path.exists(): if not input_path or not input_path.exists():
msg.fail("Can't locate model data", input_path, exits=1) msg.fail("Can't locate pipeline data", input_path, exits=1)
if not output_path or not output_path.exists(): if not output_path or not output_path.exists():
msg.fail("Output directory not found", output_path, exits=1) msg.fail("Output directory not found", output_path, exits=1)
if meta_path and not meta_path.exists(): if meta_path and not meta_path.exists():
msg.fail("Can't find model meta.json", meta_path, exits=1) msg.fail("Can't find pipeline meta.json", meta_path, exits=1)
meta_path = meta_path or input_dir / "meta.json" meta_path = meta_path or input_dir / "meta.json"
if not meta_path.exists() or not meta_path.is_file(): if not meta_path.exists() or not meta_path.is_file():
msg.fail("Can't load model meta.json", meta_path, exits=1) msg.fail("Can't load pipeline meta.json", meta_path, exits=1)
meta = srsly.read_json(meta_path) meta = srsly.read_json(meta_path)
meta = get_meta(input_dir, meta) meta = get_meta(input_dir, meta)
if version is not None: if version is not None:
@ -77,7 +79,7 @@ def package(
meta = generate_meta(meta, msg) meta = generate_meta(meta, msg)
errors = validate(ModelMetaSchema, meta) errors = validate(ModelMetaSchema, meta)
if errors: if errors:
msg.fail("Invalid model meta.json") msg.fail("Invalid pipeline meta.json")
print("\n".join(errors)) print("\n".join(errors))
sys.exit(1) sys.exit(1)
model_name = meta["lang"] + "_" + meta["name"] model_name = meta["lang"] + "_" + meta["name"]
@ -118,7 +120,7 @@ def get_meta(
) -> Dict[str, Any]: ) -> Dict[str, Any]:
meta = { meta = {
"lang": "en", "lang": "en",
"name": "model", "name": "pipeline",
"version": "0.0.0", "version": "0.0.0",
"description": "", "description": "",
"author": "", "author": "",
@ -143,10 +145,10 @@ def get_meta(
def generate_meta(existing_meta: Dict[str, Any], msg: Printer) -> Dict[str, Any]: def generate_meta(existing_meta: Dict[str, Any], msg: Printer) -> Dict[str, Any]:
meta = existing_meta or {} meta = existing_meta or {}
settings = [ settings = [
("lang", "Model language", meta.get("lang", "en")), ("lang", "Pipeline language", meta.get("lang", "en")),
("name", "Model name", meta.get("name", "model")), ("name", "Pipeline name", meta.get("name", "pipeline")),
("version", "Model version", meta.get("version", "0.0.0")), ("version", "Package version", meta.get("version", "0.0.0")),
("description", "Model description", meta.get("description", None)), ("description", "Package description", meta.get("description", None)),
("author", "Author", meta.get("author", None)), ("author", "Author", meta.get("author", None)),
("email", "Author email", meta.get("email", None)), ("email", "Author email", meta.get("email", None)),
("url", "Author website", meta.get("url", None)), ("url", "Author website", meta.get("url", None)),
@ -154,8 +156,8 @@ def generate_meta(existing_meta: Dict[str, Any], msg: Printer) -> Dict[str, Any]
] ]
msg.divider("Generating meta.json") msg.divider("Generating meta.json")
msg.text( msg.text(
"Enter the package settings for your model. The following information " "Enter the package settings for your pipeline. The following information "
"will be read from your model data: pipeline, vectors." "will be read from your pipeline data: pipeline, vectors."
) )
for setting, desc, default in settings: for setting, desc, default in settings:
response = get_raw_input(desc, default) response = get_raw_input(desc, default)

View File

@ -31,7 +31,7 @@ def pretrain_cli(
# fmt: off # fmt: off
ctx: typer.Context, # This is only used to read additional arguments ctx: typer.Context, # This is only used to read additional arguments
texts_loc: Path = Arg(..., help="Path to JSONL file with raw texts to learn from, with text provided as the key 'text' or tokens as the key 'tokens'", exists=True), texts_loc: Path = Arg(..., help="Path to JSONL file with raw texts to learn from, with text provided as the key 'text' or tokens as the key 'tokens'", exists=True),
output_dir: Path = Arg(..., help="Directory to write models to on each epoch"), output_dir: Path = Arg(..., help="Directory to write weights to on each epoch"),
config_path: Path = Arg(..., help="Path to config file", exists=True, dir_okay=False), config_path: Path = Arg(..., help="Path to config file", exists=True, dir_okay=False),
code_path: Optional[Path] = Opt(None, "--code-path", "-c", help="Path to Python file with additional code (registered functions) to be imported"), code_path: Optional[Path] = Opt(None, "--code-path", "-c", help="Path to Python file with additional code (registered functions) to be imported"),
resume_path: Optional[Path] = Opt(None, "--resume-path", "-r", help="Path to pretrained weights from which to resume pretraining"), resume_path: Optional[Path] = Opt(None, "--resume-path", "-r", help="Path to pretrained weights from which to resume pretraining"),
@ -57,6 +57,8 @@ def pretrain_cli(
To load the weights back in during 'spacy train', you need to ensure To load the weights back in during 'spacy train', you need to ensure
all settings are the same between pretraining and training. Ideally, all settings are the same between pretraining and training. Ideally,
this is done by using the same config file for both commands. this is done by using the same config file for both commands.
DOCS: https://nightly.spacy.io/api/cli#pretrain
""" """
overrides = parse_config_overrides(ctx.args) overrides = parse_config_overrides(ctx.args)
import_code(code_path) import_code(code_path)
@ -376,10 +378,9 @@ def verify_cli_args(texts_loc, output_dir, config_path, resume_path, epoch_resum
if output_dir.exists() and [p for p in output_dir.iterdir()]: if output_dir.exists() and [p for p in output_dir.iterdir()]:
if resume_path: if resume_path:
msg.warn( msg.warn(
"Output directory is not empty. ", "Output directory is not empty.",
"If you're resuming a run from a previous model in this directory, " "If you're resuming a run in this directory, the old weights "
"the old models for the consecutive epochs will be overwritten " "for the consecutive epochs will be overwritten with the new ones.",
"with the new ones.",
) )
else: else:
msg.warn( msg.warn(

View File

@ -19,7 +19,7 @@ from ..util import load_model
def profile_cli( def profile_cli(
# fmt: off # fmt: off
ctx: typer.Context, # This is only used to read current calling context ctx: typer.Context, # This is only used to read current calling context
model: str = Arg(..., help="Model to load"), model: str = Arg(..., help="Trained pipeline to load"),
inputs: Optional[Path] = Arg(None, help="Location of input file. '-' for stdin.", exists=True, allow_dash=True), inputs: Optional[Path] = Arg(None, help="Location of input file. '-' for stdin.", exists=True, allow_dash=True),
n_texts: int = Opt(10000, "--n-texts", "-n", help="Maximum number of texts to use if available"), n_texts: int = Opt(10000, "--n-texts", "-n", help="Maximum number of texts to use if available"),
# fmt: on # fmt: on
@ -29,6 +29,8 @@ def profile_cli(
Input should be formatted as one JSON object per line with a key "text". Input should be formatted as one JSON object per line with a key "text".
It can either be provided as a JSONL file, or be read from sys.sytdin. It can either be provided as a JSONL file, or be read from sys.sytdin.
If no input file is specified, the IMDB dataset is loaded via Thinc. If no input file is specified, the IMDB dataset is loaded via Thinc.
DOCS: https://nightly.spacy.io/api/cli#debug-profile
""" """
if ctx.parent.command.name == NAME: # called as top-level command if ctx.parent.command.name == NAME: # called as top-level command
msg.warn( msg.warn(
@ -60,9 +62,9 @@ def profile(model: str, inputs: Optional[Path] = None, n_texts: int = 10000) ->
inputs, _ = zip(*imdb_train) inputs, _ = zip(*imdb_train)
msg.info(f"Loaded IMDB dataset and using {n_inputs} examples") msg.info(f"Loaded IMDB dataset and using {n_inputs} examples")
inputs = inputs[:n_inputs] inputs = inputs[:n_inputs]
with msg.loading(f"Loading model '{model}'..."): with msg.loading(f"Loading pipeline '{model}'..."):
nlp = load_model(model) nlp = load_model(model)
msg.good(f"Loaded model '{model}'") msg.good(f"Loaded pipeline '{model}'")
texts = list(itertools.islice(inputs, n_texts)) texts = list(itertools.islice(inputs, n_texts))
cProfile.runctx("parse_texts(nlp, texts)", globals(), locals(), "Profile.prof") cProfile.runctx("parse_texts(nlp, texts)", globals(), locals(), "Profile.prof")
s = pstats.Stats("Profile.prof") s = pstats.Stats("Profile.prof")

View File

@ -20,6 +20,8 @@ def project_assets_cli(
defined in the "assets" section of the project.yml. If a checksum is defined in the "assets" section of the project.yml. If a checksum is
provided in the project.yml, the file is only downloaded if no local file provided in the project.yml, the file is only downloaded if no local file
with the same checksum exists. with the same checksum exists.
DOCS: https://nightly.spacy.io/api/cli#project-assets
""" """
project_assets(project_dir) project_assets(project_dir)

View File

@ -22,6 +22,8 @@ def project_clone_cli(
only download the files from the given subdirectory. The GitHub repo only download the files from the given subdirectory. The GitHub repo
defaults to the official spaCy template repo, but can be customized defaults to the official spaCy template repo, but can be customized
(including using a private repo). (including using a private repo).
DOCS: https://nightly.spacy.io/api/cli#project-clone
""" """
if dest is None: if dest is None:
dest = Path.cwd() / name dest = Path.cwd() / name

View File

@ -43,6 +43,8 @@ def project_document_cli(
hidden markers are added so you can add custom content before or after the hidden markers are added so you can add custom content before or after the
auto-generated section and only the auto-generated docs will be replaced auto-generated section and only the auto-generated docs will be replaced
when you re-run the command. when you re-run the command.
DOCS: https://nightly.spacy.io/api/cli#project-document
""" """
project_document(project_dir, output_file, no_emoji=no_emoji) project_document(project_dir, output_file, no_emoji=no_emoji)

View File

@ -31,7 +31,10 @@ def project_update_dvc_cli(
"""Auto-generate Data Version Control (DVC) config. A DVC """Auto-generate Data Version Control (DVC) config. A DVC
project can only define one pipeline, so you need to specify one workflow project can only define one pipeline, so you need to specify one workflow
defined in the project.yml. If no workflow is specified, the first defined defined in the project.yml. If no workflow is specified, the first defined
workflow is used. The DVC config will only be updated if the project.yml changed. workflow is used. The DVC config will only be updated if the project.yml
changed.
DOCS: https://nightly.spacy.io/api/cli#project-dvc
""" """
project_update_dvc(project_dir, workflow, verbose=verbose, force=force) project_update_dvc(project_dir, workflow, verbose=verbose, force=force)

View File

@ -17,7 +17,9 @@ def project_pull_cli(
"""Retrieve available precomputed outputs from a remote storage. """Retrieve available precomputed outputs from a remote storage.
You can alias remotes in your project.yml by mapping them to storage paths. You can alias remotes in your project.yml by mapping them to storage paths.
A storage can be anything that the smart-open library can upload to, e.g. A storage can be anything that the smart-open library can upload to, e.g.
gcs, aws, ssh, local directories etc AWS, Google Cloud Storage, SSH, local directories etc.
DOCS: https://nightly.spacy.io/api/cli#project-pull
""" """
for url, output_path in project_pull(project_dir, remote): for url, output_path in project_pull(project_dir, remote):
if url is not None: if url is not None:
@ -38,5 +40,5 @@ def project_pull(project_dir: Path, remote: str, *, verbose: bool = False):
url = storage.pull(output_path, command_hash=cmd_hash) url = storage.pull(output_path, command_hash=cmd_hash)
yield url, output_path yield url, output_path
if cmd.get("outptus") and all(loc.exists() for loc in cmd["outputs"]): if cmd.get("outputs") and all(loc.exists() for loc in cmd["outputs"]):
update_lockfile(project_dir, cmd) update_lockfile(project_dir, cmd)

View File

@ -13,9 +13,12 @@ def project_push_cli(
project_dir: Path = Arg(Path.cwd(), help="Location of project directory. Defaults to current working directory.", exists=True, file_okay=False), project_dir: Path = Arg(Path.cwd(), help="Location of project directory. Defaults to current working directory.", exists=True, file_okay=False),
# fmt: on # fmt: on
): ):
"""Persist outputs to a remote storage. You can alias remotes in your project.yml """Persist outputs to a remote storage. You can alias remotes in your
by mapping them to storage paths. A storage can be anything that the smart-open project.yml by mapping them to storage paths. A storage can be anything that
library can upload to, e.g. gcs, aws, ssh, local directories etc the smart-open library can upload to, e.g. AWS, Google Cloud Storage, SSH,
local directories etc.
DOCS: https://nightly.spacy.io/api/cli#project-push
""" """
for output_path, url in project_push(project_dir, remote): for output_path, url in project_push(project_dir, remote):
if url is None: if url is None:

View File

@ -24,6 +24,8 @@ def project_run_cli(
name is specified, all commands in the workflow are run, in order. If name is specified, all commands in the workflow are run, in order. If
commands define dependencies and/or outputs, they will only be re-run if commands define dependencies and/or outputs, they will only be re-run if
state has changed. state has changed.
DOCS: https://nightly.spacy.io/api/cli#project-run
""" """
if show_help or not subcommand: if show_help or not subcommand:
print_run_help(project_dir, subcommand) print_run_help(project_dir, subcommand)

View File

@ -29,7 +29,7 @@ name = "{{ transformer["name"] }}"
tokenizer_config = {"use_fast": true} tokenizer_config = {"use_fast": true}
[components.transformer.model.get_spans] [components.transformer.model.get_spans]
@span_getters = "strided_spans.v1" @span_getters = "spacy-transformers.strided_spans.v1"
window = 128 window = 128
stride = 96 stride = 96
@ -204,13 +204,13 @@ max_length = 0
{% if use_transformer %} {% if use_transformer %}
[training.batcher] [training.batcher]
@batchers = "batch_by_padded.v1" @batchers = "spacy.batch_by_padded.v1"
discard_oversize = true discard_oversize = true
size = 2000 size = 2000
buffer = 256 buffer = 256
{%- else %} {%- else %}
[training.batcher] [training.batcher]
@batchers = "batch_by_words.v1" @batchers = "spacy.batch_by_words.v1"
discard_oversize = false discard_oversize = false
tolerance = 0.2 tolerance = 0.2

View File

@ -26,7 +26,7 @@ def train_cli(
# fmt: off # fmt: off
ctx: typer.Context, # This is only used to read additional arguments ctx: typer.Context, # This is only used to read additional arguments
config_path: Path = Arg(..., help="Path to config file", exists=True), config_path: Path = Arg(..., help="Path to config file", exists=True),
output_path: Optional[Path] = Opt(None, "--output", "--output-path", "-o", help="Output directory to store model in"), output_path: Optional[Path] = Opt(None, "--output", "--output-path", "-o", help="Output directory to store trained pipeline in"),
code_path: Optional[Path] = Opt(None, "--code-path", "-c", help="Path to Python file with additional code (registered functions) to be imported"), code_path: Optional[Path] = Opt(None, "--code-path", "-c", help="Path to Python file with additional code (registered functions) to be imported"),
verbose: bool = Opt(False, "--verbose", "-V", "-VV", help="Display more information for debugging purposes"), verbose: bool = Opt(False, "--verbose", "-V", "-VV", help="Display more information for debugging purposes"),
use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU"), use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU"),
@ -34,7 +34,7 @@ def train_cli(
# fmt: on # fmt: on
): ):
""" """
Train or update a spaCy model. Requires data in spaCy's binary format. To Train or update a spaCy pipeline. Requires data in spaCy's binary format. To
convert data from other formats, use the `spacy convert` command. The convert data from other formats, use the `spacy convert` command. The
config file includes all settings and hyperparameters used during traing. config file includes all settings and hyperparameters used during traing.
To override settings in the config, e.g. settings that point to local To override settings in the config, e.g. settings that point to local
@ -44,6 +44,8 @@ def train_cli(
lets you pass in a Python file that's imported before training. It can be lets you pass in a Python file that's imported before training. It can be
used to register custom functions and architectures that can then be used to register custom functions and architectures that can then be
referenced in the config. referenced in the config.
DOCS: https://nightly.spacy.io/api/cli#train
""" """
util.logger.setLevel(logging.DEBUG if verbose else logging.ERROR) util.logger.setLevel(logging.DEBUG if verbose else logging.ERROR)
verify_cli_args(config_path, output_path) verify_cli_args(config_path, output_path)
@ -113,12 +115,12 @@ def train(
# Load morph rules # Load morph rules
nlp.vocab.morphology.load_morph_exceptions(morph_rules) nlp.vocab.morphology.load_morph_exceptions(morph_rules)
# Load a pretrained tok2vec model - cf. CLI command 'pretrain' # Load pretrained tok2vec weights - cf. CLI command 'pretrain'
if weights_data is not None: if weights_data is not None:
tok2vec_path = config["pretraining"].get("tok2vec_model", None) tok2vec_path = config["pretraining"].get("tok2vec_model", None)
if tok2vec_path is None: if tok2vec_path is None:
msg.fail( msg.fail(
f"To use a pretrained tok2vec model, the config needs to specify which " f"To pretrained tok2vec weights, the config needs to specify which "
f"tok2vec layer to load in the setting [pretraining.tok2vec_model].", f"tok2vec layer to load in the setting [pretraining.tok2vec_model].",
exits=1, exits=1,
) )
@ -159,6 +161,7 @@ def train(
print_row(info) print_row(info)
if is_best_checkpoint and output_path is not None: if is_best_checkpoint and output_path is not None:
update_meta(T_cfg, nlp, info) update_meta(T_cfg, nlp, info)
with nlp.use_params(optimizer.averages):
nlp.to_disk(output_path / "model-best") nlp.to_disk(output_path / "model-best")
progress = tqdm.tqdm(total=T_cfg["eval_frequency"], leave=False) progress = tqdm.tqdm(total=T_cfg["eval_frequency"], leave=False)
progress.set_description(f"Epoch {info['epoch']}") progress.set_description(f"Epoch {info['epoch']}")
@ -182,7 +185,7 @@ def train(
nlp.to_disk(final_model_path) nlp.to_disk(final_model_path)
else: else:
nlp.to_disk(final_model_path) nlp.to_disk(final_model_path)
msg.good(f"Saved model to output directory {final_model_path}") msg.good(f"Saved pipeline to output directory {final_model_path}")
def create_train_batches(iterator, batcher, max_epochs: int): def create_train_batches(iterator, batcher, max_epochs: int):

View File

@ -13,9 +13,11 @@ from ..util import get_package_path, get_model_meta, is_compatible_version
@app.command("validate") @app.command("validate")
def validate_cli(): def validate_cli():
""" """
Validate the currently installed models and spaCy version. Checks if the Validate the currently installed pipeline packages and spaCy version. Checks
installed models are compatible and shows upgrade instructions if available. if the installed packages are compatible and shows upgrade instructions if
Should be run after `pip install -U spacy`. available. Should be run after `pip install -U spacy`.
DOCS: https://nightly.spacy.io/api/cli#validate
""" """
validate() validate()
@ -25,13 +27,13 @@ def validate() -> None:
spacy_version = get_base_version(about.__version__) spacy_version = get_base_version(about.__version__)
current_compat = compat.get(spacy_version, {}) current_compat = compat.get(spacy_version, {})
if not current_compat: if not current_compat:
msg.warn(f"No compatible models found for v{spacy_version} of spaCy") msg.warn(f"No compatible packages found for v{spacy_version} of spaCy")
incompat_models = {d["name"] for _, d in model_pkgs.items() if not d["compat"]} incompat_models = {d["name"] for _, d in model_pkgs.items() if not d["compat"]}
na_models = [m for m in incompat_models if m not in current_compat] na_models = [m for m in incompat_models if m not in current_compat]
update_models = [m for m in incompat_models if m in current_compat] update_models = [m for m in incompat_models if m in current_compat]
spacy_dir = Path(__file__).parent.parent spacy_dir = Path(__file__).parent.parent
msg.divider(f"Installed models (spaCy v{about.__version__})") msg.divider(f"Installed pipeline packages (spaCy v{about.__version__})")
msg.info(f"spaCy installation: {spacy_dir}") msg.info(f"spaCy installation: {spacy_dir}")
if model_pkgs: if model_pkgs:
@ -47,15 +49,15 @@ def validate() -> None:
rows.append((data["name"], data["spacy"], version, comp)) rows.append((data["name"], data["spacy"], version, comp))
msg.table(rows, header=header) msg.table(rows, header=header)
else: else:
msg.text("No models found in your current environment.", exits=0) msg.text("No pipeline packages found in your current environment.", exits=0)
if update_models: if update_models:
msg.divider("Install updates") msg.divider("Install updates")
msg.text("Use the following commands to update the model packages:") msg.text("Use the following commands to update the packages:")
cmd = "python -m spacy download {}" cmd = "python -m spacy download {}"
print("\n".join([cmd.format(pkg) for pkg in update_models]) + "\n") print("\n".join([cmd.format(pkg) for pkg in update_models]) + "\n")
if na_models: if na_models:
msg.info( msg.info(
f"The following models are custom spaCy models or not " f"The following packages are custom spaCy pipelines or not "
f"available for spaCy v{about.__version__}:", f"available for spaCy v{about.__version__}:",
", ".join(na_models), ", ".join(na_models),
) )

View File

@ -69,7 +69,7 @@ max_length = 2000
limit = 0 limit = 0
[training.batcher] [training.batcher]
@batchers = "batch_by_words.v1" @batchers = "spacy.batch_by_words.v1"
discard_oversize = false discard_oversize = false
tolerance = 0.2 tolerance = 0.2

View File

@ -1,8 +1,8 @@
""" """
spaCy's built in visualization suite for dependencies and named entities. spaCy's built in visualization suite for dependencies and named entities.
DOCS: https://spacy.io/api/top-level#displacy DOCS: https://nightly.spacy.io/api/top-level#displacy
USAGE: https://spacy.io/usage/visualizers USAGE: https://nightly.spacy.io/usage/visualizers
""" """
from typing import Union, Iterable, Optional, Dict, Any, Callable from typing import Union, Iterable, Optional, Dict, Any, Callable
import warnings import warnings
@ -37,8 +37,8 @@ def render(
manual (bool): Don't parse `Doc` and instead expect a dict/list of dicts. manual (bool): Don't parse `Doc` and instead expect a dict/list of dicts.
RETURNS (str): Rendered HTML markup. RETURNS (str): Rendered HTML markup.
DOCS: https://spacy.io/api/top-level#displacy.render DOCS: https://nightly.spacy.io/api/top-level#displacy.render
USAGE: https://spacy.io/usage/visualizers USAGE: https://nightly.spacy.io/usage/visualizers
""" """
factories = { factories = {
"dep": (DependencyRenderer, parse_deps), "dep": (DependencyRenderer, parse_deps),
@ -88,8 +88,8 @@ def serve(
port (int): Port to serve visualisation. port (int): Port to serve visualisation.
host (str): Host to serve visualisation. host (str): Host to serve visualisation.
DOCS: https://spacy.io/api/top-level#displacy.serve DOCS: https://nightly.spacy.io/api/top-level#displacy.serve
USAGE: https://spacy.io/usage/visualizers USAGE: https://nightly.spacy.io/usage/visualizers
""" """
from wsgiref import simple_server from wsgiref import simple_server

View File

@ -249,6 +249,12 @@ class EntityRenderer:
colors = dict(DEFAULT_LABEL_COLORS) colors = dict(DEFAULT_LABEL_COLORS)
user_colors = registry.displacy_colors.get_all() user_colors = registry.displacy_colors.get_all()
for user_color in user_colors.values(): for user_color in user_colors.values():
if callable(user_color):
# Since this comes from the function registry, we want to make
# sure we support functions that *return* a dict of colors
user_color = user_color()
if not isinstance(user_color, dict):
raise ValueError(Errors.E925.format(obj=type(user_color)))
colors.update(user_color) colors.update(user_color)
colors.update(options.get("colors", {})) colors.update(options.get("colors", {}))
self.default_color = DEFAULT_ENTITY_COLOR self.default_color = DEFAULT_ENTITY_COLOR

View File

@ -22,7 +22,7 @@ class Warnings:
"generate a dependency visualization for it. Make sure the Doc " "generate a dependency visualization for it. Make sure the Doc "
"was processed with a model that supports dependency parsing, and " "was processed with a model that supports dependency parsing, and "
"not just a language class like `English()`. For more info, see " "not just a language class like `English()`. For more info, see "
"the docs:\nhttps://spacy.io/usage/models") "the docs:\nhttps://nightly.spacy.io/usage/models")
W006 = ("No entities to visualize found in Doc object. If this is " W006 = ("No entities to visualize found in Doc object. If this is "
"surprising to you, make sure the Doc was processed using a model " "surprising to you, make sure the Doc was processed using a model "
"that supports named entity recognition, and check the `doc.ents` " "that supports named entity recognition, and check the `doc.ents` "
@ -147,7 +147,7 @@ class Errors:
E010 = ("Word vectors set to length 0. This may be because you don't have " E010 = ("Word vectors set to length 0. This may be because you don't have "
"a model installed or loaded, or because your model doesn't " "a model installed or loaded, or because your model doesn't "
"include word vectors. For more info, see the docs:\n" "include word vectors. For more info, see the docs:\n"
"https://spacy.io/usage/models") "https://nightly.spacy.io/usage/models")
E011 = ("Unknown operator: '{op}'. Options: {opts}") E011 = ("Unknown operator: '{op}'. Options: {opts}")
E012 = ("Cannot add pattern for zero tokens to matcher.\nKey: {key}") E012 = ("Cannot add pattern for zero tokens to matcher.\nKey: {key}")
E014 = ("Unknown tag ID: {tag}") E014 = ("Unknown tag ID: {tag}")
@ -181,7 +181,7 @@ class Errors:
"list of (unicode, bool) tuples. Got bytes instance: {value}") "list of (unicode, bool) tuples. Got bytes instance: {value}")
E029 = ("noun_chunks requires the dependency parse, which requires a " E029 = ("noun_chunks requires the dependency parse, which requires a "
"statistical model to be installed and loaded. For more info, see " "statistical model to be installed and loaded. For more info, see "
"the documentation:\nhttps://spacy.io/usage/models") "the documentation:\nhttps://nightly.spacy.io/usage/models")
E030 = ("Sentence boundaries unset. You can add the 'sentencizer' " E030 = ("Sentence boundaries unset. You can add the 'sentencizer' "
"component to the pipeline with: " "component to the pipeline with: "
"nlp.add_pipe('sentencizer'). " "nlp.add_pipe('sentencizer'). "
@ -294,7 +294,7 @@ class Errors:
E102 = ("Can't merge non-disjoint spans. '{token}' is already part of " E102 = ("Can't merge non-disjoint spans. '{token}' is already part of "
"tokens to merge. If you want to find the longest non-overlapping " "tokens to merge. If you want to find the longest non-overlapping "
"spans, you can use the util.filter_spans helper:\n" "spans, you can use the util.filter_spans helper:\n"
"https://spacy.io/api/top-level#util.filter_spans") "https://nightly.spacy.io/api/top-level#util.filter_spans")
E103 = ("Trying to set conflicting doc.ents: '{span1}' and '{span2}'. A " E103 = ("Trying to set conflicting doc.ents: '{span1}' and '{span2}'. A "
"token can only be part of one entity, so make sure the entities " "token can only be part of one entity, so make sure the entities "
"you're setting don't overlap.") "you're setting don't overlap.")
@ -364,10 +364,10 @@ class Errors:
E137 = ("Expected 'dict' type, but got '{type}' from '{line}'. Make sure " E137 = ("Expected 'dict' type, but got '{type}' from '{line}'. Make sure "
"to provide a valid JSON object as input with either the `text` " "to provide a valid JSON object as input with either the `text` "
"or `tokens` key. For more info, see the docs:\n" "or `tokens` key. For more info, see the docs:\n"
"https://spacy.io/api/cli#pretrain-jsonl") "https://nightly.spacy.io/api/cli#pretrain-jsonl")
E138 = ("Invalid JSONL format for raw text '{text}'. Make sure the input " E138 = ("Invalid JSONL format for raw text '{text}'. Make sure the input "
"includes either the `text` or `tokens` key. For more info, see " "includes either the `text` or `tokens` key. For more info, see "
"the docs:\nhttps://spacy.io/api/cli#pretrain-jsonl") "the docs:\nhttps://nightly.spacy.io/api/cli#pretrain-jsonl")
E139 = ("Knowledge Base for component '{name}' is empty. Use the methods " E139 = ("Knowledge Base for component '{name}' is empty. Use the methods "
"kb.add_entity and kb.add_alias to add entries.") "kb.add_entity and kb.add_alias to add entries.")
E140 = ("The list of entities, prior probabilities and entity vectors " E140 = ("The list of entities, prior probabilities and entity vectors "
@ -476,6 +476,8 @@ class Errors:
E199 = ("Unable to merge 0-length span at doc[{start}:{end}].") E199 = ("Unable to merge 0-length span at doc[{start}:{end}].")
# TODO: fix numbering after merging develop into master # TODO: fix numbering after merging develop into master
E925 = ("Invalid color values for displaCy visualizer: expected dictionary "
"mapping label names to colors but got: {obj}")
E926 = ("It looks like you're trying to modify nlp.{attr} directly. This " E926 = ("It looks like you're trying to modify nlp.{attr} directly. This "
"doesn't work because it's an immutable computed property. If you " "doesn't work because it's an immutable computed property. If you "
"need to modify the pipeline, use the built-in methods like " "need to modify the pipeline, use the built-in methods like "

View File

@ -11,7 +11,7 @@ ItemT = TypeVar("ItemT")
BatcherT = Callable[[Iterable[ItemT]], Iterable[List[ItemT]]] BatcherT = Callable[[Iterable[ItemT]], Iterable[List[ItemT]]]
@registry.batchers("batch_by_padded.v1") @registry.batchers("spacy.batch_by_padded.v1")
def configure_minibatch_by_padded_size( def configure_minibatch_by_padded_size(
*, *,
size: Sizing, size: Sizing,
@ -46,7 +46,7 @@ def configure_minibatch_by_padded_size(
) )
@registry.batchers("batch_by_words.v1") @registry.batchers("spacy.batch_by_words.v1")
def configure_minibatch_by_words( def configure_minibatch_by_words(
*, *,
size: Sizing, size: Sizing,
@ -70,7 +70,7 @@ def configure_minibatch_by_words(
) )
@registry.batchers("batch_by_sequence.v1") @registry.batchers("spacy.batch_by_sequence.v1")
def configure_minibatch( def configure_minibatch(
size: Sizing, get_length: Optional[Callable[[ItemT], int]] = None size: Sizing, get_length: Optional[Callable[[ItemT], int]] = None
) -> BatcherT: ) -> BatcherT:

View File

@ -106,7 +106,7 @@ def conll_ner2docs(
raise ValueError( raise ValueError(
"The token-per-line NER file is not formatted correctly. " "The token-per-line NER file is not formatted correctly. "
"Try checking whitespace and delimiters. See " "Try checking whitespace and delimiters. See "
"https://spacy.io/api/cli#convert" "https://nightly.spacy.io/api/cli#convert"
) )
length = len(cols[0]) length = len(cols[0])
words.extend(cols[0]) words.extend(cols[0])

View File

@ -44,7 +44,7 @@ def read_iob(raw_sents, vocab, n_sents):
sent_tags = ["-"] * len(sent_words) sent_tags = ["-"] * len(sent_words)
else: else:
raise ValueError( raise ValueError(
"The sentence-per-line IOB/IOB2 file is not formatted correctly. Try checking whitespace and delimiters. See https://spacy.io/api/cli#convert" "The sentence-per-line IOB/IOB2 file is not formatted correctly. Try checking whitespace and delimiters. See https://nightly.spacy.io/api/cli#convert"
) )
words.extend(sent_words) words.extend(sent_words)
tags.extend(sent_tags) tags.extend(sent_tags)

View File

@ -38,7 +38,7 @@ class Corpus:
limit (int): Limit corpus to a subset of examples, e.g. for debugging. limit (int): Limit corpus to a subset of examples, e.g. for debugging.
Defaults to 0, which indicates no limit. Defaults to 0, which indicates no limit.
DOCS: https://spacy.io/api/corpus DOCS: https://nightly.spacy.io/api/corpus
""" """
def __init__( def __init__(
@ -83,7 +83,7 @@ class Corpus:
nlp (Language): The current nlp object. nlp (Language): The current nlp object.
YIELDS (Example): The examples. YIELDS (Example): The examples.
DOCS: https://spacy.io/api/corpus#call DOCS: https://nightly.spacy.io/api/corpus#call
""" """
ref_docs = self.read_docbin(nlp.vocab, self.walk_corpus(self.path)) ref_docs = self.read_docbin(nlp.vocab, self.walk_corpus(self.path))
if self.gold_preproc: if self.gold_preproc:

View File

@ -21,7 +21,7 @@ cdef class Candidate:
algorithm which will disambiguate the various candidates to the correct one. algorithm which will disambiguate the various candidates to the correct one.
Each candidate (alias, entity) pair is assigned to a certain prior probability. Each candidate (alias, entity) pair is assigned to a certain prior probability.
DOCS: https://spacy.io/api/kb/#candidate_init DOCS: https://nightly.spacy.io/api/kb/#candidate_init
""" """
def __init__(self, KnowledgeBase kb, entity_hash, entity_freq, entity_vector, alias_hash, prior_prob): def __init__(self, KnowledgeBase kb, entity_hash, entity_freq, entity_vector, alias_hash, prior_prob):
@ -79,7 +79,7 @@ cdef class KnowledgeBase:
"""A `KnowledgeBase` instance stores unique identifiers for entities and their textual aliases, """A `KnowledgeBase` instance stores unique identifiers for entities and their textual aliases,
to support entity linking of named entities to real-world concepts. to support entity linking of named entities to real-world concepts.
DOCS: https://spacy.io/api/kb DOCS: https://nightly.spacy.io/api/kb
""" """
def __init__(self, Vocab vocab, entity_vector_length): def __init__(self, Vocab vocab, entity_vector_length):

View File

@ -7,6 +7,7 @@ _concat_icons = CONCAT_ICONS.replace("\u00B0", "")
_currency = r"\$¢£€¥฿" _currency = r"\$¢£€¥฿"
_quotes = CONCAT_QUOTES.replace("'", "") _quotes = CONCAT_QUOTES.replace("'", "")
_units = UNITS.replace("%", "")
_prefixes = ( _prefixes = (
LIST_PUNCT LIST_PUNCT
@ -26,7 +27,7 @@ _suffixes = (
r"(?<=[0-9])\+", r"(?<=[0-9])\+",
r"(?<=°[FfCcKk])\.", r"(?<=°[FfCcKk])\.",
r"(?<=[0-9])(?:[{c}])".format(c=_currency), r"(?<=[0-9])(?:[{c}])".format(c=_currency),
r"(?<=[0-9])(?:{u})".format(u=UNITS), r"(?<=[0-9])(?:{u})".format(u=_units),
r"(?<=[{al}{e}{q}(?:{c})])\.".format( r"(?<=[{al}{e}{q}(?:{c})])\.".format(
al=ALPHA_LOWER, e=r"%²\-\+", q=CONCAT_QUOTES, c=_currency al=ALPHA_LOWER, e=r"%²\-\+", q=CONCAT_QUOTES, c=_currency
), ),

View File

@ -1,5 +1,5 @@
from typing import Optional, Any, Dict, Callable, Iterable, Union, List, Pattern from typing import Optional, Any, Dict, Callable, Iterable, Union, List, Pattern
from typing import Tuple, Iterator from typing import Tuple, Iterator, Optional
from dataclasses import dataclass from dataclasses import dataclass
import random import random
import itertools import itertools
@ -95,7 +95,7 @@ class Language:
object and processing pipeline. object and processing pipeline.
lang (str): Two-letter language ID, i.e. ISO code. lang (str): Two-letter language ID, i.e. ISO code.
DOCS: https://spacy.io/api/language DOCS: https://nightly.spacy.io/api/language
""" """
Defaults = BaseDefaults Defaults = BaseDefaults
@ -130,7 +130,7 @@ class Language:
create_tokenizer (Callable): Function that takes the nlp object and create_tokenizer (Callable): Function that takes the nlp object and
returns a tokenizer. returns a tokenizer.
DOCS: https://spacy.io/api/language#init DOCS: https://nightly.spacy.io/api/language#init
""" """
# We're only calling this to import all factories provided via entry # We're only calling this to import all factories provided via entry
# points. The factory decorator applied to these functions takes care # points. The factory decorator applied to these functions takes care
@ -185,14 +185,14 @@ class Language:
RETURNS (Dict[str, Any]): The meta. RETURNS (Dict[str, Any]): The meta.
DOCS: https://spacy.io/api/language#meta DOCS: https://nightly.spacy.io/api/language#meta
""" """
spacy_version = util.get_model_version_range(about.__version__) spacy_version = util.get_model_version_range(about.__version__)
if self.vocab.lang: if self.vocab.lang:
self._meta.setdefault("lang", self.vocab.lang) self._meta.setdefault("lang", self.vocab.lang)
else: else:
self._meta.setdefault("lang", self.lang) self._meta.setdefault("lang", self.lang)
self._meta.setdefault("name", "model") self._meta.setdefault("name", "pipeline")
self._meta.setdefault("version", "0.0.0") self._meta.setdefault("version", "0.0.0")
self._meta.setdefault("spacy_version", spacy_version) self._meta.setdefault("spacy_version", spacy_version)
self._meta.setdefault("description", "") self._meta.setdefault("description", "")
@ -225,7 +225,7 @@ class Language:
RETURNS (thinc.api.Config): The config. RETURNS (thinc.api.Config): The config.
DOCS: https://spacy.io/api/language#config DOCS: https://nightly.spacy.io/api/language#config
""" """
self._config.setdefault("nlp", {}) self._config.setdefault("nlp", {})
self._config.setdefault("training", {}) self._config.setdefault("training", {})
@ -433,7 +433,7 @@ class Language:
will be combined and normalized for the whole pipeline. will be combined and normalized for the whole pipeline.
func (Optional[Callable]): Factory function if not used as a decorator. func (Optional[Callable]): Factory function if not used as a decorator.
DOCS: https://spacy.io/api/language#factory DOCS: https://nightly.spacy.io/api/language#factory
""" """
if not isinstance(name, str): if not isinstance(name, str):
raise ValueError(Errors.E963.format(decorator="factory")) raise ValueError(Errors.E963.format(decorator="factory"))
@ -513,7 +513,7 @@ class Language:
Used for pipeline analysis. Used for pipeline analysis.
func (Optional[Callable]): Factory function if not used as a decorator. func (Optional[Callable]): Factory function if not used as a decorator.
DOCS: https://spacy.io/api/language#component DOCS: https://nightly.spacy.io/api/language#component
""" """
if name is not None and not isinstance(name, str): if name is not None and not isinstance(name, str):
raise ValueError(Errors.E963.format(decorator="component")) raise ValueError(Errors.E963.format(decorator="component"))
@ -579,7 +579,7 @@ class Language:
name (str): Name of pipeline component to get. name (str): Name of pipeline component to get.
RETURNS (callable): The pipeline component. RETURNS (callable): The pipeline component.
DOCS: https://spacy.io/api/language#get_pipe DOCS: https://nightly.spacy.io/api/language#get_pipe
""" """
for pipe_name, component in self._components: for pipe_name, component in self._components:
if pipe_name == name: if pipe_name == name:
@ -608,7 +608,7 @@ class Language:
arguments and types expected by the factory. arguments and types expected by the factory.
RETURNS (Callable[[Doc], Doc]): The pipeline component. RETURNS (Callable[[Doc], Doc]): The pipeline component.
DOCS: https://spacy.io/api/language#create_pipe DOCS: https://nightly.spacy.io/api/language#create_pipe
""" """
name = name if name is not None else factory_name name = name if name is not None else factory_name
if not isinstance(config, dict): if not isinstance(config, dict):
@ -722,7 +722,7 @@ class Language:
arguments and types expected by the factory. arguments and types expected by the factory.
RETURNS (Callable[[Doc], Doc]): The pipeline component. RETURNS (Callable[[Doc], Doc]): The pipeline component.
DOCS: https://spacy.io/api/language#add_pipe DOCS: https://nightly.spacy.io/api/language#add_pipe
""" """
if not isinstance(factory_name, str): if not isinstance(factory_name, str):
bad_val = repr(factory_name) bad_val = repr(factory_name)
@ -820,7 +820,7 @@ class Language:
name (str): Name of the component. name (str): Name of the component.
RETURNS (bool): Whether a component of the name exists in the pipeline. RETURNS (bool): Whether a component of the name exists in the pipeline.
DOCS: https://spacy.io/api/language#has_pipe DOCS: https://nightly.spacy.io/api/language#has_pipe
""" """
return name in self.pipe_names return name in self.pipe_names
@ -841,7 +841,7 @@ class Language:
validate (bool): Whether to validate the component config against the validate (bool): Whether to validate the component config against the
arguments and types expected by the factory. arguments and types expected by the factory.
DOCS: https://spacy.io/api/language#replace_pipe DOCS: https://nightly.spacy.io/api/language#replace_pipe
""" """
if name not in self.pipe_names: if name not in self.pipe_names:
raise ValueError(Errors.E001.format(name=name, opts=self.pipe_names)) raise ValueError(Errors.E001.format(name=name, opts=self.pipe_names))
@ -870,7 +870,7 @@ class Language:
old_name (str): Name of the component to rename. old_name (str): Name of the component to rename.
new_name (str): New name of the component. new_name (str): New name of the component.
DOCS: https://spacy.io/api/language#rename_pipe DOCS: https://nightly.spacy.io/api/language#rename_pipe
""" """
if old_name not in self.component_names: if old_name not in self.component_names:
raise ValueError( raise ValueError(
@ -891,7 +891,7 @@ class Language:
name (str): Name of the component to remove. name (str): Name of the component to remove.
RETURNS (tuple): A `(name, component)` tuple of the removed component. RETURNS (tuple): A `(name, component)` tuple of the removed component.
DOCS: https://spacy.io/api/language#remove_pipe DOCS: https://nightly.spacy.io/api/language#remove_pipe
""" """
if name not in self.component_names: if name not in self.component_names:
raise ValueError(Errors.E001.format(name=name, opts=self.component_names)) raise ValueError(Errors.E001.format(name=name, opts=self.component_names))
@ -944,7 +944,7 @@ class Language:
keyword arguments for specific components. keyword arguments for specific components.
RETURNS (Doc): A container for accessing the annotations. RETURNS (Doc): A container for accessing the annotations.
DOCS: https://spacy.io/api/language#call DOCS: https://nightly.spacy.io/api/language#call
""" """
if len(text) > self.max_length: if len(text) > self.max_length:
raise ValueError( raise ValueError(
@ -993,7 +993,7 @@ class Language:
disable (str or iterable): The name(s) of the pipes to disable disable (str or iterable): The name(s) of the pipes to disable
enable (str or iterable): The name(s) of the pipes to enable - all others will be disabled enable (str or iterable): The name(s) of the pipes to enable - all others will be disabled
DOCS: https://spacy.io/api/language#select_pipes DOCS: https://nightly.spacy.io/api/language#select_pipes
""" """
if enable is None and disable is None: if enable is None and disable is None:
raise ValueError(Errors.E991) raise ValueError(Errors.E991)
@ -1044,7 +1044,7 @@ class Language:
exclude (Iterable[str]): Names of components that shouldn't be updated. exclude (Iterable[str]): Names of components that shouldn't be updated.
RETURNS (Dict[str, float]): The updated losses dictionary RETURNS (Dict[str, float]): The updated losses dictionary
DOCS: https://spacy.io/api/language#update DOCS: https://nightly.spacy.io/api/language#update
""" """
if _ is not None: if _ is not None:
raise ValueError(Errors.E989) raise ValueError(Errors.E989)
@ -1106,7 +1106,7 @@ class Language:
>>> raw_batch = [Example.from_dict(nlp.make_doc(text), {}) for text in next(raw_text_batches)] >>> raw_batch = [Example.from_dict(nlp.make_doc(text), {}) for text in next(raw_text_batches)]
>>> nlp.rehearse(raw_batch) >>> nlp.rehearse(raw_batch)
DOCS: https://spacy.io/api/language#rehearse DOCS: https://nightly.spacy.io/api/language#rehearse
""" """
if len(examples) == 0: if len(examples) == 0:
return return
@ -1153,7 +1153,7 @@ class Language:
create_optimizer if it doesn't exist. create_optimizer if it doesn't exist.
RETURNS (thinc.api.Optimizer): The optimizer. RETURNS (thinc.api.Optimizer): The optimizer.
DOCS: https://spacy.io/api/language#begin_training DOCS: https://nightly.spacy.io/api/language#begin_training
""" """
# TODO: throw warning when get_gold_tuples is provided instead of get_examples # TODO: throw warning when get_gold_tuples is provided instead of get_examples
if get_examples is None: if get_examples is None:
@ -1200,7 +1200,7 @@ class Language:
sgd (Optional[Optimizer]): An optimizer. sgd (Optional[Optimizer]): An optimizer.
RETURNS (Optimizer): The optimizer. RETURNS (Optimizer): The optimizer.
DOCS: https://spacy.io/api/language#resume_training DOCS: https://nightly.spacy.io/api/language#resume_training
""" """
if device >= 0: # TODO: do we need this here? if device >= 0: # TODO: do we need this here?
require_gpu(device) require_gpu(device)
@ -1236,7 +1236,7 @@ class Language:
for the scorer. for the scorer.
RETURNS (Scorer): The scorer containing the evaluation results. RETURNS (Scorer): The scorer containing the evaluation results.
DOCS: https://spacy.io/api/language#evaluate DOCS: https://nightly.spacy.io/api/language#evaluate
""" """
validate_examples(examples, "Language.evaluate") validate_examples(examples, "Language.evaluate")
if component_cfg is None: if component_cfg is None:
@ -1275,7 +1275,7 @@ class Language:
return results return results
@contextmanager @contextmanager
def use_params(self, params: dict): def use_params(self, params: Optional[dict]):
"""Replace weights of models in the pipeline with those provided in the """Replace weights of models in the pipeline with those provided in the
params dictionary. Can be used as a contextmanager, in which case, params dictionary. Can be used as a contextmanager, in which case,
models go back to their original weights after the block. models go back to their original weights after the block.
@ -1286,8 +1286,11 @@ class Language:
>>> with nlp.use_params(optimizer.averages): >>> with nlp.use_params(optimizer.averages):
>>> nlp.to_disk("/tmp/checkpoint") >>> nlp.to_disk("/tmp/checkpoint")
DOCS: https://spacy.io/api/language#use_params DOCS: https://nightly.spacy.io/api/language#use_params
""" """
if not params:
yield
else:
contexts = [ contexts = [
pipe.use_params(params) pipe.use_params(params)
for name, pipe in self.pipeline for name, pipe in self.pipeline
@ -1330,7 +1333,7 @@ class Language:
n_process (int): Number of processors to process texts. If -1, set `multiprocessing.cpu_count()`. n_process (int): Number of processors to process texts. If -1, set `multiprocessing.cpu_count()`.
YIELDS (Doc): Documents in the order of the original text. YIELDS (Doc): Documents in the order of the original text.
DOCS: https://spacy.io/api/language#pipe DOCS: https://nightly.spacy.io/api/language#pipe
""" """
if n_process == -1: if n_process == -1:
n_process = mp.cpu_count() n_process = mp.cpu_count()
@ -1466,7 +1469,7 @@ class Language:
the types expected by the factory. the types expected by the factory.
RETURNS (Language): The initialized Language class. RETURNS (Language): The initialized Language class.
DOCS: https://spacy.io/api/language#from_config DOCS: https://nightly.spacy.io/api/language#from_config
""" """
if auto_fill: if auto_fill:
config = Config( config = Config(
@ -1579,7 +1582,7 @@ class Language:
it doesn't exist. it doesn't exist.
exclude (list): Names of components or serialization fields to exclude. exclude (list): Names of components or serialization fields to exclude.
DOCS: https://spacy.io/api/language#to_disk DOCS: https://nightly.spacy.io/api/language#to_disk
""" """
path = util.ensure_path(path) path = util.ensure_path(path)
serializers = {} serializers = {}
@ -1608,7 +1611,7 @@ class Language:
exclude (list): Names of components or serialization fields to exclude. exclude (list): Names of components or serialization fields to exclude.
RETURNS (Language): The modified `Language` object. RETURNS (Language): The modified `Language` object.
DOCS: https://spacy.io/api/language#from_disk DOCS: https://nightly.spacy.io/api/language#from_disk
""" """
def deserialize_meta(path: Path) -> None: def deserialize_meta(path: Path) -> None:
@ -1656,7 +1659,7 @@ class Language:
exclude (list): Names of components or serialization fields to exclude. exclude (list): Names of components or serialization fields to exclude.
RETURNS (bytes): The serialized form of the `Language` object. RETURNS (bytes): The serialized form of the `Language` object.
DOCS: https://spacy.io/api/language#to_bytes DOCS: https://nightly.spacy.io/api/language#to_bytes
""" """
serializers = {} serializers = {}
serializers["vocab"] = lambda: self.vocab.to_bytes() serializers["vocab"] = lambda: self.vocab.to_bytes()
@ -1680,7 +1683,7 @@ class Language:
exclude (list): Names of components or serialization fields to exclude. exclude (list): Names of components or serialization fields to exclude.
RETURNS (Language): The `Language` object. RETURNS (Language): The `Language` object.
DOCS: https://spacy.io/api/language#from_bytes DOCS: https://nightly.spacy.io/api/language#from_bytes
""" """
def deserialize_meta(b): def deserialize_meta(b):

View File

@ -30,7 +30,7 @@ cdef class Lexeme:
tag, dependency parse, or lemma (lemmatization depends on the tag, dependency parse, or lemma (lemmatization depends on the
part-of-speech tag). part-of-speech tag).
DOCS: https://spacy.io/api/lexeme DOCS: https://nightly.spacy.io/api/lexeme
""" """
def __init__(self, Vocab vocab, attr_t orth): def __init__(self, Vocab vocab, attr_t orth):
"""Create a Lexeme object. """Create a Lexeme object.

View File

@ -57,7 +57,7 @@ class Table(OrderedDict):
data (dict): The dictionary. data (dict): The dictionary.
name (str): Optional table name for reference. name (str): Optional table name for reference.
DOCS: https://spacy.io/api/lookups#table.from_dict DOCS: https://nightly.spacy.io/api/lookups#table.from_dict
""" """
self = cls(name=name) self = cls(name=name)
self.update(data) self.update(data)
@ -69,7 +69,7 @@ class Table(OrderedDict):
name (str): Optional table name for reference. name (str): Optional table name for reference.
data (dict): Initial data, used to hint Bloom Filter. data (dict): Initial data, used to hint Bloom Filter.
DOCS: https://spacy.io/api/lookups#table.init DOCS: https://nightly.spacy.io/api/lookups#table.init
""" """
OrderedDict.__init__(self) OrderedDict.__init__(self)
self.name = name self.name = name
@ -135,7 +135,7 @@ class Table(OrderedDict):
RETURNS (bytes): The serialized table. RETURNS (bytes): The serialized table.
DOCS: https://spacy.io/api/lookups#table.to_bytes DOCS: https://nightly.spacy.io/api/lookups#table.to_bytes
""" """
data = { data = {
"name": self.name, "name": self.name,
@ -150,7 +150,7 @@ class Table(OrderedDict):
bytes_data (bytes): The data to load. bytes_data (bytes): The data to load.
RETURNS (Table): The loaded table. RETURNS (Table): The loaded table.
DOCS: https://spacy.io/api/lookups#table.from_bytes DOCS: https://nightly.spacy.io/api/lookups#table.from_bytes
""" """
loaded = srsly.msgpack_loads(bytes_data) loaded = srsly.msgpack_loads(bytes_data)
data = loaded.get("dict", {}) data = loaded.get("dict", {})
@ -172,7 +172,7 @@ class Lookups:
def __init__(self) -> None: def __init__(self) -> None:
"""Initialize the Lookups object. """Initialize the Lookups object.
DOCS: https://spacy.io/api/lookups#init DOCS: https://nightly.spacy.io/api/lookups#init
""" """
self._tables = {} self._tables = {}
@ -201,7 +201,7 @@ class Lookups:
data (dict): Optional data to add to the table. data (dict): Optional data to add to the table.
RETURNS (Table): The newly added table. RETURNS (Table): The newly added table.
DOCS: https://spacy.io/api/lookups#add_table DOCS: https://nightly.spacy.io/api/lookups#add_table
""" """
if name in self.tables: if name in self.tables:
raise ValueError(Errors.E158.format(name=name)) raise ValueError(Errors.E158.format(name=name))
@ -215,7 +215,7 @@ class Lookups:
name (str): Name of the table to set. name (str): Name of the table to set.
table (Table): The Table to set. table (Table): The Table to set.
DOCS: https://spacy.io/api/lookups#set_table DOCS: https://nightly.spacy.io/api/lookups#set_table
""" """
self._tables[name] = table self._tables[name] = table
@ -227,7 +227,7 @@ class Lookups:
default (Any): Optional default value to return if table doesn't exist. default (Any): Optional default value to return if table doesn't exist.
RETURNS (Table): The table. RETURNS (Table): The table.
DOCS: https://spacy.io/api/lookups#get_table DOCS: https://nightly.spacy.io/api/lookups#get_table
""" """
if name not in self._tables: if name not in self._tables:
if default == UNSET: if default == UNSET:
@ -241,7 +241,7 @@ class Lookups:
name (str): Name of the table to remove. name (str): Name of the table to remove.
RETURNS (Table): The removed table. RETURNS (Table): The removed table.
DOCS: https://spacy.io/api/lookups#remove_table DOCS: https://nightly.spacy.io/api/lookups#remove_table
""" """
if name not in self._tables: if name not in self._tables:
raise KeyError(Errors.E159.format(name=name, tables=self.tables)) raise KeyError(Errors.E159.format(name=name, tables=self.tables))
@ -253,7 +253,7 @@ class Lookups:
name (str): Name of the table. name (str): Name of the table.
RETURNS (bool): Whether a table of that name exists. RETURNS (bool): Whether a table of that name exists.
DOCS: https://spacy.io/api/lookups#has_table DOCS: https://nightly.spacy.io/api/lookups#has_table
""" """
return name in self._tables return name in self._tables
@ -262,7 +262,7 @@ class Lookups:
RETURNS (bytes): The serialized Lookups. RETURNS (bytes): The serialized Lookups.
DOCS: https://spacy.io/api/lookups#to_bytes DOCS: https://nightly.spacy.io/api/lookups#to_bytes
""" """
return srsly.msgpack_dumps(self._tables) return srsly.msgpack_dumps(self._tables)
@ -272,7 +272,7 @@ class Lookups:
bytes_data (bytes): The data to load. bytes_data (bytes): The data to load.
RETURNS (Lookups): The loaded Lookups. RETURNS (Lookups): The loaded Lookups.
DOCS: https://spacy.io/api/lookups#from_bytes DOCS: https://nightly.spacy.io/api/lookups#from_bytes
""" """
self._tables = {} self._tables = {}
for key, value in srsly.msgpack_loads(bytes_data).items(): for key, value in srsly.msgpack_loads(bytes_data).items():
@ -287,7 +287,7 @@ class Lookups:
path (str / Path): The file path. path (str / Path): The file path.
DOCS: https://spacy.io/api/lookups#to_disk DOCS: https://nightly.spacy.io/api/lookups#to_disk
""" """
if len(self._tables): if len(self._tables):
path = ensure_path(path) path = ensure_path(path)
@ -306,7 +306,7 @@ class Lookups:
path (str / Path): The directory path. path (str / Path): The directory path.
RETURNS (Lookups): The loaded lookups. RETURNS (Lookups): The loaded lookups.
DOCS: https://spacy.io/api/lookups#from_disk DOCS: https://nightly.spacy.io/api/lookups#from_disk
""" """
path = ensure_path(path) path = ensure_path(path)
filepath = path / filename filepath = path / filename

View File

@ -31,8 +31,8 @@ DEF PADDING = 5
cdef class Matcher: cdef class Matcher:
"""Match sequences of tokens, based on pattern rules. """Match sequences of tokens, based on pattern rules.
DOCS: https://spacy.io/api/matcher DOCS: https://nightly.spacy.io/api/matcher
USAGE: https://spacy.io/usage/rule-based-matching USAGE: https://nightly.spacy.io/usage/rule-based-matching
""" """
def __init__(self, vocab, validate=True): def __init__(self, vocab, validate=True):

View File

@ -19,8 +19,8 @@ cdef class PhraseMatcher:
sequences based on lists of token descriptions, the `PhraseMatcher` accepts sequences based on lists of token descriptions, the `PhraseMatcher` accepts
match patterns in the form of `Doc` objects. match patterns in the form of `Doc` objects.
DOCS: https://spacy.io/api/phrasematcher DOCS: https://nightly.spacy.io/api/phrasematcher
USAGE: https://spacy.io/usage/rule-based-matching#phrasematcher USAGE: https://nightly.spacy.io/usage/rule-based-matching#phrasematcher
Adapted from FlashText: https://github.com/vi3k6i5/flashtext Adapted from FlashText: https://github.com/vi3k6i5/flashtext
MIT License (see `LICENSE`) MIT License (see `LICENSE`)
@ -34,7 +34,7 @@ cdef class PhraseMatcher:
attr (int / str): Token attribute to match on. attr (int / str): Token attribute to match on.
validate (bool): Perform additional validation when patterns are added. validate (bool): Perform additional validation when patterns are added.
DOCS: https://spacy.io/api/phrasematcher#init DOCS: https://nightly.spacy.io/api/phrasematcher#init
""" """
self.vocab = vocab self.vocab = vocab
self._callbacks = {} self._callbacks = {}
@ -61,7 +61,7 @@ cdef class PhraseMatcher:
RETURNS (int): The number of rules. RETURNS (int): The number of rules.
DOCS: https://spacy.io/api/phrasematcher#len DOCS: https://nightly.spacy.io/api/phrasematcher#len
""" """
return len(self._callbacks) return len(self._callbacks)
@ -71,7 +71,7 @@ cdef class PhraseMatcher:
key (str): The match ID. key (str): The match ID.
RETURNS (bool): Whether the matcher contains rules for this match ID. RETURNS (bool): Whether the matcher contains rules for this match ID.
DOCS: https://spacy.io/api/phrasematcher#contains DOCS: https://nightly.spacy.io/api/phrasematcher#contains
""" """
return key in self._callbacks return key in self._callbacks
@ -85,7 +85,7 @@ cdef class PhraseMatcher:
key (str): The match ID. key (str): The match ID.
DOCS: https://spacy.io/api/phrasematcher#remove DOCS: https://nightly.spacy.io/api/phrasematcher#remove
""" """
if key not in self._docs: if key not in self._docs:
raise KeyError(key) raise KeyError(key)
@ -164,7 +164,7 @@ cdef class PhraseMatcher:
as variable arguments. Will be ignored if a list of patterns is as variable arguments. Will be ignored if a list of patterns is
provided as the second argument. provided as the second argument.
DOCS: https://spacy.io/api/phrasematcher#add DOCS: https://nightly.spacy.io/api/phrasematcher#add
""" """
if docs is None or hasattr(docs, "__call__"): # old API if docs is None or hasattr(docs, "__call__"): # old API
on_match = docs on_match = docs
@ -228,7 +228,7 @@ cdef class PhraseMatcher:
`doc[start:end]`. The `match_id` is an integer. If as_spans is set `doc[start:end]`. The `match_id` is an integer. If as_spans is set
to True, a list of Span objects is returned. to True, a list of Span objects is returned.
DOCS: https://spacy.io/api/phrasematcher#call DOCS: https://nightly.spacy.io/api/phrasematcher#call
""" """
matches = [] matches = []
if doc is None or len(doc) == 0: if doc is None or len(doc) == 0:

View File

@ -24,7 +24,7 @@ def build_nel_encoder(tok2vec: Model, nO: Optional[int] = None) -> Model:
return model return model
@registry.assets.register("spacy.KBFromFile.v1") @registry.misc.register("spacy.KBFromFile.v1")
def load_kb(kb_path: str) -> Callable[[Vocab], KnowledgeBase]: def load_kb(kb_path: str) -> Callable[[Vocab], KnowledgeBase]:
def kb_from_file(vocab): def kb_from_file(vocab):
kb = KnowledgeBase(vocab, entity_vector_length=1) kb = KnowledgeBase(vocab, entity_vector_length=1)
@ -34,7 +34,7 @@ def load_kb(kb_path: str) -> Callable[[Vocab], KnowledgeBase]:
return kb_from_file return kb_from_file
@registry.assets.register("spacy.EmptyKB.v1") @registry.misc.register("spacy.EmptyKB.v1")
def empty_kb(entity_vector_length: int) -> Callable[[Vocab], KnowledgeBase]: def empty_kb(entity_vector_length: int) -> Callable[[Vocab], KnowledgeBase]:
def empty_kb_factory(vocab): def empty_kb_factory(vocab):
return KnowledgeBase(vocab=vocab, entity_vector_length=entity_vector_length) return KnowledgeBase(vocab=vocab, entity_vector_length=entity_vector_length)
@ -42,6 +42,6 @@ def empty_kb(entity_vector_length: int) -> Callable[[Vocab], KnowledgeBase]:
return empty_kb_factory return empty_kb_factory
@registry.assets.register("spacy.CandidateGenerator.v1") @registry.misc.register("spacy.CandidateGenerator.v1")
def create_candidates() -> Callable[[KnowledgeBase, "Span"], Iterable[Candidate]]: def create_candidates() -> Callable[[KnowledgeBase, "Span"], Iterable[Candidate]]:
return get_candidates return get_candidates

View File

@ -38,7 +38,7 @@ class AttributeRuler(Pipe):
"""Set token-level attributes for tokens matched by Matcher patterns. """Set token-level attributes for tokens matched by Matcher patterns.
Additionally supports importing patterns from tag maps and morph rules. Additionally supports importing patterns from tag maps and morph rules.
DOCS: https://spacy.io/api/attributeruler DOCS: https://nightly.spacy.io/api/attributeruler
""" """
def __init__( def __init__(
@ -59,7 +59,7 @@ class AttributeRuler(Pipe):
RETURNS (AttributeRuler): The AttributeRuler component. RETURNS (AttributeRuler): The AttributeRuler component.
DOCS: https://spacy.io/api/attributeruler#init DOCS: https://nightly.spacy.io/api/attributeruler#init
""" """
self.name = name self.name = name
self.vocab = vocab self.vocab = vocab
@ -77,7 +77,7 @@ class AttributeRuler(Pipe):
doc (Doc): The document to process. doc (Doc): The document to process.
RETURNS (Doc): The processed Doc. RETURNS (Doc): The processed Doc.
DOCS: https://spacy.io/api/attributeruler#call DOCS: https://nightly.spacy.io/api/attributeruler#call
""" """
matches = sorted(self.matcher(doc)) matches = sorted(self.matcher(doc))
@ -121,7 +121,7 @@ class AttributeRuler(Pipe):
tag_map (dict): The tag map that maps fine-grained tags to tag_map (dict): The tag map that maps fine-grained tags to
coarse-grained tags and morphological features. coarse-grained tags and morphological features.
DOCS: https://spacy.io/api/attributeruler#load_from_morph_rules DOCS: https://nightly.spacy.io/api/attributeruler#load_from_morph_rules
""" """
for tag, attrs in tag_map.items(): for tag, attrs in tag_map.items():
pattern = [{"TAG": tag}] pattern = [{"TAG": tag}]
@ -139,7 +139,7 @@ class AttributeRuler(Pipe):
fine-grained tags to coarse-grained tags, lemmas and morphological fine-grained tags to coarse-grained tags, lemmas and morphological
features. features.
DOCS: https://spacy.io/api/attributeruler#load_from_morph_rules DOCS: https://nightly.spacy.io/api/attributeruler#load_from_morph_rules
""" """
for tag in morph_rules: for tag in morph_rules:
for word in morph_rules[tag]: for word in morph_rules[tag]:
@ -163,7 +163,7 @@ class AttributeRuler(Pipe):
index (int): The index of the token in the matched span to modify. May index (int): The index of the token in the matched span to modify. May
be negative to index from the end of the span. Defaults to 0. be negative to index from the end of the span. Defaults to 0.
DOCS: https://spacy.io/api/attributeruler#add DOCS: https://nightly.spacy.io/api/attributeruler#add
""" """
self.matcher.add(len(self.attrs), patterns) self.matcher.add(len(self.attrs), patterns)
self._attrs_unnormed.append(attrs) self._attrs_unnormed.append(attrs)
@ -178,7 +178,7 @@ class AttributeRuler(Pipe):
as the arguments to AttributeRuler.add (patterns/attrs/index) to as the arguments to AttributeRuler.add (patterns/attrs/index) to
add as patterns. add as patterns.
DOCS: https://spacy.io/api/attributeruler#add_patterns DOCS: https://nightly.spacy.io/api/attributeruler#add_patterns
""" """
for p in pattern_dicts: for p in pattern_dicts:
self.add(**p) self.add(**p)
@ -203,7 +203,7 @@ class AttributeRuler(Pipe):
Scorer.score_token_attr for the attributes "tag", "pos", "morph" Scorer.score_token_attr for the attributes "tag", "pos", "morph"
and "lemma" for the target token attributes. and "lemma" for the target token attributes.
DOCS: https://spacy.io/api/tagger#score DOCS: https://nightly.spacy.io/api/tagger#score
""" """
validate_examples(examples, "AttributeRuler.score") validate_examples(examples, "AttributeRuler.score")
results = {} results = {}
@ -227,7 +227,7 @@ class AttributeRuler(Pipe):
exclude (Iterable[str]): String names of serialization fields to exclude. exclude (Iterable[str]): String names of serialization fields to exclude.
RETURNS (bytes): The serialized object. RETURNS (bytes): The serialized object.
DOCS: https://spacy.io/api/attributeruler#to_bytes DOCS: https://nightly.spacy.io/api/attributeruler#to_bytes
""" """
serialize = {} serialize = {}
serialize["vocab"] = self.vocab.to_bytes serialize["vocab"] = self.vocab.to_bytes
@ -243,7 +243,7 @@ class AttributeRuler(Pipe):
exclude (Iterable[str]): String names of serialization fields to exclude. exclude (Iterable[str]): String names of serialization fields to exclude.
returns (AttributeRuler): The loaded object. returns (AttributeRuler): The loaded object.
DOCS: https://spacy.io/api/attributeruler#from_bytes DOCS: https://nightly.spacy.io/api/attributeruler#from_bytes
""" """
def load_patterns(b): def load_patterns(b):
@ -264,7 +264,7 @@ class AttributeRuler(Pipe):
path (Union[Path, str]): A path to a directory. path (Union[Path, str]): A path to a directory.
exclude (Iterable[str]): String names of serialization fields to exclude. exclude (Iterable[str]): String names of serialization fields to exclude.
DOCS: https://spacy.io/api/attributeruler#to_disk DOCS: https://nightly.spacy.io/api/attributeruler#to_disk
""" """
serialize = { serialize = {
"vocab": lambda p: self.vocab.to_disk(p), "vocab": lambda p: self.vocab.to_disk(p),
@ -279,7 +279,7 @@ class AttributeRuler(Pipe):
path (Union[Path, str]): A path to a directory. path (Union[Path, str]): A path to a directory.
exclude (Iterable[str]): String names of serialization fields to exclude. exclude (Iterable[str]): String names of serialization fields to exclude.
DOCS: https://spacy.io/api/attributeruler#from_disk DOCS: https://nightly.spacy.io/api/attributeruler#from_disk
""" """
def load_patterns(p): def load_patterns(p):

View File

@ -105,7 +105,7 @@ def make_parser(
cdef class DependencyParser(Parser): cdef class DependencyParser(Parser):
"""Pipeline component for dependency parsing. """Pipeline component for dependency parsing.
DOCS: https://spacy.io/api/dependencyparser DOCS: https://nightly.spacy.io/api/dependencyparser
""" """
TransitionSystem = ArcEager TransitionSystem = ArcEager
@ -146,7 +146,7 @@ cdef class DependencyParser(Parser):
RETURNS (Dict[str, Any]): The scores, produced by Scorer.score_spans RETURNS (Dict[str, Any]): The scores, produced by Scorer.score_spans
and Scorer.score_deps. and Scorer.score_deps.
DOCS: https://spacy.io/api/dependencyparser#score DOCS: https://nightly.spacy.io/api/dependencyparser#score
""" """
validate_examples(examples, "DependencyParser.score") validate_examples(examples, "DependencyParser.score")
def dep_getter(token, attr): def dep_getter(token, attr):

View File

@ -39,12 +39,12 @@ DEFAULT_NEL_MODEL = Config().from_str(default_model_config)["model"]
requires=["doc.ents", "doc.sents", "token.ent_iob", "token.ent_type"], requires=["doc.ents", "doc.sents", "token.ent_iob", "token.ent_type"],
assigns=["token.ent_kb_id"], assigns=["token.ent_kb_id"],
default_config={ default_config={
"kb_loader": {"@assets": "spacy.EmptyKB.v1", "entity_vector_length": 64}, "kb_loader": {"@misc": "spacy.EmptyKB.v1", "entity_vector_length": 64},
"model": DEFAULT_NEL_MODEL, "model": DEFAULT_NEL_MODEL,
"labels_discard": [], "labels_discard": [],
"incl_prior": True, "incl_prior": True,
"incl_context": True, "incl_context": True,
"get_candidates": {"@assets": "spacy.CandidateGenerator.v1"}, "get_candidates": {"@misc": "spacy.CandidateGenerator.v1"},
}, },
) )
def make_entity_linker( def make_entity_linker(
@ -83,7 +83,7 @@ def make_entity_linker(
class EntityLinker(Pipe): class EntityLinker(Pipe):
"""Pipeline component for named entity linking. """Pipeline component for named entity linking.
DOCS: https://spacy.io/api/entitylinker DOCS: https://nightly.spacy.io/api/entitylinker
""" """
NIL = "NIL" # string used to refer to a non-existing link NIL = "NIL" # string used to refer to a non-existing link
@ -111,7 +111,7 @@ class EntityLinker(Pipe):
incl_prior (bool): Whether or not to include prior probabilities from the KB in the model. incl_prior (bool): Whether or not to include prior probabilities from the KB in the model.
incl_context (bool): Whether or not to include the local context in the model. incl_context (bool): Whether or not to include the local context in the model.
DOCS: https://spacy.io/api/entitylinker#init DOCS: https://nightly.spacy.io/api/entitylinker#init
""" """
self.vocab = vocab self.vocab = vocab
self.model = model self.model = model
@ -151,7 +151,7 @@ class EntityLinker(Pipe):
create_optimizer if it doesn't exist. create_optimizer if it doesn't exist.
RETURNS (thinc.api.Optimizer): The optimizer. RETURNS (thinc.api.Optimizer): The optimizer.
DOCS: https://spacy.io/api/entitylinker#begin_training DOCS: https://nightly.spacy.io/api/entitylinker#begin_training
""" """
self.require_kb() self.require_kb()
nO = self.kb.entity_vector_length nO = self.kb.entity_vector_length
@ -182,7 +182,7 @@ class EntityLinker(Pipe):
Updated using the component name as the key. Updated using the component name as the key.
RETURNS (Dict[str, float]): The updated losses dictionary. RETURNS (Dict[str, float]): The updated losses dictionary.
DOCS: https://spacy.io/api/entitylinker#update DOCS: https://nightly.spacy.io/api/entitylinker#update
""" """
self.require_kb() self.require_kb()
if losses is None: if losses is None:
@ -264,7 +264,7 @@ class EntityLinker(Pipe):
doc (Doc): The document to process. doc (Doc): The document to process.
RETURNS (Doc): The processed Doc. RETURNS (Doc): The processed Doc.
DOCS: https://spacy.io/api/entitylinker#call DOCS: https://nightly.spacy.io/api/entitylinker#call
""" """
kb_ids = self.predict([doc]) kb_ids = self.predict([doc])
self.set_annotations([doc], kb_ids) self.set_annotations([doc], kb_ids)
@ -279,7 +279,7 @@ class EntityLinker(Pipe):
batch_size (int): The number of documents to buffer. batch_size (int): The number of documents to buffer.
YIELDS (Doc): Processed documents in order. YIELDS (Doc): Processed documents in order.
DOCS: https://spacy.io/api/entitylinker#pipe DOCS: https://nightly.spacy.io/api/entitylinker#pipe
""" """
for docs in util.minibatch(stream, size=batch_size): for docs in util.minibatch(stream, size=batch_size):
kb_ids = self.predict(docs) kb_ids = self.predict(docs)
@ -294,7 +294,7 @@ class EntityLinker(Pipe):
docs (Iterable[Doc]): The documents to predict. docs (Iterable[Doc]): The documents to predict.
RETURNS (List[int]): The models prediction for each document. RETURNS (List[int]): The models prediction for each document.
DOCS: https://spacy.io/api/entitylinker#predict DOCS: https://nightly.spacy.io/api/entitylinker#predict
""" """
self.require_kb() self.require_kb()
entity_count = 0 entity_count = 0
@ -391,7 +391,7 @@ class EntityLinker(Pipe):
docs (Iterable[Doc]): The documents to modify. docs (Iterable[Doc]): The documents to modify.
kb_ids (List[str]): The IDs to set, produced by EntityLinker.predict. kb_ids (List[str]): The IDs to set, produced by EntityLinker.predict.
DOCS: https://spacy.io/api/entitylinker#set_annotations DOCS: https://nightly.spacy.io/api/entitylinker#set_annotations
""" """
count_ents = len([ent for doc in docs for ent in doc.ents]) count_ents = len([ent for doc in docs for ent in doc.ents])
if count_ents != len(kb_ids): if count_ents != len(kb_ids):
@ -412,7 +412,7 @@ class EntityLinker(Pipe):
path (str / Path): Path to a directory. path (str / Path): Path to a directory.
exclude (Iterable[str]): String names of serialization fields to exclude. exclude (Iterable[str]): String names of serialization fields to exclude.
DOCS: https://spacy.io/api/entitylinker#to_disk DOCS: https://nightly.spacy.io/api/entitylinker#to_disk
""" """
serialize = {} serialize = {}
serialize["cfg"] = lambda p: srsly.write_json(p, self.cfg) serialize["cfg"] = lambda p: srsly.write_json(p, self.cfg)
@ -430,7 +430,7 @@ class EntityLinker(Pipe):
exclude (Iterable[str]): String names of serialization fields to exclude. exclude (Iterable[str]): String names of serialization fields to exclude.
RETURNS (EntityLinker): The modified EntityLinker object. RETURNS (EntityLinker): The modified EntityLinker object.
DOCS: https://spacy.io/api/entitylinker#from_disk DOCS: https://nightly.spacy.io/api/entitylinker#from_disk
""" """
def load_model(p): def load_model(p):

View File

@ -53,8 +53,8 @@ class EntityRuler:
purely rule-based entity recognition system. After initialization, the purely rule-based entity recognition system. After initialization, the
component is typically added to the pipeline using `nlp.add_pipe`. component is typically added to the pipeline using `nlp.add_pipe`.
DOCS: https://spacy.io/api/entityruler DOCS: https://nightly.spacy.io/api/entityruler
USAGE: https://spacy.io/usage/rule-based-matching#entityruler USAGE: https://nightly.spacy.io/usage/rule-based-matching#entityruler
""" """
def __init__( def __init__(
@ -88,7 +88,7 @@ class EntityRuler:
added by the model, overwrite them by matches if necessary. added by the model, overwrite them by matches if necessary.
ent_id_sep (str): Separator used internally for entity IDs. ent_id_sep (str): Separator used internally for entity IDs.
DOCS: https://spacy.io/api/entityruler#init DOCS: https://nightly.spacy.io/api/entityruler#init
""" """
self.nlp = nlp self.nlp = nlp
self.name = name self.name = name
@ -127,7 +127,7 @@ class EntityRuler:
doc (Doc): The Doc object in the pipeline. doc (Doc): The Doc object in the pipeline.
RETURNS (Doc): The Doc with added entities, if available. RETURNS (Doc): The Doc with added entities, if available.
DOCS: https://spacy.io/api/entityruler#call DOCS: https://nightly.spacy.io/api/entityruler#call
""" """
matches = list(self.matcher(doc)) + list(self.phrase_matcher(doc)) matches = list(self.matcher(doc)) + list(self.phrase_matcher(doc))
matches = set( matches = set(
@ -165,7 +165,7 @@ class EntityRuler:
RETURNS (set): The string labels. RETURNS (set): The string labels.
DOCS: https://spacy.io/api/entityruler#labels DOCS: https://nightly.spacy.io/api/entityruler#labels
""" """
keys = set(self.token_patterns.keys()) keys = set(self.token_patterns.keys())
keys.update(self.phrase_patterns.keys()) keys.update(self.phrase_patterns.keys())
@ -185,7 +185,7 @@ class EntityRuler:
RETURNS (set): The string entity ids. RETURNS (set): The string entity ids.
DOCS: https://spacy.io/api/entityruler#ent_ids DOCS: https://nightly.spacy.io/api/entityruler#ent_ids
""" """
keys = set(self.token_patterns.keys()) keys = set(self.token_patterns.keys())
keys.update(self.phrase_patterns.keys()) keys.update(self.phrase_patterns.keys())
@ -203,7 +203,7 @@ class EntityRuler:
RETURNS (list): The original patterns, one dictionary per pattern. RETURNS (list): The original patterns, one dictionary per pattern.
DOCS: https://spacy.io/api/entityruler#patterns DOCS: https://nightly.spacy.io/api/entityruler#patterns
""" """
all_patterns = [] all_patterns = []
for label, patterns in self.token_patterns.items(): for label, patterns in self.token_patterns.items():
@ -230,7 +230,7 @@ class EntityRuler:
patterns (list): The patterns to add. patterns (list): The patterns to add.
DOCS: https://spacy.io/api/entityruler#add_patterns DOCS: https://nightly.spacy.io/api/entityruler#add_patterns
""" """
# disable the nlp components after this one in case they hadn't been initialized / deserialised yet # disable the nlp components after this one in case they hadn't been initialized / deserialised yet
@ -324,7 +324,7 @@ class EntityRuler:
patterns_bytes (bytes): The bytestring to load. patterns_bytes (bytes): The bytestring to load.
RETURNS (EntityRuler): The loaded entity ruler. RETURNS (EntityRuler): The loaded entity ruler.
DOCS: https://spacy.io/api/entityruler#from_bytes DOCS: https://nightly.spacy.io/api/entityruler#from_bytes
""" """
cfg = srsly.msgpack_loads(patterns_bytes) cfg = srsly.msgpack_loads(patterns_bytes)
self.clear() self.clear()
@ -346,7 +346,7 @@ class EntityRuler:
RETURNS (bytes): The serialized patterns. RETURNS (bytes): The serialized patterns.
DOCS: https://spacy.io/api/entityruler#to_bytes DOCS: https://nightly.spacy.io/api/entityruler#to_bytes
""" """
serial = { serial = {
"overwrite": self.overwrite, "overwrite": self.overwrite,
@ -365,7 +365,7 @@ class EntityRuler:
path (str / Path): The JSONL file to load. path (str / Path): The JSONL file to load.
RETURNS (EntityRuler): The loaded entity ruler. RETURNS (EntityRuler): The loaded entity ruler.
DOCS: https://spacy.io/api/entityruler#from_disk DOCS: https://nightly.spacy.io/api/entityruler#from_disk
""" """
path = ensure_path(path) path = ensure_path(path)
self.clear() self.clear()
@ -401,7 +401,7 @@ class EntityRuler:
path (str / Path): The JSONL file to save. path (str / Path): The JSONL file to save.
DOCS: https://spacy.io/api/entityruler#to_disk DOCS: https://nightly.spacy.io/api/entityruler#to_disk
""" """
path = ensure_path(path) path = ensure_path(path)
cfg = { cfg = {

View File

@ -15,7 +15,7 @@ def merge_noun_chunks(doc: Doc) -> Doc:
doc (Doc): The Doc object. doc (Doc): The Doc object.
RETURNS (Doc): The Doc object with merged noun chunks. RETURNS (Doc): The Doc object with merged noun chunks.
DOCS: https://spacy.io/api/pipeline-functions#merge_noun_chunks DOCS: https://nightly.spacy.io/api/pipeline-functions#merge_noun_chunks
""" """
if not doc.is_parsed: if not doc.is_parsed:
return doc return doc
@ -37,7 +37,7 @@ def merge_entities(doc: Doc):
doc (Doc): The Doc object. doc (Doc): The Doc object.
RETURNS (Doc): The Doc object with merged entities. RETURNS (Doc): The Doc object with merged entities.
DOCS: https://spacy.io/api/pipeline-functions#merge_entities DOCS: https://nightly.spacy.io/api/pipeline-functions#merge_entities
""" """
with doc.retokenize() as retokenizer: with doc.retokenize() as retokenizer:
for ent in doc.ents: for ent in doc.ents:
@ -54,7 +54,7 @@ def merge_subtokens(doc: Doc, label: str = "subtok") -> Doc:
label (str): The subtoken dependency label. label (str): The subtoken dependency label.
RETURNS (Doc): The Doc object with merged subtokens. RETURNS (Doc): The Doc object with merged subtokens.
DOCS: https://spacy.io/api/pipeline-functions#merge_subtokens DOCS: https://nightly.spacy.io/api/pipeline-functions#merge_subtokens
""" """
# TODO: make stateful component with "label" config # TODO: make stateful component with "label" config
merger = Matcher(doc.vocab) merger = Matcher(doc.vocab)

View File

@ -43,7 +43,7 @@ class Lemmatizer(Pipe):
The Lemmatizer supports simple part-of-speech-sensitive suffix rules and The Lemmatizer supports simple part-of-speech-sensitive suffix rules and
lookup tables. lookup tables.
DOCS: https://spacy.io/api/lemmatizer DOCS: https://nightly.spacy.io/api/lemmatizer
""" """
@classmethod @classmethod
@ -54,7 +54,7 @@ class Lemmatizer(Pipe):
mode (str): The lemmatizer mode. mode (str): The lemmatizer mode.
RETURNS (dict): The lookups configuration settings for this mode. RETURNS (dict): The lookups configuration settings for this mode.
DOCS: https://spacy.io/api/lemmatizer#get_lookups_config DOCS: https://nightly.spacy.io/api/lemmatizer#get_lookups_config
""" """
if mode == "lookup": if mode == "lookup":
return { return {
@ -80,7 +80,7 @@ class Lemmatizer(Pipe):
lookups should be loaded. lookups should be loaded.
RETURNS (Lookups): The Lookups object. RETURNS (Lookups): The Lookups object.
DOCS: https://spacy.io/api/lemmatizer#get_lookups_config DOCS: https://nightly.spacy.io/api/lemmatizer#get_lookups_config
""" """
config = cls.get_lookups_config(mode) config = cls.get_lookups_config(mode)
required_tables = config.get("required_tables", []) required_tables = config.get("required_tables", [])
@ -123,7 +123,7 @@ class Lemmatizer(Pipe):
overwrite (bool): Whether to overwrite existing lemmas. Defaults to overwrite (bool): Whether to overwrite existing lemmas. Defaults to
`False`. `False`.
DOCS: https://spacy.io/api/lemmatizer#init DOCS: https://nightly.spacy.io/api/lemmatizer#init
""" """
self.vocab = vocab self.vocab = vocab
self.model = model self.model = model
@ -152,7 +152,7 @@ class Lemmatizer(Pipe):
doc (Doc): The Doc to process. doc (Doc): The Doc to process.
RETURNS (Doc): The processed Doc. RETURNS (Doc): The processed Doc.
DOCS: https://spacy.io/api/lemmatizer#call DOCS: https://nightly.spacy.io/api/lemmatizer#call
""" """
for token in doc: for token in doc:
if self.overwrite or token.lemma == 0: if self.overwrite or token.lemma == 0:
@ -168,7 +168,7 @@ class Lemmatizer(Pipe):
batch_size (int): The number of documents to buffer. batch_size (int): The number of documents to buffer.
YIELDS (Doc): Processed documents in order. YIELDS (Doc): Processed documents in order.
DOCS: https://spacy.io/api/lemmatizer#pipe DOCS: https://nightly.spacy.io/api/lemmatizer#pipe
""" """
for doc in stream: for doc in stream:
doc = self(doc) doc = self(doc)
@ -180,7 +180,7 @@ class Lemmatizer(Pipe):
token (Token): The token to lemmatize. token (Token): The token to lemmatize.
RETURNS (list): The available lemmas for the string. RETURNS (list): The available lemmas for the string.
DOCS: https://spacy.io/api/lemmatizer#lookup_lemmatize DOCS: https://nightly.spacy.io/api/lemmatizer#lookup_lemmatize
""" """
lookup_table = self.lookups.get_table("lemma_lookup", {}) lookup_table = self.lookups.get_table("lemma_lookup", {})
result = lookup_table.get(token.text, token.text) result = lookup_table.get(token.text, token.text)
@ -194,7 +194,7 @@ class Lemmatizer(Pipe):
token (Token): The token to lemmatize. token (Token): The token to lemmatize.
RETURNS (list): The available lemmas for the string. RETURNS (list): The available lemmas for the string.
DOCS: https://spacy.io/api/lemmatizer#rule_lemmatize DOCS: https://nightly.spacy.io/api/lemmatizer#rule_lemmatize
""" """
cache_key = (token.orth, token.pos, token.morph) cache_key = (token.orth, token.pos, token.morph)
if cache_key in self.cache: if cache_key in self.cache:
@ -260,7 +260,7 @@ class Lemmatizer(Pipe):
token (Token): The token. token (Token): The token.
RETURNS (bool): Whether the token is a base form. RETURNS (bool): Whether the token is a base form.
DOCS: https://spacy.io/api/lemmatizer#is_base_form DOCS: https://nightly.spacy.io/api/lemmatizer#is_base_form
""" """
return False return False
@ -270,7 +270,7 @@ class Lemmatizer(Pipe):
examples (Iterable[Example]): The examples to score. examples (Iterable[Example]): The examples to score.
RETURNS (Dict[str, Any]): The scores. RETURNS (Dict[str, Any]): The scores.
DOCS: https://spacy.io/api/lemmatizer#score DOCS: https://nightly.spacy.io/api/lemmatizer#score
""" """
validate_examples(examples, "Lemmatizer.score") validate_examples(examples, "Lemmatizer.score")
return Scorer.score_token_attr(examples, "lemma", **kwargs) return Scorer.score_token_attr(examples, "lemma", **kwargs)
@ -282,7 +282,7 @@ class Lemmatizer(Pipe):
it doesn't exist. it doesn't exist.
exclude (list): String names of serialization fields to exclude. exclude (list): String names of serialization fields to exclude.
DOCS: https://spacy.io/api/vocab#to_disk DOCS: https://nightly.spacy.io/api/vocab#to_disk
""" """
serialize = {} serialize = {}
serialize["vocab"] = lambda p: self.vocab.to_disk(p) serialize["vocab"] = lambda p: self.vocab.to_disk(p)
@ -297,7 +297,7 @@ class Lemmatizer(Pipe):
exclude (list): String names of serialization fields to exclude. exclude (list): String names of serialization fields to exclude.
RETURNS (Vocab): The modified `Vocab` object. RETURNS (Vocab): The modified `Vocab` object.
DOCS: https://spacy.io/api/vocab#to_disk DOCS: https://nightly.spacy.io/api/vocab#to_disk
""" """
deserialize = {} deserialize = {}
deserialize["vocab"] = lambda p: self.vocab.from_disk(p) deserialize["vocab"] = lambda p: self.vocab.from_disk(p)
@ -310,7 +310,7 @@ class Lemmatizer(Pipe):
exclude (list): String names of serialization fields to exclude. exclude (list): String names of serialization fields to exclude.
RETURNS (bytes): The serialized form of the `Vocab` object. RETURNS (bytes): The serialized form of the `Vocab` object.
DOCS: https://spacy.io/api/vocab#to_bytes DOCS: https://nightly.spacy.io/api/vocab#to_bytes
""" """
serialize = {} serialize = {}
serialize["vocab"] = self.vocab.to_bytes serialize["vocab"] = self.vocab.to_bytes
@ -324,7 +324,7 @@ class Lemmatizer(Pipe):
exclude (list): String names of serialization fields to exclude. exclude (list): String names of serialization fields to exclude.
RETURNS (Vocab): The `Vocab` object. RETURNS (Vocab): The `Vocab` object.
DOCS: https://spacy.io/api/vocab#from_bytes DOCS: https://nightly.spacy.io/api/vocab#from_bytes
""" """
deserialize = {} deserialize = {}
deserialize["vocab"] = lambda b: self.vocab.from_bytes(b) deserialize["vocab"] = lambda b: self.vocab.from_bytes(b)

View File

@ -79,7 +79,7 @@ class Morphologizer(Tagger):
labels_morph (dict): Mapping of morph + POS tags to morph labels. labels_morph (dict): Mapping of morph + POS tags to morph labels.
labels_pos (dict): Mapping of morph + POS tags to POS tags. labels_pos (dict): Mapping of morph + POS tags to POS tags.
DOCS: https://spacy.io/api/morphologizer#init DOCS: https://nightly.spacy.io/api/morphologizer#init
""" """
self.vocab = vocab self.vocab = vocab
self.model = model self.model = model
@ -106,7 +106,7 @@ class Morphologizer(Tagger):
label (str): The label to add. label (str): The label to add.
RETURNS (int): 0 if label is already present, otherwise 1. RETURNS (int): 0 if label is already present, otherwise 1.
DOCS: https://spacy.io/api/morphologizer#add_label DOCS: https://nightly.spacy.io/api/morphologizer#add_label
""" """
if not isinstance(label, str): if not isinstance(label, str):
raise ValueError(Errors.E187) raise ValueError(Errors.E187)
@ -139,7 +139,7 @@ class Morphologizer(Tagger):
create_optimizer if it doesn't exist. create_optimizer if it doesn't exist.
RETURNS (thinc.api.Optimizer): The optimizer. RETURNS (thinc.api.Optimizer): The optimizer.
DOCS: https://spacy.io/api/morphologizer#begin_training DOCS: https://nightly.spacy.io/api/morphologizer#begin_training
""" """
if not hasattr(get_examples, "__call__"): if not hasattr(get_examples, "__call__"):
err = Errors.E930.format(name="Morphologizer", obj=type(get_examples)) err = Errors.E930.format(name="Morphologizer", obj=type(get_examples))
@ -169,7 +169,7 @@ class Morphologizer(Tagger):
docs (Iterable[Doc]): The documents to modify. docs (Iterable[Doc]): The documents to modify.
batch_tag_ids: The IDs to set, produced by Morphologizer.predict. batch_tag_ids: The IDs to set, produced by Morphologizer.predict.
DOCS: https://spacy.io/api/morphologizer#set_annotations DOCS: https://nightly.spacy.io/api/morphologizer#set_annotations
""" """
if isinstance(docs, Doc): if isinstance(docs, Doc):
docs = [docs] docs = [docs]
@ -194,7 +194,7 @@ class Morphologizer(Tagger):
scores: Scores representing the model's predictions. scores: Scores representing the model's predictions.
RETUTNRS (Tuple[float, float]): The loss and the gradient. RETUTNRS (Tuple[float, float]): The loss and the gradient.
DOCS: https://spacy.io/api/morphologizer#get_loss DOCS: https://nightly.spacy.io/api/morphologizer#get_loss
""" """
validate_examples(examples, "Morphologizer.get_loss") validate_examples(examples, "Morphologizer.get_loss")
loss_func = SequenceCategoricalCrossentropy(names=self.labels, normalize=False) loss_func = SequenceCategoricalCrossentropy(names=self.labels, normalize=False)
@ -231,7 +231,7 @@ class Morphologizer(Tagger):
Scorer.score_token_attr for the attributes "pos" and "morph" and Scorer.score_token_attr for the attributes "pos" and "morph" and
Scorer.score_token_attr_per_feat for the attribute "morph". Scorer.score_token_attr_per_feat for the attribute "morph".
DOCS: https://spacy.io/api/morphologizer#score DOCS: https://nightly.spacy.io/api/morphologizer#score
""" """
validate_examples(examples, "Morphologizer.score") validate_examples(examples, "Morphologizer.score")
results = {} results = {}
@ -247,7 +247,7 @@ class Morphologizer(Tagger):
exclude (Iterable[str]): String names of serialization fields to exclude. exclude (Iterable[str]): String names of serialization fields to exclude.
RETURNS (bytes): The serialized object. RETURNS (bytes): The serialized object.
DOCS: https://spacy.io/api/morphologizer#to_bytes DOCS: https://nightly.spacy.io/api/morphologizer#to_bytes
""" """
serialize = {} serialize = {}
serialize["model"] = self.model.to_bytes serialize["model"] = self.model.to_bytes
@ -262,7 +262,7 @@ class Morphologizer(Tagger):
exclude (Iterable[str]): String names of serialization fields to exclude. exclude (Iterable[str]): String names of serialization fields to exclude.
RETURNS (Morphologizer): The loaded Morphologizer. RETURNS (Morphologizer): The loaded Morphologizer.
DOCS: https://spacy.io/api/morphologizer#from_bytes DOCS: https://nightly.spacy.io/api/morphologizer#from_bytes
""" """
def load_model(b): def load_model(b):
try: try:
@ -284,7 +284,7 @@ class Morphologizer(Tagger):
path (str / Path): Path to a directory. path (str / Path): Path to a directory.
exclude (Iterable[str]): String names of serialization fields to exclude. exclude (Iterable[str]): String names of serialization fields to exclude.
DOCS: https://spacy.io/api/morphologizer#to_disk DOCS: https://nightly.spacy.io/api/morphologizer#to_disk
""" """
serialize = { serialize = {
"vocab": lambda p: self.vocab.to_disk(p), "vocab": lambda p: self.vocab.to_disk(p),
@ -300,7 +300,7 @@ class Morphologizer(Tagger):
exclude (Iterable[str]): String names of serialization fields to exclude. exclude (Iterable[str]): String names of serialization fields to exclude.
RETURNS (Morphologizer): The modified Morphologizer object. RETURNS (Morphologizer): The modified Morphologizer object.
DOCS: https://spacy.io/api/morphologizer#from_disk DOCS: https://nightly.spacy.io/api/morphologizer#from_disk
""" """
def load_model(p): def load_model(p):
with p.open("rb") as file_: with p.open("rb") as file_:

View File

@ -88,7 +88,7 @@ def make_ner(
cdef class EntityRecognizer(Parser): cdef class EntityRecognizer(Parser):
"""Pipeline component for named entity recognition. """Pipeline component for named entity recognition.
DOCS: https://spacy.io/api/entityrecognizer DOCS: https://nightly.spacy.io/api/entityrecognizer
""" """
TransitionSystem = BiluoPushDown TransitionSystem = BiluoPushDown
@ -119,7 +119,7 @@ cdef class EntityRecognizer(Parser):
examples (Iterable[Example]): The examples to score. examples (Iterable[Example]): The examples to score.
RETURNS (Dict[str, Any]): The scores, produced by Scorer.score_spans. RETURNS (Dict[str, Any]): The scores, produced by Scorer.score_spans.
DOCS: https://spacy.io/api/entityrecognizer#score DOCS: https://nightly.spacy.io/api/entityrecognizer#score
""" """
validate_examples(examples, "EntityRecognizer.score") validate_examples(examples, "EntityRecognizer.score")
return Scorer.score_spans(examples, "ents", **kwargs) return Scorer.score_spans(examples, "ents", **kwargs)

View File

@ -15,7 +15,7 @@ cdef class Pipe:
from it and it defines the interface that components should follow to from it and it defines the interface that components should follow to
function as trainable components in a spaCy pipeline. function as trainable components in a spaCy pipeline.
DOCS: https://spacy.io/api/pipe DOCS: https://nightly.spacy.io/api/pipe
""" """
def __init__(self, vocab, model, name, **cfg): def __init__(self, vocab, model, name, **cfg):
"""Initialize a pipeline component. """Initialize a pipeline component.
@ -25,7 +25,7 @@ cdef class Pipe:
name (str): The component instance name. name (str): The component instance name.
**cfg: Additonal settings and config parameters. **cfg: Additonal settings and config parameters.
DOCS: https://spacy.io/api/pipe#init DOCS: https://nightly.spacy.io/api/pipe#init
""" """
self.vocab = vocab self.vocab = vocab
self.model = model self.model = model
@ -40,7 +40,7 @@ cdef class Pipe:
docs (Doc): The Doc to process. docs (Doc): The Doc to process.
RETURNS (Doc): The processed Doc. RETURNS (Doc): The processed Doc.
DOCS: https://spacy.io/api/pipe#call DOCS: https://nightly.spacy.io/api/pipe#call
""" """
scores = self.predict([doc]) scores = self.predict([doc])
self.set_annotations([doc], scores) self.set_annotations([doc], scores)
@ -55,7 +55,7 @@ cdef class Pipe:
batch_size (int): The number of documents to buffer. batch_size (int): The number of documents to buffer.
YIELDS (Doc): Processed documents in order. YIELDS (Doc): Processed documents in order.
DOCS: https://spacy.io/api/pipe#pipe DOCS: https://nightly.spacy.io/api/pipe#pipe
""" """
for docs in util.minibatch(stream, size=batch_size): for docs in util.minibatch(stream, size=batch_size):
scores = self.predict(docs) scores = self.predict(docs)
@ -69,7 +69,7 @@ cdef class Pipe:
docs (Iterable[Doc]): The documents to predict. docs (Iterable[Doc]): The documents to predict.
RETURNS: Vector representations for each token in the documents. RETURNS: Vector representations for each token in the documents.
DOCS: https://spacy.io/api/pipe#predict DOCS: https://nightly.spacy.io/api/pipe#predict
""" """
raise NotImplementedError(Errors.E931.format(method="predict", name=self.name)) raise NotImplementedError(Errors.E931.format(method="predict", name=self.name))
@ -79,7 +79,7 @@ cdef class Pipe:
docs (Iterable[Doc]): The documents to modify. docs (Iterable[Doc]): The documents to modify.
scores: The scores to assign. scores: The scores to assign.
DOCS: https://spacy.io/api/pipe#set_annotations DOCS: https://nightly.spacy.io/api/pipe#set_annotations
""" """
raise NotImplementedError(Errors.E931.format(method="set_annotations", name=self.name)) raise NotImplementedError(Errors.E931.format(method="set_annotations", name=self.name))
@ -96,7 +96,7 @@ cdef class Pipe:
Updated using the component name as the key. Updated using the component name as the key.
RETURNS (Dict[str, float]): The updated losses dictionary. RETURNS (Dict[str, float]): The updated losses dictionary.
DOCS: https://spacy.io/api/pipe#update DOCS: https://nightly.spacy.io/api/pipe#update
""" """
if losses is None: if losses is None:
losses = {} losses = {}
@ -132,7 +132,7 @@ cdef class Pipe:
Updated using the component name as the key. Updated using the component name as the key.
RETURNS (Dict[str, float]): The updated losses dictionary. RETURNS (Dict[str, float]): The updated losses dictionary.
DOCS: https://spacy.io/api/pipe#rehearse DOCS: https://nightly.spacy.io/api/pipe#rehearse
""" """
pass pass
@ -144,7 +144,7 @@ cdef class Pipe:
scores: Scores representing the model's predictions. scores: Scores representing the model's predictions.
RETUTNRS (Tuple[float, float]): The loss and the gradient. RETUTNRS (Tuple[float, float]): The loss and the gradient.
DOCS: https://spacy.io/api/pipe#get_loss DOCS: https://nightly.spacy.io/api/pipe#get_loss
""" """
raise NotImplementedError(Errors.E931.format(method="get_loss", name=self.name)) raise NotImplementedError(Errors.E931.format(method="get_loss", name=self.name))
@ -156,7 +156,7 @@ cdef class Pipe:
label (str): The label to add. label (str): The label to add.
RETURNS (int): 0 if label is already present, otherwise 1. RETURNS (int): 0 if label is already present, otherwise 1.
DOCS: https://spacy.io/api/pipe#add_label DOCS: https://nightly.spacy.io/api/pipe#add_label
""" """
raise NotImplementedError(Errors.E931.format(method="add_label", name=self.name)) raise NotImplementedError(Errors.E931.format(method="add_label", name=self.name))
@ -165,7 +165,7 @@ cdef class Pipe:
RETURNS (thinc.api.Optimizer): The optimizer. RETURNS (thinc.api.Optimizer): The optimizer.
DOCS: https://spacy.io/api/pipe#create_optimizer DOCS: https://nightly.spacy.io/api/pipe#create_optimizer
""" """
return util.create_default_optimizer() return util.create_default_optimizer()
@ -181,7 +181,7 @@ cdef class Pipe:
create_optimizer if it doesn't exist. create_optimizer if it doesn't exist.
RETURNS (thinc.api.Optimizer): The optimizer. RETURNS (thinc.api.Optimizer): The optimizer.
DOCS: https://spacy.io/api/pipe#begin_training DOCS: https://nightly.spacy.io/api/pipe#begin_training
""" """
self.model.initialize() self.model.initialize()
if sgd is None: if sgd is None:
@ -200,7 +200,7 @@ cdef class Pipe:
params (dict): The parameter values to use in the model. params (dict): The parameter values to use in the model.
DOCS: https://spacy.io/api/pipe#use_params DOCS: https://nightly.spacy.io/api/pipe#use_params
""" """
with self.model.use_params(params): with self.model.use_params(params):
yield yield
@ -211,7 +211,7 @@ cdef class Pipe:
examples (Iterable[Example]): The examples to score. examples (Iterable[Example]): The examples to score.
RETURNS (Dict[str, Any]): The scores. RETURNS (Dict[str, Any]): The scores.
DOCS: https://spacy.io/api/pipe#score DOCS: https://nightly.spacy.io/api/pipe#score
""" """
return {} return {}
@ -221,7 +221,7 @@ cdef class Pipe:
exclude (Iterable[str]): String names of serialization fields to exclude. exclude (Iterable[str]): String names of serialization fields to exclude.
RETURNS (bytes): The serialized object. RETURNS (bytes): The serialized object.
DOCS: https://spacy.io/api/pipe#to_bytes DOCS: https://nightly.spacy.io/api/pipe#to_bytes
""" """
serialize = {} serialize = {}
serialize["cfg"] = lambda: srsly.json_dumps(self.cfg) serialize["cfg"] = lambda: srsly.json_dumps(self.cfg)
@ -236,7 +236,7 @@ cdef class Pipe:
exclude (Iterable[str]): String names of serialization fields to exclude. exclude (Iterable[str]): String names of serialization fields to exclude.
RETURNS (Pipe): The loaded object. RETURNS (Pipe): The loaded object.
DOCS: https://spacy.io/api/pipe#from_bytes DOCS: https://nightly.spacy.io/api/pipe#from_bytes
""" """
def load_model(b): def load_model(b):
@ -259,7 +259,7 @@ cdef class Pipe:
path (str / Path): Path to a directory. path (str / Path): Path to a directory.
exclude (Iterable[str]): String names of serialization fields to exclude. exclude (Iterable[str]): String names of serialization fields to exclude.
DOCS: https://spacy.io/api/pipe#to_disk DOCS: https://nightly.spacy.io/api/pipe#to_disk
""" """
serialize = {} serialize = {}
serialize["cfg"] = lambda p: srsly.write_json(p, self.cfg) serialize["cfg"] = lambda p: srsly.write_json(p, self.cfg)
@ -274,7 +274,7 @@ cdef class Pipe:
exclude (Iterable[str]): String names of serialization fields to exclude. exclude (Iterable[str]): String names of serialization fields to exclude.
RETURNS (Pipe): The loaded object. RETURNS (Pipe): The loaded object.
DOCS: https://spacy.io/api/pipe#from_disk DOCS: https://nightly.spacy.io/api/pipe#from_disk
""" """
def load_model(p): def load_model(p):

View File

@ -29,7 +29,7 @@ def make_sentencizer(
class Sentencizer(Pipe): class Sentencizer(Pipe):
"""Segment the Doc into sentences using a rule-based strategy. """Segment the Doc into sentences using a rule-based strategy.
DOCS: https://spacy.io/api/sentencizer DOCS: https://nightly.spacy.io/api/sentencizer
""" """
default_punct_chars = ['!', '.', '?', '։', '؟', '۔', '܀', '܁', '܂', '߹', default_punct_chars = ['!', '.', '?', '։', '؟', '۔', '܀', '܁', '܂', '߹',
@ -51,7 +51,7 @@ class Sentencizer(Pipe):
serialized with the nlp object. serialized with the nlp object.
RETURNS (Sentencizer): The sentencizer component. RETURNS (Sentencizer): The sentencizer component.
DOCS: https://spacy.io/api/sentencizer#init DOCS: https://nightly.spacy.io/api/sentencizer#init
""" """
self.name = name self.name = name
if punct_chars: if punct_chars:
@ -68,7 +68,7 @@ class Sentencizer(Pipe):
doc (Doc): The document to process. doc (Doc): The document to process.
RETURNS (Doc): The processed Doc. RETURNS (Doc): The processed Doc.
DOCS: https://spacy.io/api/sentencizer#call DOCS: https://nightly.spacy.io/api/sentencizer#call
""" """
start = 0 start = 0
seen_period = False seen_period = False
@ -94,7 +94,7 @@ class Sentencizer(Pipe):
batch_size (int): The number of documents to buffer. batch_size (int): The number of documents to buffer.
YIELDS (Doc): Processed documents in order. YIELDS (Doc): Processed documents in order.
DOCS: https://spacy.io/api/sentencizer#pipe DOCS: https://nightly.spacy.io/api/sentencizer#pipe
""" """
for docs in util.minibatch(stream, size=batch_size): for docs in util.minibatch(stream, size=batch_size):
predictions = self.predict(docs) predictions = self.predict(docs)
@ -157,7 +157,7 @@ class Sentencizer(Pipe):
examples (Iterable[Example]): The examples to score. examples (Iterable[Example]): The examples to score.
RETURNS (Dict[str, Any]): The scores, produced by Scorer.score_spans. RETURNS (Dict[str, Any]): The scores, produced by Scorer.score_spans.
DOCS: https://spacy.io/api/sentencizer#score DOCS: https://nightly.spacy.io/api/sentencizer#score
""" """
validate_examples(examples, "Sentencizer.score") validate_examples(examples, "Sentencizer.score")
results = Scorer.score_spans(examples, "sents", **kwargs) results = Scorer.score_spans(examples, "sents", **kwargs)
@ -169,7 +169,7 @@ class Sentencizer(Pipe):
RETURNS (bytes): The serialized object. RETURNS (bytes): The serialized object.
DOCS: https://spacy.io/api/sentencizer#to_bytes DOCS: https://nightly.spacy.io/api/sentencizer#to_bytes
""" """
return srsly.msgpack_dumps({"punct_chars": list(self.punct_chars)}) return srsly.msgpack_dumps({"punct_chars": list(self.punct_chars)})
@ -179,7 +179,7 @@ class Sentencizer(Pipe):
bytes_data (bytes): The data to load. bytes_data (bytes): The data to load.
returns (Sentencizer): The loaded object. returns (Sentencizer): The loaded object.
DOCS: https://spacy.io/api/sentencizer#from_bytes DOCS: https://nightly.spacy.io/api/sentencizer#from_bytes
""" """
cfg = srsly.msgpack_loads(bytes_data) cfg = srsly.msgpack_loads(bytes_data)
self.punct_chars = set(cfg.get("punct_chars", self.default_punct_chars)) self.punct_chars = set(cfg.get("punct_chars", self.default_punct_chars))
@ -188,7 +188,7 @@ class Sentencizer(Pipe):
def to_disk(self, path, *, exclude=tuple()): def to_disk(self, path, *, exclude=tuple()):
"""Serialize the sentencizer to disk. """Serialize the sentencizer to disk.
DOCS: https://spacy.io/api/sentencizer#to_disk DOCS: https://nightly.spacy.io/api/sentencizer#to_disk
""" """
path = util.ensure_path(path) path = util.ensure_path(path)
path = path.with_suffix(".json") path = path.with_suffix(".json")
@ -198,7 +198,7 @@ class Sentencizer(Pipe):
def from_disk(self, path, *, exclude=tuple()): def from_disk(self, path, *, exclude=tuple()):
"""Load the sentencizer from disk. """Load the sentencizer from disk.
DOCS: https://spacy.io/api/sentencizer#from_disk DOCS: https://nightly.spacy.io/api/sentencizer#from_disk
""" """
path = util.ensure_path(path) path = util.ensure_path(path)
path = path.with_suffix(".json") path = path.with_suffix(".json")

View File

@ -44,7 +44,7 @@ def make_senter(nlp: Language, name: str, model: Model):
class SentenceRecognizer(Tagger): class SentenceRecognizer(Tagger):
"""Pipeline component for sentence segmentation. """Pipeline component for sentence segmentation.
DOCS: https://spacy.io/api/sentencerecognizer DOCS: https://nightly.spacy.io/api/sentencerecognizer
""" """
def __init__(self, vocab, model, name="senter"): def __init__(self, vocab, model, name="senter"):
"""Initialize a sentence recognizer. """Initialize a sentence recognizer.
@ -54,7 +54,7 @@ class SentenceRecognizer(Tagger):
name (str): The component instance name, used to add entries to the name (str): The component instance name, used to add entries to the
losses during training. losses during training.
DOCS: https://spacy.io/api/sentencerecognizer#init DOCS: https://nightly.spacy.io/api/sentencerecognizer#init
""" """
self.vocab = vocab self.vocab = vocab
self.model = model self.model = model
@ -76,7 +76,7 @@ class SentenceRecognizer(Tagger):
docs (Iterable[Doc]): The documents to modify. docs (Iterable[Doc]): The documents to modify.
batch_tag_ids: The IDs to set, produced by SentenceRecognizer.predict. batch_tag_ids: The IDs to set, produced by SentenceRecognizer.predict.
DOCS: https://spacy.io/api/sentencerecognizer#set_annotations DOCS: https://nightly.spacy.io/api/sentencerecognizer#set_annotations
""" """
if isinstance(docs, Doc): if isinstance(docs, Doc):
docs = [docs] docs = [docs]
@ -101,7 +101,7 @@ class SentenceRecognizer(Tagger):
scores: Scores representing the model's predictions. scores: Scores representing the model's predictions.
RETUTNRS (Tuple[float, float]): The loss and the gradient. RETUTNRS (Tuple[float, float]): The loss and the gradient.
DOCS: https://spacy.io/api/sentencerecognizer#get_loss DOCS: https://nightly.spacy.io/api/sentencerecognizer#get_loss
""" """
validate_examples(examples, "SentenceRecognizer.get_loss") validate_examples(examples, "SentenceRecognizer.get_loss")
labels = self.labels labels = self.labels
@ -135,7 +135,7 @@ class SentenceRecognizer(Tagger):
create_optimizer if it doesn't exist. create_optimizer if it doesn't exist.
RETURNS (thinc.api.Optimizer): The optimizer. RETURNS (thinc.api.Optimizer): The optimizer.
DOCS: https://spacy.io/api/sentencerecognizer#begin_training DOCS: https://nightly.spacy.io/api/sentencerecognizer#begin_training
""" """
self.set_output(len(self.labels)) self.set_output(len(self.labels))
self.model.initialize() self.model.initialize()
@ -151,7 +151,7 @@ class SentenceRecognizer(Tagger):
examples (Iterable[Example]): The examples to score. examples (Iterable[Example]): The examples to score.
RETURNS (Dict[str, Any]): The scores, produced by Scorer.score_spans. RETURNS (Dict[str, Any]): The scores, produced by Scorer.score_spans.
DOCS: https://spacy.io/api/sentencerecognizer#score DOCS: https://nightly.spacy.io/api/sentencerecognizer#score
""" """
validate_examples(examples, "SentenceRecognizer.score") validate_examples(examples, "SentenceRecognizer.score")
results = Scorer.score_spans(examples, "sents", **kwargs) results = Scorer.score_spans(examples, "sents", **kwargs)
@ -164,7 +164,7 @@ class SentenceRecognizer(Tagger):
exclude (Iterable[str]): String names of serialization fields to exclude. exclude (Iterable[str]): String names of serialization fields to exclude.
RETURNS (bytes): The serialized object. RETURNS (bytes): The serialized object.
DOCS: https://spacy.io/api/sentencerecognizer#to_bytes DOCS: https://nightly.spacy.io/api/sentencerecognizer#to_bytes
""" """
serialize = {} serialize = {}
serialize["model"] = self.model.to_bytes serialize["model"] = self.model.to_bytes
@ -179,7 +179,7 @@ class SentenceRecognizer(Tagger):
exclude (Iterable[str]): String names of serialization fields to exclude. exclude (Iterable[str]): String names of serialization fields to exclude.
RETURNS (Tagger): The loaded SentenceRecognizer. RETURNS (Tagger): The loaded SentenceRecognizer.
DOCS: https://spacy.io/api/sentencerecognizer#from_bytes DOCS: https://nightly.spacy.io/api/sentencerecognizer#from_bytes
""" """
def load_model(b): def load_model(b):
try: try:
@ -201,7 +201,7 @@ class SentenceRecognizer(Tagger):
path (str / Path): Path to a directory. path (str / Path): Path to a directory.
exclude (Iterable[str]): String names of serialization fields to exclude. exclude (Iterable[str]): String names of serialization fields to exclude.
DOCS: https://spacy.io/api/sentencerecognizer#to_disk DOCS: https://nightly.spacy.io/api/sentencerecognizer#to_disk
""" """
serialize = { serialize = {
"vocab": lambda p: self.vocab.to_disk(p), "vocab": lambda p: self.vocab.to_disk(p),
@ -217,7 +217,7 @@ class SentenceRecognizer(Tagger):
exclude (Iterable[str]): String names of serialization fields to exclude. exclude (Iterable[str]): String names of serialization fields to exclude.
RETURNS (Tagger): The modified SentenceRecognizer object. RETURNS (Tagger): The modified SentenceRecognizer object.
DOCS: https://spacy.io/api/sentencerecognizer#from_disk DOCS: https://nightly.spacy.io/api/sentencerecognizer#from_disk
""" """
def load_model(p): def load_model(p):
with p.open("rb") as file_: with p.open("rb") as file_:

View File

@ -78,7 +78,7 @@ class SimpleNER(Pipe):
def add_label(self, label: str) -> None: def add_label(self, label: str) -> None:
"""Add a new label to the pipe. """Add a new label to the pipe.
label (str): The label to add. label (str): The label to add.
DOCS: https://spacy.io/api/simplener#add_label DOCS: https://nightly.spacy.io/api/simplener#add_label
""" """
if not isinstance(label, str): if not isinstance(label, str):
raise ValueError(Errors.E187) raise ValueError(Errors.E187)

View File

@ -58,7 +58,7 @@ def make_tagger(nlp: Language, name: str, model: Model):
class Tagger(Pipe): class Tagger(Pipe):
"""Pipeline component for part-of-speech tagging. """Pipeline component for part-of-speech tagging.
DOCS: https://spacy.io/api/tagger DOCS: https://nightly.spacy.io/api/tagger
""" """
def __init__(self, vocab, model, name="tagger", *, labels=None): def __init__(self, vocab, model, name="tagger", *, labels=None):
"""Initialize a part-of-speech tagger. """Initialize a part-of-speech tagger.
@ -69,7 +69,7 @@ class Tagger(Pipe):
losses during training. losses during training.
labels (List): The set of labels. Defaults to None. labels (List): The set of labels. Defaults to None.
DOCS: https://spacy.io/api/tagger#init DOCS: https://nightly.spacy.io/api/tagger#init
""" """
self.vocab = vocab self.vocab = vocab
self.model = model self.model = model
@ -86,7 +86,7 @@ class Tagger(Pipe):
RETURNS (Tuple[str]): The labels. RETURNS (Tuple[str]): The labels.
DOCS: https://spacy.io/api/tagger#labels DOCS: https://nightly.spacy.io/api/tagger#labels
""" """
return tuple(self.cfg["labels"]) return tuple(self.cfg["labels"])
@ -96,7 +96,7 @@ class Tagger(Pipe):
doc (Doc): The document to process. doc (Doc): The document to process.
RETURNS (Doc): The processed Doc. RETURNS (Doc): The processed Doc.
DOCS: https://spacy.io/api/tagger#call DOCS: https://nightly.spacy.io/api/tagger#call
""" """
tags = self.predict([doc]) tags = self.predict([doc])
self.set_annotations([doc], tags) self.set_annotations([doc], tags)
@ -111,7 +111,7 @@ class Tagger(Pipe):
batch_size (int): The number of documents to buffer. batch_size (int): The number of documents to buffer.
YIELDS (Doc): Processed documents in order. YIELDS (Doc): Processed documents in order.
DOCS: https://spacy.io/api/tagger#pipe DOCS: https://nightly.spacy.io/api/tagger#pipe
""" """
for docs in util.minibatch(stream, size=batch_size): for docs in util.minibatch(stream, size=batch_size):
tag_ids = self.predict(docs) tag_ids = self.predict(docs)
@ -124,7 +124,7 @@ class Tagger(Pipe):
docs (Iterable[Doc]): The documents to predict. docs (Iterable[Doc]): The documents to predict.
RETURNS: The models prediction for each document. RETURNS: The models prediction for each document.
DOCS: https://spacy.io/api/tagger#predict DOCS: https://nightly.spacy.io/api/tagger#predict
""" """
if not any(len(doc) for doc in docs): if not any(len(doc) for doc in docs):
# Handle cases where there are no tokens in any docs. # Handle cases where there are no tokens in any docs.
@ -153,7 +153,7 @@ class Tagger(Pipe):
docs (Iterable[Doc]): The documents to modify. docs (Iterable[Doc]): The documents to modify.
batch_tag_ids: The IDs to set, produced by Tagger.predict. batch_tag_ids: The IDs to set, produced by Tagger.predict.
DOCS: https://spacy.io/api/tagger#set_annotations DOCS: https://nightly.spacy.io/api/tagger#set_annotations
""" """
if isinstance(docs, Doc): if isinstance(docs, Doc):
docs = [docs] docs = [docs]
@ -182,7 +182,7 @@ class Tagger(Pipe):
Updated using the component name as the key. Updated using the component name as the key.
RETURNS (Dict[str, float]): The updated losses dictionary. RETURNS (Dict[str, float]): The updated losses dictionary.
DOCS: https://spacy.io/api/tagger#update DOCS: https://nightly.spacy.io/api/tagger#update
""" """
if losses is None: if losses is None:
losses = {} losses = {}
@ -220,7 +220,7 @@ class Tagger(Pipe):
Updated using the component name as the key. Updated using the component name as the key.
RETURNS (Dict[str, float]): The updated losses dictionary. RETURNS (Dict[str, float]): The updated losses dictionary.
DOCS: https://spacy.io/api/tagger#rehearse DOCS: https://nightly.spacy.io/api/tagger#rehearse
""" """
validate_examples(examples, "Tagger.rehearse") validate_examples(examples, "Tagger.rehearse")
docs = [eg.predicted for eg in examples] docs = [eg.predicted for eg in examples]
@ -247,7 +247,7 @@ class Tagger(Pipe):
scores: Scores representing the model's predictions. scores: Scores representing the model's predictions.
RETUTNRS (Tuple[float, float]): The loss and the gradient. RETUTNRS (Tuple[float, float]): The loss and the gradient.
DOCS: https://spacy.io/api/tagger#get_loss DOCS: https://nightly.spacy.io/api/tagger#get_loss
""" """
validate_examples(examples, "Tagger.get_loss") validate_examples(examples, "Tagger.get_loss")
loss_func = SequenceCategoricalCrossentropy(names=self.labels, normalize=False) loss_func = SequenceCategoricalCrossentropy(names=self.labels, normalize=False)
@ -269,7 +269,7 @@ class Tagger(Pipe):
create_optimizer if it doesn't exist. create_optimizer if it doesn't exist.
RETURNS (thinc.api.Optimizer): The optimizer. RETURNS (thinc.api.Optimizer): The optimizer.
DOCS: https://spacy.io/api/tagger#begin_training DOCS: https://nightly.spacy.io/api/tagger#begin_training
""" """
if not hasattr(get_examples, "__call__"): if not hasattr(get_examples, "__call__"):
err = Errors.E930.format(name="Tagger", obj=type(get_examples)) err = Errors.E930.format(name="Tagger", obj=type(get_examples))
@ -307,7 +307,7 @@ class Tagger(Pipe):
label (str): The label to add. label (str): The label to add.
RETURNS (int): 0 if label is already present, otherwise 1. RETURNS (int): 0 if label is already present, otherwise 1.
DOCS: https://spacy.io/api/tagger#add_label DOCS: https://nightly.spacy.io/api/tagger#add_label
""" """
if not isinstance(label, str): if not isinstance(label, str):
raise ValueError(Errors.E187) raise ValueError(Errors.E187)
@ -324,7 +324,7 @@ class Tagger(Pipe):
RETURNS (Dict[str, Any]): The scores, produced by RETURNS (Dict[str, Any]): The scores, produced by
Scorer.score_token_attr for the attributes "tag". Scorer.score_token_attr for the attributes "tag".
DOCS: https://spacy.io/api/tagger#score DOCS: https://nightly.spacy.io/api/tagger#score
""" """
validate_examples(examples, "Tagger.score") validate_examples(examples, "Tagger.score")
return Scorer.score_token_attr(examples, "tag", **kwargs) return Scorer.score_token_attr(examples, "tag", **kwargs)
@ -335,7 +335,7 @@ class Tagger(Pipe):
exclude (Iterable[str]): String names of serialization fields to exclude. exclude (Iterable[str]): String names of serialization fields to exclude.
RETURNS (bytes): The serialized object. RETURNS (bytes): The serialized object.
DOCS: https://spacy.io/api/tagger#to_bytes DOCS: https://nightly.spacy.io/api/tagger#to_bytes
""" """
serialize = {} serialize = {}
serialize["model"] = self.model.to_bytes serialize["model"] = self.model.to_bytes
@ -350,7 +350,7 @@ class Tagger(Pipe):
exclude (Iterable[str]): String names of serialization fields to exclude. exclude (Iterable[str]): String names of serialization fields to exclude.
RETURNS (Tagger): The loaded Tagger. RETURNS (Tagger): The loaded Tagger.
DOCS: https://spacy.io/api/tagger#from_bytes DOCS: https://nightly.spacy.io/api/tagger#from_bytes
""" """
def load_model(b): def load_model(b):
try: try:
@ -372,7 +372,7 @@ class Tagger(Pipe):
path (str / Path): Path to a directory. path (str / Path): Path to a directory.
exclude (Iterable[str]): String names of serialization fields to exclude. exclude (Iterable[str]): String names of serialization fields to exclude.
DOCS: https://spacy.io/api/tagger#to_disk DOCS: https://nightly.spacy.io/api/tagger#to_disk
""" """
serialize = { serialize = {
"vocab": lambda p: self.vocab.to_disk(p), "vocab": lambda p: self.vocab.to_disk(p),
@ -388,7 +388,7 @@ class Tagger(Pipe):
exclude (Iterable[str]): String names of serialization fields to exclude. exclude (Iterable[str]): String names of serialization fields to exclude.
RETURNS (Tagger): The modified Tagger object. RETURNS (Tagger): The modified Tagger object.
DOCS: https://spacy.io/api/tagger#from_disk DOCS: https://nightly.spacy.io/api/tagger#from_disk
""" """
def load_model(p): def load_model(p):
with p.open("rb") as file_: with p.open("rb") as file_:

View File

@ -92,7 +92,7 @@ def make_textcat(
class TextCategorizer(Pipe): class TextCategorizer(Pipe):
"""Pipeline component for text classification. """Pipeline component for text classification.
DOCS: https://spacy.io/api/textcategorizer DOCS: https://nightly.spacy.io/api/textcategorizer
""" """
def __init__( def __init__(
@ -111,7 +111,7 @@ class TextCategorizer(Pipe):
losses during training. losses during training.
labels (Iterable[str]): The labels to use. labels (Iterable[str]): The labels to use.
DOCS: https://spacy.io/api/textcategorizer#init DOCS: https://nightly.spacy.io/api/textcategorizer#init
""" """
self.vocab = vocab self.vocab = vocab
self.model = model self.model = model
@ -124,7 +124,7 @@ class TextCategorizer(Pipe):
def labels(self) -> Tuple[str]: def labels(self) -> Tuple[str]:
"""RETURNS (Tuple[str]): The labels currently added to the component. """RETURNS (Tuple[str]): The labels currently added to the component.
DOCS: https://spacy.io/api/textcategorizer#labels DOCS: https://nightly.spacy.io/api/textcategorizer#labels
""" """
return tuple(self.cfg.setdefault("labels", [])) return tuple(self.cfg.setdefault("labels", []))
@ -146,7 +146,7 @@ class TextCategorizer(Pipe):
batch_size (int): The number of documents to buffer. batch_size (int): The number of documents to buffer.
YIELDS (Doc): Processed documents in order. YIELDS (Doc): Processed documents in order.
DOCS: https://spacy.io/api/textcategorizer#pipe DOCS: https://nightly.spacy.io/api/textcategorizer#pipe
""" """
for docs in util.minibatch(stream, size=batch_size): for docs in util.minibatch(stream, size=batch_size):
scores = self.predict(docs) scores = self.predict(docs)
@ -159,7 +159,7 @@ class TextCategorizer(Pipe):
docs (Iterable[Doc]): The documents to predict. docs (Iterable[Doc]): The documents to predict.
RETURNS: The models prediction for each document. RETURNS: The models prediction for each document.
DOCS: https://spacy.io/api/textcategorizer#predict DOCS: https://nightly.spacy.io/api/textcategorizer#predict
""" """
tensors = [doc.tensor for doc in docs] tensors = [doc.tensor for doc in docs]
if not any(len(doc) for doc in docs): if not any(len(doc) for doc in docs):
@ -177,7 +177,7 @@ class TextCategorizer(Pipe):
docs (Iterable[Doc]): The documents to modify. docs (Iterable[Doc]): The documents to modify.
scores: The scores to set, produced by TextCategorizer.predict. scores: The scores to set, produced by TextCategorizer.predict.
DOCS: https://spacy.io/api/textcategorizer#set_annotations DOCS: https://nightly.spacy.io/api/textcategorizer#set_annotations
""" """
for i, doc in enumerate(docs): for i, doc in enumerate(docs):
for j, label in enumerate(self.labels): for j, label in enumerate(self.labels):
@ -204,7 +204,7 @@ class TextCategorizer(Pipe):
Updated using the component name as the key. Updated using the component name as the key.
RETURNS (Dict[str, float]): The updated losses dictionary. RETURNS (Dict[str, float]): The updated losses dictionary.
DOCS: https://spacy.io/api/textcategorizer#update DOCS: https://nightly.spacy.io/api/textcategorizer#update
""" """
if losses is None: if losses is None:
losses = {} losses = {}
@ -245,7 +245,7 @@ class TextCategorizer(Pipe):
Updated using the component name as the key. Updated using the component name as the key.
RETURNS (Dict[str, float]): The updated losses dictionary. RETURNS (Dict[str, float]): The updated losses dictionary.
DOCS: https://spacy.io/api/textcategorizer#rehearse DOCS: https://nightly.spacy.io/api/textcategorizer#rehearse
""" """
if losses is not None: if losses is not None:
losses.setdefault(self.name, 0.0) losses.setdefault(self.name, 0.0)
@ -289,7 +289,7 @@ class TextCategorizer(Pipe):
scores: Scores representing the model's predictions. scores: Scores representing the model's predictions.
RETUTNRS (Tuple[float, float]): The loss and the gradient. RETUTNRS (Tuple[float, float]): The loss and the gradient.
DOCS: https://spacy.io/api/textcategorizer#get_loss DOCS: https://nightly.spacy.io/api/textcategorizer#get_loss
""" """
validate_examples(examples, "TextCategorizer.get_loss") validate_examples(examples, "TextCategorizer.get_loss")
truths, not_missing = self._examples_to_truth(examples) truths, not_missing = self._examples_to_truth(examples)
@ -305,7 +305,7 @@ class TextCategorizer(Pipe):
label (str): The label to add. label (str): The label to add.
RETURNS (int): 0 if label is already present, otherwise 1. RETURNS (int): 0 if label is already present, otherwise 1.
DOCS: https://spacy.io/api/textcategorizer#add_label DOCS: https://nightly.spacy.io/api/textcategorizer#add_label
""" """
if not isinstance(label, str): if not isinstance(label, str):
raise ValueError(Errors.E187) raise ValueError(Errors.E187)
@ -343,7 +343,7 @@ class TextCategorizer(Pipe):
create_optimizer if it doesn't exist. create_optimizer if it doesn't exist.
RETURNS (thinc.api.Optimizer): The optimizer. RETURNS (thinc.api.Optimizer): The optimizer.
DOCS: https://spacy.io/api/textcategorizer#begin_training DOCS: https://nightly.spacy.io/api/textcategorizer#begin_training
""" """
if not hasattr(get_examples, "__call__"): if not hasattr(get_examples, "__call__"):
err = Errors.E930.format(name="TextCategorizer", obj=type(get_examples)) err = Errors.E930.format(name="TextCategorizer", obj=type(get_examples))
@ -378,7 +378,7 @@ class TextCategorizer(Pipe):
positive_label (str): Optional positive label. positive_label (str): Optional positive label.
RETURNS (Dict[str, Any]): The scores, produced by Scorer.score_cats. RETURNS (Dict[str, Any]): The scores, produced by Scorer.score_cats.
DOCS: https://spacy.io/api/textcategorizer#score DOCS: https://nightly.spacy.io/api/textcategorizer#score
""" """
validate_examples(examples, "TextCategorizer.score") validate_examples(examples, "TextCategorizer.score")
return Scorer.score_cats( return Scorer.score_cats(

View File

@ -56,7 +56,7 @@ class Tok2Vec(Pipe):
a list of Doc objects as input, and output a list of 2d float arrays. a list of Doc objects as input, and output a list of 2d float arrays.
name (str): The component instance name. name (str): The component instance name.
DOCS: https://spacy.io/api/tok2vec#init DOCS: https://nightly.spacy.io/api/tok2vec#init
""" """
self.vocab = vocab self.vocab = vocab
self.model = model self.model = model
@ -91,7 +91,7 @@ class Tok2Vec(Pipe):
docs (Doc): The Doc to process. docs (Doc): The Doc to process.
RETURNS (Doc): The processed Doc. RETURNS (Doc): The processed Doc.
DOCS: https://spacy.io/api/tok2vec#call DOCS: https://nightly.spacy.io/api/tok2vec#call
""" """
tokvecses = self.predict([doc]) tokvecses = self.predict([doc])
self.set_annotations([doc], tokvecses) self.set_annotations([doc], tokvecses)
@ -106,7 +106,7 @@ class Tok2Vec(Pipe):
batch_size (int): The number of documents to buffer. batch_size (int): The number of documents to buffer.
YIELDS (Doc): Processed documents in order. YIELDS (Doc): Processed documents in order.
DOCS: https://spacy.io/api/tok2vec#pipe DOCS: https://nightly.spacy.io/api/tok2vec#pipe
""" """
for docs in minibatch(stream, batch_size): for docs in minibatch(stream, batch_size):
docs = list(docs) docs = list(docs)
@ -121,7 +121,7 @@ class Tok2Vec(Pipe):
docs (Iterable[Doc]): The documents to predict. docs (Iterable[Doc]): The documents to predict.
RETURNS: Vector representations for each token in the documents. RETURNS: Vector representations for each token in the documents.
DOCS: https://spacy.io/api/tok2vec#predict DOCS: https://nightly.spacy.io/api/tok2vec#predict
""" """
tokvecs = self.model.predict(docs) tokvecs = self.model.predict(docs)
batch_id = Tok2VecListener.get_batch_id(docs) batch_id = Tok2VecListener.get_batch_id(docs)
@ -135,7 +135,7 @@ class Tok2Vec(Pipe):
docs (Iterable[Doc]): The documents to modify. docs (Iterable[Doc]): The documents to modify.
tokvecses: The tensors to set, produced by Tok2Vec.predict. tokvecses: The tensors to set, produced by Tok2Vec.predict.
DOCS: https://spacy.io/api/tok2vec#set_annotations DOCS: https://nightly.spacy.io/api/tok2vec#set_annotations
""" """
for doc, tokvecs in zip(docs, tokvecses): for doc, tokvecs in zip(docs, tokvecses):
assert tokvecs.shape[0] == len(doc) assert tokvecs.shape[0] == len(doc)
@ -162,7 +162,7 @@ class Tok2Vec(Pipe):
Updated using the component name as the key. Updated using the component name as the key.
RETURNS (Dict[str, float]): The updated losses dictionary. RETURNS (Dict[str, float]): The updated losses dictionary.
DOCS: https://spacy.io/api/tok2vec#update DOCS: https://nightly.spacy.io/api/tok2vec#update
""" """
if losses is None: if losses is None:
losses = {} losses = {}
@ -220,7 +220,7 @@ class Tok2Vec(Pipe):
create_optimizer if it doesn't exist. create_optimizer if it doesn't exist.
RETURNS (thinc.api.Optimizer): The optimizer. RETURNS (thinc.api.Optimizer): The optimizer.
DOCS: https://spacy.io/api/tok2vec#begin_training DOCS: https://nightly.spacy.io/api/tok2vec#begin_training
""" """
docs = [Doc(self.vocab, words=["hello"])] docs = [Doc(self.vocab, words=["hello"])]
self.model.initialize(X=docs) self.model.initialize(X=docs)

View File

@ -6,6 +6,7 @@ from itertools import islice
from libcpp.vector cimport vector from libcpp.vector cimport vector
from libc.string cimport memset from libc.string cimport memset
from libc.stdlib cimport calloc, free from libc.stdlib cimport calloc, free
import random
import srsly import srsly
from thinc.api import set_dropout_rate from thinc.api import set_dropout_rate
@ -275,22 +276,22 @@ cdef class Parser(Pipe):
# Prepare the stepwise model, and get the callback for finishing the batch # Prepare the stepwise model, and get the callback for finishing the batch
model, backprop_tok2vec = self.model.begin_update( model, backprop_tok2vec = self.model.begin_update(
[eg.predicted for eg in examples]) [eg.predicted for eg in examples])
if self.cfg["update_with_oracle_cut_size"] >= 1: max_moves = self.cfg["update_with_oracle_cut_size"]
# Chop sequences into lengths of this many transitions, to make the if max_moves >= 1:
# Chop sequences into lengths of this many words, to make the
# batch uniform length. # batch uniform length.
# We used to randomize this, but it's not clear that actually helps? max_moves = int(random.uniform(max_moves // 2, max_moves * 2))
cut_size = self.cfg["update_with_oracle_cut_size"] states, golds, _ = self._init_gold_batch(
states, golds, max_steps = self._init_gold_batch(
examples, examples,
max_length=cut_size max_length=max_moves
) )
else: else:
states, golds, _ = self.moves.init_gold_batch(examples) states, golds, _ = self.moves.init_gold_batch(examples)
max_steps = max([len(eg.x) for eg in examples])
if not states: if not states:
return losses return losses
all_states = list(states) all_states = list(states)
states_golds = list(zip(states, golds)) states_golds = list(zip(states, golds))
n_moves = 0
while states_golds: while states_golds:
states, golds = zip(*states_golds) states, golds = zip(*states_golds)
scores, backprop = model.begin_update(states) scores, backprop = model.begin_update(states)
@ -303,6 +304,9 @@ cdef class Parser(Pipe):
# Follow the predicted action # Follow the predicted action
self.transition_states(states, scores) self.transition_states(states, scores)
states_golds = [(s, g) for (s, g) in zip(states, golds) if not s.is_final()] states_golds = [(s, g) for (s, g) in zip(states, golds) if not s.is_final()]
if max_moves >= 1 and n_moves >= max_moves:
break
n_moves += 1
backprop_tok2vec(golds) backprop_tok2vec(golds)
if sgd not in (None, False): if sgd not in (None, False):
@ -498,7 +502,7 @@ cdef class Parser(Pipe):
raise ValueError(Errors.E149) from None raise ValueError(Errors.E149) from None
return self return self
def _init_gold_batch(self, examples, min_length=5, max_length=500): def _init_gold_batch(self, examples, max_length):
"""Make a square batch, of length equal to the shortest transition """Make a square batch, of length equal to the shortest transition
sequence or a cap. A long sequence or a cap. A long
doc will get multiple states. Let's say we have a doc of length 2*N, doc will get multiple states. Let's say we have a doc of length 2*N,
@ -511,8 +515,7 @@ cdef class Parser(Pipe):
all_states = self.moves.init_batch([eg.predicted for eg in examples]) all_states = self.moves.init_batch([eg.predicted for eg in examples])
states = [] states = []
golds = [] golds = []
kept = [] to_cut = []
max_length_seen = 0
for state, eg in zip(all_states, examples): for state, eg in zip(all_states, examples):
if self.moves.has_gold(eg) and not state.is_final(): if self.moves.has_gold(eg) and not state.is_final():
gold = self.moves.init_gold(state, eg) gold = self.moves.init_gold(state, eg)
@ -522,30 +525,22 @@ cdef class Parser(Pipe):
else: else:
oracle_actions = self.moves.get_oracle_sequence_from_state( oracle_actions = self.moves.get_oracle_sequence_from_state(
state.copy(), gold) state.copy(), gold)
kept.append((eg, state, gold, oracle_actions)) to_cut.append((eg, state, gold, oracle_actions))
min_length = min(min_length, len(oracle_actions)) if not to_cut:
max_length_seen = max(max_length, len(oracle_actions))
if not kept:
return states, golds, 0 return states, golds, 0
max_length = max(min_length, min(max_length, max_length_seen))
cdef int clas cdef int clas
max_moves = 0 for eg, state, gold, oracle_actions in to_cut:
for eg, state, gold, oracle_actions in kept:
for i in range(0, len(oracle_actions), max_length): for i in range(0, len(oracle_actions), max_length):
start_state = state.copy() start_state = state.copy()
n_moves = 0
for clas in oracle_actions[i:i+max_length]: for clas in oracle_actions[i:i+max_length]:
action = self.moves.c[clas] action = self.moves.c[clas]
action.do(state.c, action.label) action.do(state.c, action.label)
state.c.push_hist(action.clas) state.c.push_hist(action.clas)
n_moves += 1
if state.is_final(): if state.is_final():
break break
max_moves = max(max_moves, n_moves)
if self.moves.has_gold(eg, start_state.B(0), state.B(0)): if self.moves.has_gold(eg, start_state.B(0), state.B(0)):
states.append(start_state) states.append(start_state)
golds.append(gold) golds.append(gold)
max_moves = max(max_moves, n_moves)
if state.is_final(): if state.is_final():
break break
return states, golds, max_moves return states, golds, max_length

View File

@ -85,7 +85,7 @@ class Scorer:
) -> None: ) -> None:
"""Initialize the Scorer. """Initialize the Scorer.
DOCS: https://spacy.io/api/scorer#init DOCS: https://nightly.spacy.io/api/scorer#init
""" """
self.nlp = nlp self.nlp = nlp
self.cfg = cfg self.cfg = cfg
@ -101,7 +101,7 @@ class Scorer:
examples (Iterable[Example]): The predicted annotations + correct annotations. examples (Iterable[Example]): The predicted annotations + correct annotations.
RETURNS (Dict): A dictionary of scores. RETURNS (Dict): A dictionary of scores.
DOCS: https://spacy.io/api/scorer#score DOCS: https://nightly.spacy.io/api/scorer#score
""" """
scores = {} scores = {}
if hasattr(self.nlp.tokenizer, "score"): if hasattr(self.nlp.tokenizer, "score"):
@ -121,7 +121,7 @@ class Scorer:
RETURNS (Dict[str, float]): A dictionary containing the scores RETURNS (Dict[str, float]): A dictionary containing the scores
token_acc/p/r/f. token_acc/p/r/f.
DOCS: https://spacy.io/api/scorer#score_tokenization DOCS: https://nightly.spacy.io/api/scorer#score_tokenization
""" """
acc_score = PRFScore() acc_score = PRFScore()
prf_score = PRFScore() prf_score = PRFScore()
@ -169,7 +169,7 @@ class Scorer:
RETURNS (Dict[str, float]): A dictionary containing the accuracy score RETURNS (Dict[str, float]): A dictionary containing the accuracy score
under the key attr_acc. under the key attr_acc.
DOCS: https://spacy.io/api/scorer#score_token_attr DOCS: https://nightly.spacy.io/api/scorer#score_token_attr
""" """
tag_score = PRFScore() tag_score = PRFScore()
for example in examples: for example in examples:
@ -263,7 +263,7 @@ class Scorer:
RETURNS (Dict[str, Any]): A dictionary containing the PRF scores under RETURNS (Dict[str, Any]): A dictionary containing the PRF scores under
the keys attr_p/r/f and the per-type PRF scores under attr_per_type. the keys attr_p/r/f and the per-type PRF scores under attr_per_type.
DOCS: https://spacy.io/api/scorer#score_spans DOCS: https://nightly.spacy.io/api/scorer#score_spans
""" """
score = PRFScore() score = PRFScore()
score_per_type = dict() score_per_type = dict()
@ -350,7 +350,7 @@ class Scorer:
attr_f_per_type, attr_f_per_type,
attr_auc_per_type attr_auc_per_type
DOCS: https://spacy.io/api/scorer#score_cats DOCS: https://nightly.spacy.io/api/scorer#score_cats
""" """
if threshold is None: if threshold is None:
threshold = 0.5 if multi_label else 0.0 threshold = 0.5 if multi_label else 0.0
@ -467,7 +467,7 @@ class Scorer:
RETURNS (Dict[str, Any]): A dictionary containing the scores: RETURNS (Dict[str, Any]): A dictionary containing the scores:
attr_uas, attr_las, and attr_las_per_type. attr_uas, attr_las, and attr_las_per_type.
DOCS: https://spacy.io/api/scorer#score_deps DOCS: https://nightly.spacy.io/api/scorer#score_deps
""" """
unlabelled = PRFScore() unlabelled = PRFScore()
labelled = PRFScore() labelled = PRFScore()

View File

@ -91,7 +91,7 @@ cdef Utf8Str* _allocate(Pool mem, const unsigned char* chars, uint32_t length) e
cdef class StringStore: cdef class StringStore:
"""Look up strings by 64-bit hashes. """Look up strings by 64-bit hashes.
DOCS: https://spacy.io/api/stringstore DOCS: https://nightly.spacy.io/api/stringstore
""" """
def __init__(self, strings=None, freeze=False): def __init__(self, strings=None, freeze=False):
"""Create the StringStore. """Create the StringStore.

View File

@ -317,7 +317,8 @@ def test_doc_from_array_morph(en_vocab):
def test_doc_api_from_docs(en_tokenizer, de_tokenizer): def test_doc_api_from_docs(en_tokenizer, de_tokenizer):
en_texts = ["Merging the docs is fun.", "They don't think alike."] en_texts = ["Merging the docs is fun.", "", "They don't think alike."]
en_texts_without_empty = [t for t in en_texts if len(t)]
de_text = "Wie war die Frage?" de_text = "Wie war die Frage?"
en_docs = [en_tokenizer(text) for text in en_texts] en_docs = [en_tokenizer(text) for text in en_texts]
docs_idx = en_texts[0].index("docs") docs_idx = en_texts[0].index("docs")
@ -338,14 +339,14 @@ def test_doc_api_from_docs(en_tokenizer, de_tokenizer):
Doc.from_docs(en_docs + [de_doc]) Doc.from_docs(en_docs + [de_doc])
m_doc = Doc.from_docs(en_docs) m_doc = Doc.from_docs(en_docs)
assert len(en_docs) == len(list(m_doc.sents)) assert len(en_texts_without_empty) == len(list(m_doc.sents))
assert len(str(m_doc)) > len(en_texts[0]) + len(en_texts[1]) assert len(str(m_doc)) > len(en_texts[0]) + len(en_texts[1])
assert str(m_doc) == " ".join(en_texts) assert str(m_doc) == " ".join(en_texts_without_empty)
p_token = m_doc[len(en_docs[0]) - 1] p_token = m_doc[len(en_docs[0]) - 1]
assert p_token.text == "." and bool(p_token.whitespace_) assert p_token.text == "." and bool(p_token.whitespace_)
en_docs_tokens = [t for doc in en_docs for t in doc] en_docs_tokens = [t for doc in en_docs for t in doc]
assert len(m_doc) == len(en_docs_tokens) assert len(m_doc) == len(en_docs_tokens)
think_idx = len(en_texts[0]) + 1 + en_texts[1].index("think") think_idx = len(en_texts[0]) + 1 + en_texts[2].index("think")
assert m_doc[9].idx == think_idx assert m_doc[9].idx == think_idx
with pytest.raises(AttributeError): with pytest.raises(AttributeError):
# not callable, because it was not set via set_extension # not callable, because it was not set via set_extension
@ -353,14 +354,14 @@ def test_doc_api_from_docs(en_tokenizer, de_tokenizer):
assert len(m_doc.user_data) == len(en_docs[0].user_data) # but it's there assert len(m_doc.user_data) == len(en_docs[0].user_data) # but it's there
m_doc = Doc.from_docs(en_docs, ensure_whitespace=False) m_doc = Doc.from_docs(en_docs, ensure_whitespace=False)
assert len(en_docs) == len(list(m_doc.sents)) assert len(en_texts_without_empty) == len(list(m_doc.sents))
assert len(str(m_doc)) == len(en_texts[0]) + len(en_texts[1]) assert len(str(m_doc)) == sum(len(t) for t in en_texts)
assert str(m_doc) == "".join(en_texts) assert str(m_doc) == "".join(en_texts)
p_token = m_doc[len(en_docs[0]) - 1] p_token = m_doc[len(en_docs[0]) - 1]
assert p_token.text == "." and not bool(p_token.whitespace_) assert p_token.text == "." and not bool(p_token.whitespace_)
en_docs_tokens = [t for doc in en_docs for t in doc] en_docs_tokens = [t for doc in en_docs for t in doc]
assert len(m_doc) == len(en_docs_tokens) assert len(m_doc) == len(en_docs_tokens)
think_idx = len(en_texts[0]) + 0 + en_texts[1].index("think") think_idx = len(en_texts[0]) + 0 + en_texts[2].index("think")
assert m_doc[9].idx == think_idx assert m_doc[9].idx == think_idx
m_doc = Doc.from_docs(en_docs, attrs=["lemma", "length", "pos"]) m_doc = Doc.from_docs(en_docs, attrs=["lemma", "length", "pos"])
@ -369,12 +370,12 @@ def test_doc_api_from_docs(en_tokenizer, de_tokenizer):
assert list(m_doc.sents) assert list(m_doc.sents)
assert len(str(m_doc)) > len(en_texts[0]) + len(en_texts[1]) assert len(str(m_doc)) > len(en_texts[0]) + len(en_texts[1])
# space delimiter considered, although spacy attribute was missing # space delimiter considered, although spacy attribute was missing
assert str(m_doc) == " ".join(en_texts) assert str(m_doc) == " ".join(en_texts_without_empty)
p_token = m_doc[len(en_docs[0]) - 1] p_token = m_doc[len(en_docs[0]) - 1]
assert p_token.text == "." and bool(p_token.whitespace_) assert p_token.text == "." and bool(p_token.whitespace_)
en_docs_tokens = [t for doc in en_docs for t in doc] en_docs_tokens = [t for doc in en_docs for t in doc]
assert len(m_doc) == len(en_docs_tokens) assert len(m_doc) == len(en_docs_tokens)
think_idx = len(en_texts[0]) + 1 + en_texts[1].index("think") think_idx = len(en_texts[0]) + 1 + en_texts[2].index("think")
assert m_doc[9].idx == think_idx assert m_doc[9].idx == think_idx

View File

@ -14,7 +14,7 @@ LANGUAGES = ["el", "en", "fr", "nl"]
@pytest.mark.parametrize("lang", LANGUAGES) @pytest.mark.parametrize("lang", LANGUAGES)
def test_lemmatizer_initialize(lang, capfd): def test_lemmatizer_initialize(lang, capfd):
@registry.assets("lemmatizer_init_lookups") @registry.misc("lemmatizer_init_lookups")
def lemmatizer_init_lookups(): def lemmatizer_init_lookups():
lookups = Lookups() lookups = Lookups()
lookups.add_table("lemma_lookup", {"cope": "cope"}) lookups.add_table("lemma_lookup", {"cope": "cope"})
@ -25,9 +25,7 @@ def test_lemmatizer_initialize(lang, capfd):
"""Test that languages can be initialized.""" """Test that languages can be initialized."""
nlp = get_lang_class(lang)() nlp = get_lang_class(lang)()
nlp.add_pipe( nlp.add_pipe("lemmatizer", config={"lookups": {"@misc": "lemmatizer_init_lookups"}})
"lemmatizer", config={"lookups": {"@assets": "lemmatizer_init_lookups"}}
)
# Check for stray print statements (see #3342) # Check for stray print statements (see #3342)
doc = nlp("test") # noqa: F841 doc = nlp("test") # noqa: F841
captured = capfd.readouterr() captured = capfd.readouterr()

View File

@ -31,7 +31,7 @@ def pattern_dicts():
] ]
@registry.assets("attribute_ruler_patterns") @registry.misc("attribute_ruler_patterns")
def attribute_ruler_patterns(): def attribute_ruler_patterns():
return [ return [
{ {
@ -86,7 +86,7 @@ def test_attributeruler_init_patterns(nlp, pattern_dicts):
# initialize with patterns from asset # initialize with patterns from asset
nlp.add_pipe( nlp.add_pipe(
"attribute_ruler", "attribute_ruler",
config={"pattern_dicts": {"@assets": "attribute_ruler_patterns"}}, config={"pattern_dicts": {"@misc": "attribute_ruler_patterns"}},
) )
doc = nlp("This is a test.") doc = nlp("This is a test.")
assert doc[2].lemma_ == "the" assert doc[2].lemma_ == "the"

View File

@ -137,7 +137,7 @@ def test_kb_undefined(nlp):
def test_kb_empty(nlp): def test_kb_empty(nlp):
"""Test that the EL can't train with an empty KB""" """Test that the EL can't train with an empty KB"""
config = {"kb_loader": {"@assets": "spacy.EmptyKB.v1", "entity_vector_length": 342}} config = {"kb_loader": {"@misc": "spacy.EmptyKB.v1", "entity_vector_length": 342}}
entity_linker = nlp.add_pipe("entity_linker", config=config) entity_linker = nlp.add_pipe("entity_linker", config=config)
assert len(entity_linker.kb) == 0 assert len(entity_linker.kb) == 0
with pytest.raises(ValueError): with pytest.raises(ValueError):
@ -183,7 +183,7 @@ def test_el_pipe_configuration(nlp):
ruler = nlp.add_pipe("entity_ruler") ruler = nlp.add_pipe("entity_ruler")
ruler.add_patterns([pattern]) ruler.add_patterns([pattern])
@registry.assets.register("myAdamKB.v1") @registry.misc.register("myAdamKB.v1")
def mykb() -> Callable[["Vocab"], KnowledgeBase]: def mykb() -> Callable[["Vocab"], KnowledgeBase]:
def create_kb(vocab): def create_kb(vocab):
kb = KnowledgeBase(vocab, entity_vector_length=1) kb = KnowledgeBase(vocab, entity_vector_length=1)
@ -199,7 +199,7 @@ def test_el_pipe_configuration(nlp):
# run an EL pipe without a trained context encoder, to check the candidate generation step only # run an EL pipe without a trained context encoder, to check the candidate generation step only
nlp.add_pipe( nlp.add_pipe(
"entity_linker", "entity_linker",
config={"kb_loader": {"@assets": "myAdamKB.v1"}, "incl_context": False}, config={"kb_loader": {"@misc": "myAdamKB.v1"}, "incl_context": False},
) )
# With the default get_candidates function, matching is case-sensitive # With the default get_candidates function, matching is case-sensitive
text = "Douglas and douglas are not the same." text = "Douglas and douglas are not the same."
@ -211,7 +211,7 @@ def test_el_pipe_configuration(nlp):
def get_lowercased_candidates(kb, span): def get_lowercased_candidates(kb, span):
return kb.get_alias_candidates(span.text.lower()) return kb.get_alias_candidates(span.text.lower())
@registry.assets.register("spacy.LowercaseCandidateGenerator.v1") @registry.misc.register("spacy.LowercaseCandidateGenerator.v1")
def create_candidates() -> Callable[[KnowledgeBase, "Span"], Iterable[Candidate]]: def create_candidates() -> Callable[[KnowledgeBase, "Span"], Iterable[Candidate]]:
return get_lowercased_candidates return get_lowercased_candidates
@ -220,9 +220,9 @@ def test_el_pipe_configuration(nlp):
"entity_linker", "entity_linker",
"entity_linker", "entity_linker",
config={ config={
"kb_loader": {"@assets": "myAdamKB.v1"}, "kb_loader": {"@misc": "myAdamKB.v1"},
"incl_context": False, "incl_context": False,
"get_candidates": {"@assets": "spacy.LowercaseCandidateGenerator.v1"}, "get_candidates": {"@misc": "spacy.LowercaseCandidateGenerator.v1"},
}, },
) )
doc = nlp(text) doc = nlp(text)
@ -282,7 +282,7 @@ def test_append_invalid_alias(nlp):
def test_preserving_links_asdoc(nlp): def test_preserving_links_asdoc(nlp):
"""Test that Span.as_doc preserves the existing entity links""" """Test that Span.as_doc preserves the existing entity links"""
@registry.assets.register("myLocationsKB.v1") @registry.misc.register("myLocationsKB.v1")
def dummy_kb() -> Callable[["Vocab"], KnowledgeBase]: def dummy_kb() -> Callable[["Vocab"], KnowledgeBase]:
def create_kb(vocab): def create_kb(vocab):
mykb = KnowledgeBase(vocab, entity_vector_length=1) mykb = KnowledgeBase(vocab, entity_vector_length=1)
@ -304,7 +304,7 @@ def test_preserving_links_asdoc(nlp):
] ]
ruler = nlp.add_pipe("entity_ruler") ruler = nlp.add_pipe("entity_ruler")
ruler.add_patterns(patterns) ruler.add_patterns(patterns)
el_config = {"kb_loader": {"@assets": "myLocationsKB.v1"}, "incl_prior": False} el_config = {"kb_loader": {"@misc": "myLocationsKB.v1"}, "incl_prior": False}
el_pipe = nlp.add_pipe("entity_linker", config=el_config, last=True) el_pipe = nlp.add_pipe("entity_linker", config=el_config, last=True)
el_pipe.begin_training(lambda: []) el_pipe.begin_training(lambda: [])
el_pipe.incl_context = False el_pipe.incl_context = False
@ -387,7 +387,7 @@ def test_overfitting_IO():
doc = nlp(text) doc = nlp(text)
train_examples.append(Example.from_dict(doc, annotation)) train_examples.append(Example.from_dict(doc, annotation))
@registry.assets.register("myOverfittingKB.v1") @registry.misc.register("myOverfittingKB.v1")
def dummy_kb() -> Callable[["Vocab"], KnowledgeBase]: def dummy_kb() -> Callable[["Vocab"], KnowledgeBase]:
def create_kb(vocab): def create_kb(vocab):
# create artificial KB - assign same prior weight to the two russ cochran's # create artificial KB - assign same prior weight to the two russ cochran's
@ -408,7 +408,7 @@ def test_overfitting_IO():
# Create the Entity Linker component and add it to the pipeline # Create the Entity Linker component and add it to the pipeline
nlp.add_pipe( nlp.add_pipe(
"entity_linker", "entity_linker",
config={"kb_loader": {"@assets": "myOverfittingKB.v1"}}, config={"kb_loader": {"@misc": "myOverfittingKB.v1"}},
last=True, last=True,
) )

View File

@ -13,7 +13,7 @@ def nlp():
@pytest.fixture @pytest.fixture
def lemmatizer(nlp): def lemmatizer(nlp):
@registry.assets("cope_lookups") @registry.misc("cope_lookups")
def cope_lookups(): def cope_lookups():
lookups = Lookups() lookups = Lookups()
lookups.add_table("lemma_lookup", {"cope": "cope"}) lookups.add_table("lemma_lookup", {"cope": "cope"})
@ -23,13 +23,13 @@ def lemmatizer(nlp):
return lookups return lookups
lemmatizer = nlp.add_pipe( lemmatizer = nlp.add_pipe(
"lemmatizer", config={"mode": "rule", "lookups": {"@assets": "cope_lookups"}} "lemmatizer", config={"mode": "rule", "lookups": {"@misc": "cope_lookups"}}
) )
return lemmatizer return lemmatizer
def test_lemmatizer_init(nlp): def test_lemmatizer_init(nlp):
@registry.assets("cope_lookups") @registry.misc("cope_lookups")
def cope_lookups(): def cope_lookups():
lookups = Lookups() lookups = Lookups()
lookups.add_table("lemma_lookup", {"cope": "cope"}) lookups.add_table("lemma_lookup", {"cope": "cope"})
@ -39,7 +39,7 @@ def test_lemmatizer_init(nlp):
return lookups return lookups
lemmatizer = nlp.add_pipe( lemmatizer = nlp.add_pipe(
"lemmatizer", config={"mode": "lookup", "lookups": {"@assets": "cope_lookups"}} "lemmatizer", config={"mode": "lookup", "lookups": {"@misc": "cope_lookups"}}
) )
assert isinstance(lemmatizer.lookups, Lookups) assert isinstance(lemmatizer.lookups, Lookups)
assert lemmatizer.mode == "lookup" assert lemmatizer.mode == "lookup"
@ -51,14 +51,14 @@ def test_lemmatizer_init(nlp):
nlp.remove_pipe("lemmatizer") nlp.remove_pipe("lemmatizer")
@registry.assets("empty_lookups") @registry.misc("empty_lookups")
def empty_lookups(): def empty_lookups():
return Lookups() return Lookups()
with pytest.raises(ValueError): with pytest.raises(ValueError):
nlp.add_pipe( nlp.add_pipe(
"lemmatizer", "lemmatizer",
config={"mode": "lookup", "lookups": {"@assets": "empty_lookups"}}, config={"mode": "lookup", "lookups": {"@misc": "empty_lookups"}},
) )
@ -79,7 +79,7 @@ def test_lemmatizer_config(nlp, lemmatizer):
def test_lemmatizer_serialize(nlp, lemmatizer): def test_lemmatizer_serialize(nlp, lemmatizer):
@registry.assets("cope_lookups") @registry.misc("cope_lookups")
def cope_lookups(): def cope_lookups():
lookups = Lookups() lookups = Lookups()
lookups.add_table("lemma_lookup", {"cope": "cope"}) lookups.add_table("lemma_lookup", {"cope": "cope"})
@ -90,7 +90,7 @@ def test_lemmatizer_serialize(nlp, lemmatizer):
nlp2 = English() nlp2 = English()
lemmatizer2 = nlp2.add_pipe( lemmatizer2 = nlp2.add_pipe(
"lemmatizer", config={"mode": "rule", "lookups": {"@assets": "cope_lookups"}} "lemmatizer", config={"mode": "rule", "lookups": {"@misc": "cope_lookups"}}
) )
lemmatizer2.from_bytes(lemmatizer.to_bytes()) lemmatizer2.from_bytes(lemmatizer.to_bytes())
assert lemmatizer.to_bytes() == lemmatizer2.to_bytes() assert lemmatizer.to_bytes() == lemmatizer2.to_bytes()

View File

@ -28,8 +28,6 @@ def test_tagger_begin_training_tag_map():
TAGS = ("N", "V", "J") TAGS = ("N", "V", "J")
MORPH_RULES = {"V": {"like": {"lemma": "luck"}}}
TRAIN_DATA = [ TRAIN_DATA = [
("I like green eggs", {"tags": ["N", "V", "J", "N"]}), ("I like green eggs", {"tags": ["N", "V", "J", "N"]}),
("Eat blue ham", {"tags": ["V", "J", "N"]}), ("Eat blue ham", {"tags": ["V", "J", "N"]}),

View File

@ -84,9 +84,8 @@ def test_overfitting_IO():
# Simple test to try and quickly overfit the textcat component - ensuring the ML models work correctly # Simple test to try and quickly overfit the textcat component - ensuring the ML models work correctly
fix_random_seed(0) fix_random_seed(0)
nlp = English() nlp = English()
textcat = nlp.add_pipe("textcat")
# Set exclusive labels # Set exclusive labels
textcat.model.attrs["multi_label"] = False textcat = nlp.add_pipe("textcat", config={"model": {"exclusive_classes": True}})
train_examples = [] train_examples = []
for text, annotations in TRAIN_DATA: for text, annotations in TRAIN_DATA:
train_examples.append(Example.from_dict(nlp.make_doc(text), annotations)) train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
@ -103,9 +102,8 @@ def test_overfitting_IO():
test_text = "I am happy." test_text = "I am happy."
doc = nlp(test_text) doc = nlp(test_text)
cats = doc.cats cats = doc.cats
# note that by default, exclusive_classes = false so we need a bigger error margin assert cats["POSITIVE"] > 0.9
assert cats["POSITIVE"] > 0.8 assert cats["POSITIVE"] + cats["NEGATIVE"] == pytest.approx(1.0, 0.001)
assert cats["POSITIVE"] + cats["NEGATIVE"] == pytest.approx(1.0, 0.1)
# Also test the results are still the same after IO # Also test the results are still the same after IO
with make_tempdir() as tmp_dir: with make_tempdir() as tmp_dir:
@ -113,8 +111,8 @@ def test_overfitting_IO():
nlp2 = util.load_model_from_path(tmp_dir) nlp2 = util.load_model_from_path(tmp_dir)
doc2 = nlp2(test_text) doc2 = nlp2(test_text)
cats2 = doc2.cats cats2 = doc2.cats
assert cats2["POSITIVE"] > 0.8 assert cats2["POSITIVE"] > 0.9
assert cats2["POSITIVE"] + cats2["NEGATIVE"] == pytest.approx(1.0, 0.1) assert cats2["POSITIVE"] + cats2["NEGATIVE"] == pytest.approx(1.0, 0.001)
# Test scoring # Test scoring
scores = nlp.evaluate(train_examples, scorer_cfg={"positive_label": "POSITIVE"}) scores = nlp.evaluate(train_examples, scorer_cfg={"positive_label": "POSITIVE"})

View File

@ -71,7 +71,7 @@ def tagger():
def entity_linker(): def entity_linker():
nlp = Language() nlp = Language()
@registry.assets.register("TestIssue5230KB.v1") @registry.misc.register("TestIssue5230KB.v1")
def dummy_kb() -> Callable[["Vocab"], KnowledgeBase]: def dummy_kb() -> Callable[["Vocab"], KnowledgeBase]:
def create_kb(vocab): def create_kb(vocab):
kb = KnowledgeBase(vocab, entity_vector_length=1) kb = KnowledgeBase(vocab, entity_vector_length=1)
@ -80,7 +80,7 @@ def entity_linker():
return create_kb return create_kb
config = {"kb_loader": {"@assets": "TestIssue5230KB.v1"}} config = {"kb_loader": {"@misc": "TestIssue5230KB.v1"}}
entity_linker = nlp.add_pipe("entity_linker", config=config) entity_linker = nlp.add_pipe("entity_linker", config=config)
# need to add model for two reasons: # need to add model for two reasons:
# 1. no model leads to error in serialization, # 1. no model leads to error in serialization,

View File

@ -28,7 +28,7 @@ path = ${paths.train}
path = ${paths.dev} path = ${paths.dev}
[training.batcher] [training.batcher]
@batchers = "batch_by_words.v1" @batchers = "spacy.batch_by_words.v1"
size = 666 size = 666
[nlp] [nlp]

View File

@ -85,7 +85,7 @@ def test_serialize_subclassed_kb():
super().__init__(vocab, entity_vector_length) super().__init__(vocab, entity_vector_length)
self.custom_field = custom_field self.custom_field = custom_field
@registry.assets.register("spacy.CustomKB.v1") @registry.misc.register("spacy.CustomKB.v1")
def custom_kb( def custom_kb(
entity_vector_length: int, custom_field: int entity_vector_length: int, custom_field: int
) -> Callable[["Vocab"], KnowledgeBase]: ) -> Callable[["Vocab"], KnowledgeBase]:
@ -101,7 +101,7 @@ def test_serialize_subclassed_kb():
nlp = English() nlp = English()
config = { config = {
"kb_loader": { "kb_loader": {
"@assets": "spacy.CustomKB.v1", "@misc": "spacy.CustomKB.v1",
"entity_vector_length": 342, "entity_vector_length": 342,
"custom_field": 666, "custom_field": 666,
} }

View File

@ -34,9 +34,9 @@ cdef class Tokenizer:
vector[SpanC] &filtered) vector[SpanC] &filtered)
cdef int _retokenize_special_spans(self, Doc doc, TokenC* tokens, cdef int _retokenize_special_spans(self, Doc doc, TokenC* tokens,
object span_data) object span_data)
cdef int _try_cache(self, hash_t key, Doc tokens) except -1 cdef int _try_specials_and_cache(self, hash_t key, Doc tokens,
cdef int _try_specials(self, hash_t key, Doc tokens, int* has_special,
int* has_special) except -1 bint with_special_cases) except -1
cdef int _tokenize(self, Doc tokens, unicode span, hash_t key, cdef int _tokenize(self, Doc tokens, unicode span, hash_t key,
int* has_special, bint with_special_cases) except -1 int* has_special, bint with_special_cases) except -1
cdef unicode _split_affixes(self, Pool mem, unicode string, cdef unicode _split_affixes(self, Pool mem, unicode string,

View File

@ -31,7 +31,7 @@ cdef class Tokenizer:
"""Segment text, and create Doc objects with the discovered segment """Segment text, and create Doc objects with the discovered segment
boundaries. boundaries.
DOCS: https://spacy.io/api/tokenizer DOCS: https://nightly.spacy.io/api/tokenizer
""" """
def __init__(self, Vocab vocab, rules=None, prefix_search=None, def __init__(self, Vocab vocab, rules=None, prefix_search=None,
suffix_search=None, infix_finditer=None, token_match=None, suffix_search=None, infix_finditer=None, token_match=None,
@ -54,7 +54,7 @@ cdef class Tokenizer:
EXAMPLE: EXAMPLE:
>>> tokenizer = Tokenizer(nlp.vocab) >>> tokenizer = Tokenizer(nlp.vocab)
DOCS: https://spacy.io/api/tokenizer#init DOCS: https://nightly.spacy.io/api/tokenizer#init
""" """
self.mem = Pool() self.mem = Pool()
self._cache = PreshMap() self._cache = PreshMap()
@ -147,7 +147,7 @@ cdef class Tokenizer:
string (str): The string to tokenize. string (str): The string to tokenize.
RETURNS (Doc): A container for linguistic annotations. RETURNS (Doc): A container for linguistic annotations.
DOCS: https://spacy.io/api/tokenizer#call DOCS: https://nightly.spacy.io/api/tokenizer#call
""" """
doc = self._tokenize_affixes(string, True) doc = self._tokenize_affixes(string, True)
self._apply_special_cases(doc) self._apply_special_cases(doc)
@ -169,8 +169,6 @@ cdef class Tokenizer:
cdef int i = 0 cdef int i = 0
cdef int start = 0 cdef int start = 0
cdef int has_special = 0 cdef int has_special = 0
cdef bint specials_hit = 0
cdef bint cache_hit = 0
cdef bint in_ws = string[0].isspace() cdef bint in_ws = string[0].isspace()
cdef unicode span cdef unicode span
# The task here is much like string.split, but not quite # The task here is much like string.split, but not quite
@ -186,13 +184,7 @@ cdef class Tokenizer:
# we don't have to create the slice when we hit the cache. # we don't have to create the slice when we hit the cache.
span = string[start:i] span = string[start:i]
key = hash_string(span) key = hash_string(span)
specials_hit = 0 if not self._try_specials_and_cache(key, doc, &has_special, with_special_cases):
cache_hit = 0
if with_special_cases:
specials_hit = self._try_specials(key, doc, &has_special)
if not specials_hit:
cache_hit = self._try_cache(key, doc)
if not specials_hit and not cache_hit:
self._tokenize(doc, span, key, &has_special, with_special_cases) self._tokenize(doc, span, key, &has_special, with_special_cases)
if uc == ' ': if uc == ' ':
doc.c[doc.length - 1].spacy = True doc.c[doc.length - 1].spacy = True
@ -204,13 +196,7 @@ cdef class Tokenizer:
if start < i: if start < i:
span = string[start:] span = string[start:]
key = hash_string(span) key = hash_string(span)
specials_hit = 0 if not self._try_specials_and_cache(key, doc, &has_special, with_special_cases):
cache_hit = 0
if with_special_cases:
specials_hit = self._try_specials(key, doc, &has_special)
if not specials_hit:
cache_hit = self._try_cache(key, doc)
if not specials_hit and not cache_hit:
self._tokenize(doc, span, key, &has_special, with_special_cases) self._tokenize(doc, span, key, &has_special, with_special_cases)
doc.c[doc.length - 1].spacy = string[-1] == " " and not in_ws doc.c[doc.length - 1].spacy = string[-1] == " " and not in_ws
return doc return doc
@ -223,7 +209,7 @@ cdef class Tokenizer:
Defaults to 1000. Defaults to 1000.
YIELDS (Doc): A sequence of Doc objects, in order. YIELDS (Doc): A sequence of Doc objects, in order.
DOCS: https://spacy.io/api/tokenizer#pipe DOCS: https://nightly.spacy.io/api/tokenizer#pipe
""" """
for text in texts: for text in texts:
yield self(text) yield self(text)
@ -364,27 +350,33 @@ cdef class Tokenizer:
offset += span[3] offset += span[3]
return offset return offset
cdef int _try_cache(self, hash_t key, Doc tokens) except -1: cdef int _try_specials_and_cache(self, hash_t key, Doc tokens, int* has_special, bint with_special_cases) except -1:
cdef bint specials_hit = 0
cdef bint cache_hit = 0
cdef int i
if with_special_cases:
cached = <_Cached*>self._specials.get(key)
if cached == NULL:
specials_hit = False
else:
for i in range(cached.length):
tokens.push_back(&cached.data.tokens[i], False)
has_special[0] = 1
specials_hit = True
if not specials_hit:
cached = <_Cached*>self._cache.get(key) cached = <_Cached*>self._cache.get(key)
if cached == NULL: if cached == NULL:
return False cache_hit = False
cdef int i else:
if cached.is_lex: if cached.is_lex:
for i in range(cached.length): for i in range(cached.length):
tokens.push_back(cached.data.lexemes[i], False) tokens.push_back(cached.data.lexemes[i], False)
else: else:
for i in range(cached.length): for i in range(cached.length):
tokens.push_back(&cached.data.tokens[i], False) tokens.push_back(&cached.data.tokens[i], False)
return True cache_hit = True
if not specials_hit and not cache_hit:
cdef int _try_specials(self, hash_t key, Doc tokens, int* has_special) except -1:
cached = <_Cached*>self._specials.get(key)
if cached == NULL:
return False return False
cdef int i
for i in range(cached.length):
tokens.push_back(&cached.data.tokens[i], False)
has_special[0] = 1
return True return True
cdef int _tokenize(self, Doc tokens, unicode span, hash_t orig_key, int* has_special, bint with_special_cases) except -1: cdef int _tokenize(self, Doc tokens, unicode span, hash_t orig_key, int* has_special, bint with_special_cases) except -1:
@ -462,12 +454,7 @@ cdef class Tokenizer:
for i in range(prefixes.size()): for i in range(prefixes.size()):
tokens.push_back(prefixes[0][i], False) tokens.push_back(prefixes[0][i], False)
if string: if string:
if with_special_cases: if self._try_specials_and_cache(hash_string(string), tokens, has_special, with_special_cases):
specials_hit = self._try_specials(hash_string(string), tokens,
has_special)
if not specials_hit:
cache_hit = self._try_cache(hash_string(string), tokens)
if specials_hit or cache_hit:
pass pass
elif (self.token_match and self.token_match(string)) or \ elif (self.token_match and self.token_match(string)) or \
(self.url_match and \ (self.url_match and \
@ -542,7 +529,7 @@ cdef class Tokenizer:
and `.end()` methods, denoting the placement of internal segment and `.end()` methods, denoting the placement of internal segment
separators, e.g. hyphens. separators, e.g. hyphens.
DOCS: https://spacy.io/api/tokenizer#find_infix DOCS: https://nightly.spacy.io/api/tokenizer#find_infix
""" """
if self.infix_finditer is None: if self.infix_finditer is None:
return 0 return 0
@ -555,7 +542,7 @@ cdef class Tokenizer:
string (str): The string to segment. string (str): The string to segment.
RETURNS (int): The length of the prefix if present, otherwise `None`. RETURNS (int): The length of the prefix if present, otherwise `None`.
DOCS: https://spacy.io/api/tokenizer#find_prefix DOCS: https://nightly.spacy.io/api/tokenizer#find_prefix
""" """
if self.prefix_search is None: if self.prefix_search is None:
return 0 return 0
@ -569,7 +556,7 @@ cdef class Tokenizer:
string (str): The string to segment. string (str): The string to segment.
Returns (int): The length of the suffix if present, otherwise `None`. Returns (int): The length of the suffix if present, otherwise `None`.
DOCS: https://spacy.io/api/tokenizer#find_suffix DOCS: https://nightly.spacy.io/api/tokenizer#find_suffix
""" """
if self.suffix_search is None: if self.suffix_search is None:
return 0 return 0
@ -609,7 +596,7 @@ cdef class Tokenizer:
a token and its attributes. The `ORTH` fields of the attributes a token and its attributes. The `ORTH` fields of the attributes
must exactly match the string when they are concatenated. must exactly match the string when they are concatenated.
DOCS: https://spacy.io/api/tokenizer#add_special_case DOCS: https://nightly.spacy.io/api/tokenizer#add_special_case
""" """
self._validate_special_case(string, substrings) self._validate_special_case(string, substrings)
substrings = list(substrings) substrings = list(substrings)
@ -648,7 +635,7 @@ cdef class Tokenizer:
string (str): The string to tokenize. string (str): The string to tokenize.
RETURNS (list): A list of (pattern_string, token_string) tuples RETURNS (list): A list of (pattern_string, token_string) tuples
DOCS: https://spacy.io/api/tokenizer#explain DOCS: https://nightly.spacy.io/api/tokenizer#explain
""" """
prefix_search = self.prefix_search prefix_search = self.prefix_search
suffix_search = self.suffix_search suffix_search = self.suffix_search
@ -729,7 +716,7 @@ cdef class Tokenizer:
it doesn't exist. it doesn't exist.
exclude (list): String names of serialization fields to exclude. exclude (list): String names of serialization fields to exclude.
DOCS: https://spacy.io/api/tokenizer#to_disk DOCS: https://nightly.spacy.io/api/tokenizer#to_disk
""" """
path = util.ensure_path(path) path = util.ensure_path(path)
with path.open("wb") as file_: with path.open("wb") as file_:
@ -743,7 +730,7 @@ cdef class Tokenizer:
exclude (list): String names of serialization fields to exclude. exclude (list): String names of serialization fields to exclude.
RETURNS (Tokenizer): The modified `Tokenizer` object. RETURNS (Tokenizer): The modified `Tokenizer` object.
DOCS: https://spacy.io/api/tokenizer#from_disk DOCS: https://nightly.spacy.io/api/tokenizer#from_disk
""" """
path = util.ensure_path(path) path = util.ensure_path(path)
with path.open("rb") as file_: with path.open("rb") as file_:
@ -757,7 +744,7 @@ cdef class Tokenizer:
exclude (list): String names of serialization fields to exclude. exclude (list): String names of serialization fields to exclude.
RETURNS (bytes): The serialized form of the `Tokenizer` object. RETURNS (bytes): The serialized form of the `Tokenizer` object.
DOCS: https://spacy.io/api/tokenizer#to_bytes DOCS: https://nightly.spacy.io/api/tokenizer#to_bytes
""" """
serializers = { serializers = {
"vocab": lambda: self.vocab.to_bytes(), "vocab": lambda: self.vocab.to_bytes(),
@ -777,7 +764,7 @@ cdef class Tokenizer:
exclude (list): String names of serialization fields to exclude. exclude (list): String names of serialization fields to exclude.
RETURNS (Tokenizer): The `Tokenizer` object. RETURNS (Tokenizer): The `Tokenizer` object.
DOCS: https://spacy.io/api/tokenizer#from_bytes DOCS: https://nightly.spacy.io/api/tokenizer#from_bytes
""" """
data = {} data = {}
deserializers = { deserializers = {

View File

@ -24,8 +24,8 @@ from ..strings import get_string_id
cdef class Retokenizer: cdef class Retokenizer:
"""Helper class for doc.retokenize() context manager. """Helper class for doc.retokenize() context manager.
DOCS: https://spacy.io/api/doc#retokenize DOCS: https://nightly.spacy.io/api/doc#retokenize
USAGE: https://spacy.io/usage/linguistic-features#retokenization USAGE: https://nightly.spacy.io/usage/linguistic-features#retokenization
""" """
cdef Doc doc cdef Doc doc
cdef list merges cdef list merges
@ -47,7 +47,7 @@ cdef class Retokenizer:
span (Span): The span to merge. span (Span): The span to merge.
attrs (dict): Attributes to set on the merged token. attrs (dict): Attributes to set on the merged token.
DOCS: https://spacy.io/api/doc#retokenizer.merge DOCS: https://nightly.spacy.io/api/doc#retokenizer.merge
""" """
if (span.start, span.end) in self._spans_to_merge: if (span.start, span.end) in self._spans_to_merge:
return return
@ -73,7 +73,7 @@ cdef class Retokenizer:
attrs (dict): Attributes to set on all split tokens. Attribute names attrs (dict): Attributes to set on all split tokens. Attribute names
mapped to list of per-token attribute values. mapped to list of per-token attribute values.
DOCS: https://spacy.io/api/doc#retokenizer.split DOCS: https://nightly.spacy.io/api/doc#retokenizer.split
""" """
if ''.join(orths) != token.text: if ''.join(orths) != token.text:
raise ValueError(Errors.E117.format(new=''.join(orths), old=token.text)) raise ValueError(Errors.E117.format(new=''.join(orths), old=token.text))

View File

@ -61,7 +61,7 @@ class DocBin:
store_user_data (bool): Whether to include the `Doc.user_data`. store_user_data (bool): Whether to include the `Doc.user_data`.
docs (Iterable[Doc]): Docs to add. docs (Iterable[Doc]): Docs to add.
DOCS: https://spacy.io/api/docbin#init DOCS: https://nightly.spacy.io/api/docbin#init
""" """
attrs = sorted([intify_attr(attr) for attr in attrs]) attrs = sorted([intify_attr(attr) for attr in attrs])
self.version = "0.1" self.version = "0.1"
@ -86,7 +86,7 @@ class DocBin:
doc (Doc): The Doc object to add. doc (Doc): The Doc object to add.
DOCS: https://spacy.io/api/docbin#add DOCS: https://nightly.spacy.io/api/docbin#add
""" """
array = doc.to_array(self.attrs) array = doc.to_array(self.attrs)
if len(array.shape) == 1: if len(array.shape) == 1:
@ -115,7 +115,7 @@ class DocBin:
vocab (Vocab): The shared vocab. vocab (Vocab): The shared vocab.
YIELDS (Doc): The Doc objects. YIELDS (Doc): The Doc objects.
DOCS: https://spacy.io/api/docbin#get_docs DOCS: https://nightly.spacy.io/api/docbin#get_docs
""" """
for string in self.strings: for string in self.strings:
vocab[string] vocab[string]
@ -141,7 +141,7 @@ class DocBin:
other (DocBin): The DocBin to merge into the current bin. other (DocBin): The DocBin to merge into the current bin.
DOCS: https://spacy.io/api/docbin#merge DOCS: https://nightly.spacy.io/api/docbin#merge
""" """
if self.attrs != other.attrs: if self.attrs != other.attrs:
raise ValueError(Errors.E166.format(current=self.attrs, other=other.attrs)) raise ValueError(Errors.E166.format(current=self.attrs, other=other.attrs))
@ -158,7 +158,7 @@ class DocBin:
RETURNS (bytes): The serialized DocBin. RETURNS (bytes): The serialized DocBin.
DOCS: https://spacy.io/api/docbin#to_bytes DOCS: https://nightly.spacy.io/api/docbin#to_bytes
""" """
for tokens in self.tokens: for tokens in self.tokens:
assert len(tokens.shape) == 2, tokens.shape # this should never happen assert len(tokens.shape) == 2, tokens.shape # this should never happen
@ -185,7 +185,7 @@ class DocBin:
bytes_data (bytes): The data to load from. bytes_data (bytes): The data to load from.
RETURNS (DocBin): The loaded DocBin. RETURNS (DocBin): The loaded DocBin.
DOCS: https://spacy.io/api/docbin#from_bytes DOCS: https://nightly.spacy.io/api/docbin#from_bytes
""" """
msg = srsly.msgpack_loads(zlib.decompress(bytes_data)) msg = srsly.msgpack_loads(zlib.decompress(bytes_data))
self.attrs = msg["attrs"] self.attrs = msg["attrs"]
@ -211,7 +211,7 @@ class DocBin:
path (str / Path): The file path. path (str / Path): The file path.
DOCS: https://spacy.io/api/docbin#to_disk DOCS: https://nightly.spacy.io/api/docbin#to_disk
""" """
path = ensure_path(path) path = ensure_path(path)
with path.open("wb") as file_: with path.open("wb") as file_:
@ -223,7 +223,7 @@ class DocBin:
path (str / Path): The file path. path (str / Path): The file path.
RETURNS (DocBin): The loaded DocBin. RETURNS (DocBin): The loaded DocBin.
DOCS: https://spacy.io/api/docbin#to_disk DOCS: https://nightly.spacy.io/api/docbin#to_disk
""" """
path = ensure_path(path) path = ensure_path(path)
with path.open("rb") as file_: with path.open("rb") as file_:

View File

@ -104,7 +104,7 @@ cdef class Doc:
>>> from spacy.tokens import Doc >>> from spacy.tokens import Doc
>>> doc = Doc(nlp.vocab, words=["hello", "world", "!"], spaces=[True, False, False]) >>> doc = Doc(nlp.vocab, words=["hello", "world", "!"], spaces=[True, False, False])
DOCS: https://spacy.io/api/doc DOCS: https://nightly.spacy.io/api/doc
""" """
@classmethod @classmethod
@ -118,8 +118,8 @@ cdef class Doc:
method (callable): Optional method for method extension. method (callable): Optional method for method extension.
force (bool): Force overwriting existing attribute. force (bool): Force overwriting existing attribute.
DOCS: https://spacy.io/api/doc#set_extension DOCS: https://nightly.spacy.io/api/doc#set_extension
USAGE: https://spacy.io/usage/processing-pipelines#custom-components-attributes USAGE: https://nightly.spacy.io/usage/processing-pipelines#custom-components-attributes
""" """
if cls.has_extension(name) and not kwargs.get("force", False): if cls.has_extension(name) and not kwargs.get("force", False):
raise ValueError(Errors.E090.format(name=name, obj="Doc")) raise ValueError(Errors.E090.format(name=name, obj="Doc"))
@ -132,7 +132,7 @@ cdef class Doc:
name (str): Name of the extension. name (str): Name of the extension.
RETURNS (tuple): A `(default, method, getter, setter)` tuple. RETURNS (tuple): A `(default, method, getter, setter)` tuple.
DOCS: https://spacy.io/api/doc#get_extension DOCS: https://nightly.spacy.io/api/doc#get_extension
""" """
return Underscore.doc_extensions.get(name) return Underscore.doc_extensions.get(name)
@ -143,7 +143,7 @@ cdef class Doc:
name (str): Name of the extension. name (str): Name of the extension.
RETURNS (bool): Whether the extension has been registered. RETURNS (bool): Whether the extension has been registered.
DOCS: https://spacy.io/api/doc#has_extension DOCS: https://nightly.spacy.io/api/doc#has_extension
""" """
return name in Underscore.doc_extensions return name in Underscore.doc_extensions
@ -155,7 +155,7 @@ cdef class Doc:
RETURNS (tuple): A `(default, method, getter, setter)` tuple of the RETURNS (tuple): A `(default, method, getter, setter)` tuple of the
removed extension. removed extension.
DOCS: https://spacy.io/api/doc#remove_extension DOCS: https://nightly.spacy.io/api/doc#remove_extension
""" """
if not cls.has_extension(name): if not cls.has_extension(name):
raise ValueError(Errors.E046.format(name=name)) raise ValueError(Errors.E046.format(name=name))
@ -173,7 +173,7 @@ cdef class Doc:
it is not. If `None`, defaults to `[True]*len(words)` it is not. If `None`, defaults to `[True]*len(words)`
user_data (dict or None): Optional extra data to attach to the Doc. user_data (dict or None): Optional extra data to attach to the Doc.
DOCS: https://spacy.io/api/doc#init DOCS: https://nightly.spacy.io/api/doc#init
""" """
self.vocab = vocab self.vocab = vocab
size = max(20, (len(words) if words is not None else 0)) size = max(20, (len(words) if words is not None else 0))
@ -288,7 +288,7 @@ cdef class Doc:
You can use negative indices and open-ended ranges, which have You can use negative indices and open-ended ranges, which have
their normal Python semantics. their normal Python semantics.
DOCS: https://spacy.io/api/doc#getitem DOCS: https://nightly.spacy.io/api/doc#getitem
""" """
if isinstance(i, slice): if isinstance(i, slice):
start, stop = normalize_slice(len(self), i.start, i.stop, i.step) start, stop = normalize_slice(len(self), i.start, i.stop, i.step)
@ -305,7 +305,7 @@ cdef class Doc:
than-Python speeds are required, you can instead access the annotations than-Python speeds are required, you can instead access the annotations
as a numpy array, or access the underlying C data directly from Cython. as a numpy array, or access the underlying C data directly from Cython.
DOCS: https://spacy.io/api/doc#iter DOCS: https://nightly.spacy.io/api/doc#iter
""" """
cdef int i cdef int i
for i in range(self.length): for i in range(self.length):
@ -316,7 +316,7 @@ cdef class Doc:
RETURNS (int): The number of tokens in the document. RETURNS (int): The number of tokens in the document.
DOCS: https://spacy.io/api/doc#len DOCS: https://nightly.spacy.io/api/doc#len
""" """
return self.length return self.length
@ -349,7 +349,7 @@ cdef class Doc:
the span. the span.
RETURNS (Span): The newly constructed object. RETURNS (Span): The newly constructed object.
DOCS: https://spacy.io/api/doc#char_span DOCS: https://nightly.spacy.io/api/doc#char_span
""" """
if not isinstance(label, int): if not isinstance(label, int):
label = self.vocab.strings.add(label) label = self.vocab.strings.add(label)
@ -374,7 +374,7 @@ cdef class Doc:
`Span`, `Token` and `Lexeme` objects. `Span`, `Token` and `Lexeme` objects.
RETURNS (float): A scalar similarity score. Higher is more similar. RETURNS (float): A scalar similarity score. Higher is more similar.
DOCS: https://spacy.io/api/doc#similarity DOCS: https://nightly.spacy.io/api/doc#similarity
""" """
if "similarity" in self.user_hooks: if "similarity" in self.user_hooks:
return self.user_hooks["similarity"](self, other) return self.user_hooks["similarity"](self, other)
@ -407,7 +407,7 @@ cdef class Doc:
RETURNS (bool): Whether a word vector is associated with the object. RETURNS (bool): Whether a word vector is associated with the object.
DOCS: https://spacy.io/api/doc#has_vector DOCS: https://nightly.spacy.io/api/doc#has_vector
""" """
if "has_vector" in self.user_hooks: if "has_vector" in self.user_hooks:
return self.user_hooks["has_vector"](self) return self.user_hooks["has_vector"](self)
@ -425,7 +425,7 @@ cdef class Doc:
RETURNS (numpy.ndarray[ndim=1, dtype='float32']): A 1D numpy array RETURNS (numpy.ndarray[ndim=1, dtype='float32']): A 1D numpy array
representing the document's semantics. representing the document's semantics.
DOCS: https://spacy.io/api/doc#vector DOCS: https://nightly.spacy.io/api/doc#vector
""" """
def __get__(self): def __get__(self):
if "vector" in self.user_hooks: if "vector" in self.user_hooks:
@ -453,7 +453,7 @@ cdef class Doc:
RETURNS (float): The L2 norm of the vector representation. RETURNS (float): The L2 norm of the vector representation.
DOCS: https://spacy.io/api/doc#vector_norm DOCS: https://nightly.spacy.io/api/doc#vector_norm
""" """
def __get__(self): def __get__(self):
if "vector_norm" in self.user_hooks: if "vector_norm" in self.user_hooks:
@ -493,7 +493,7 @@ cdef class Doc:
RETURNS (tuple): Entities in the document, one `Span` per entity. RETURNS (tuple): Entities in the document, one `Span` per entity.
DOCS: https://spacy.io/api/doc#ents DOCS: https://nightly.spacy.io/api/doc#ents
""" """
def __get__(self): def __get__(self):
cdef int i cdef int i
@ -584,7 +584,7 @@ cdef class Doc:
YIELDS (Span): Noun chunks in the document. YIELDS (Span): Noun chunks in the document.
DOCS: https://spacy.io/api/doc#noun_chunks DOCS: https://nightly.spacy.io/api/doc#noun_chunks
""" """
# Accumulate the result before beginning to iterate over it. This # Accumulate the result before beginning to iterate over it. This
@ -609,7 +609,7 @@ cdef class Doc:
YIELDS (Span): Sentences in the document. YIELDS (Span): Sentences in the document.
DOCS: https://spacy.io/api/doc#sents DOCS: https://nightly.spacy.io/api/doc#sents
""" """
if not self.is_sentenced: if not self.is_sentenced:
raise ValueError(Errors.E030) raise ValueError(Errors.E030)
@ -722,7 +722,7 @@ cdef class Doc:
attr_id (int): The attribute ID to key the counts. attr_id (int): The attribute ID to key the counts.
RETURNS (dict): A dictionary mapping attributes to integer counts. RETURNS (dict): A dictionary mapping attributes to integer counts.
DOCS: https://spacy.io/api/doc#count_by DOCS: https://nightly.spacy.io/api/doc#count_by
""" """
cdef int i cdef int i
cdef attr_t attr cdef attr_t attr
@ -777,7 +777,7 @@ cdef class Doc:
array (numpy.ndarray[ndim=2, dtype='int32']): The attribute values. array (numpy.ndarray[ndim=2, dtype='int32']): The attribute values.
RETURNS (Doc): Itself. RETURNS (Doc): Itself.
DOCS: https://spacy.io/api/doc#from_array DOCS: https://nightly.spacy.io/api/doc#from_array
""" """
# Handle scalar/list inputs of strings/ints for py_attr_ids # Handle scalar/list inputs of strings/ints for py_attr_ids
# See also #3064 # See also #3064
@ -872,7 +872,7 @@ cdef class Doc:
attrs (list): Optional list of attribute ID ints or attribute name strings. attrs (list): Optional list of attribute ID ints or attribute name strings.
RETURNS (Doc): A doc that contains the concatenated docs, or None if no docs were given. RETURNS (Doc): A doc that contains the concatenated docs, or None if no docs were given.
DOCS: https://spacy.io/api/doc#from_docs DOCS: https://nightly.spacy.io/api/doc#from_docs
""" """
if not docs: if not docs:
return None return None
@ -920,7 +920,9 @@ cdef class Doc:
warnings.warn(Warnings.W101.format(name=name)) warnings.warn(Warnings.W101.format(name=name))
else: else:
warnings.warn(Warnings.W102.format(key=key, value=value)) warnings.warn(Warnings.W102.format(key=key, value=value))
char_offset += len(doc.text) if not ensure_whitespace or doc[-1].is_space else len(doc.text) + 1 char_offset += len(doc.text)
if ensure_whitespace and not (len(doc) > 0 and doc[-1].is_space):
char_offset += 1
arrays = [doc.to_array(attrs) for doc in docs] arrays = [doc.to_array(attrs) for doc in docs]
@ -932,7 +934,7 @@ cdef class Doc:
token_offset = -1 token_offset = -1
for doc in docs[:-1]: for doc in docs[:-1]:
token_offset += len(doc) token_offset += len(doc)
if not doc[-1].is_space: if not (len(doc) > 0 and doc[-1].is_space):
concat_spaces[token_offset] = True concat_spaces[token_offset] = True
concat_array = numpy.concatenate(arrays) concat_array = numpy.concatenate(arrays)
@ -951,7 +953,7 @@ cdef class Doc:
RETURNS (np.array[ndim=2, dtype=numpy.int32]): LCA matrix with shape RETURNS (np.array[ndim=2, dtype=numpy.int32]): LCA matrix with shape
(n, n), where n = len(self). (n, n), where n = len(self).
DOCS: https://spacy.io/api/doc#get_lca_matrix DOCS: https://nightly.spacy.io/api/doc#get_lca_matrix
""" """
return numpy.asarray(_get_lca_matrix(self, 0, len(self))) return numpy.asarray(_get_lca_matrix(self, 0, len(self)))
@ -985,7 +987,7 @@ cdef class Doc:
it doesn't exist. Paths may be either strings or Path-like objects. it doesn't exist. Paths may be either strings or Path-like objects.
exclude (Iterable[str]): String names of serialization fields to exclude. exclude (Iterable[str]): String names of serialization fields to exclude.
DOCS: https://spacy.io/api/doc#to_disk DOCS: https://nightly.spacy.io/api/doc#to_disk
""" """
path = util.ensure_path(path) path = util.ensure_path(path)
with path.open("wb") as file_: with path.open("wb") as file_:
@ -1000,7 +1002,7 @@ cdef class Doc:
exclude (list): String names of serialization fields to exclude. exclude (list): String names of serialization fields to exclude.
RETURNS (Doc): The modified `Doc` object. RETURNS (Doc): The modified `Doc` object.
DOCS: https://spacy.io/api/doc#from_disk DOCS: https://nightly.spacy.io/api/doc#from_disk
""" """
path = util.ensure_path(path) path = util.ensure_path(path)
with path.open("rb") as file_: with path.open("rb") as file_:
@ -1014,7 +1016,7 @@ cdef class Doc:
RETURNS (bytes): A losslessly serialized copy of the `Doc`, including RETURNS (bytes): A losslessly serialized copy of the `Doc`, including
all annotations. all annotations.
DOCS: https://spacy.io/api/doc#to_bytes DOCS: https://nightly.spacy.io/api/doc#to_bytes
""" """
return srsly.msgpack_dumps(self.to_dict(exclude=exclude)) return srsly.msgpack_dumps(self.to_dict(exclude=exclude))
@ -1025,7 +1027,7 @@ cdef class Doc:
exclude (list): String names of serialization fields to exclude. exclude (list): String names of serialization fields to exclude.
RETURNS (Doc): Itself. RETURNS (Doc): Itself.
DOCS: https://spacy.io/api/doc#from_bytes DOCS: https://nightly.spacy.io/api/doc#from_bytes
""" """
return self.from_dict(srsly.msgpack_loads(bytes_data), exclude=exclude) return self.from_dict(srsly.msgpack_loads(bytes_data), exclude=exclude)
@ -1036,7 +1038,7 @@ cdef class Doc:
RETURNS (bytes): A losslessly serialized copy of the `Doc`, including RETURNS (bytes): A losslessly serialized copy of the `Doc`, including
all annotations. all annotations.
DOCS: https://spacy.io/api/doc#to_bytes DOCS: https://nightly.spacy.io/api/doc#to_bytes
""" """
array_head = [LENGTH, SPACY, LEMMA, ENT_IOB, ENT_TYPE, ENT_ID, NORM, ENT_KB_ID] array_head = [LENGTH, SPACY, LEMMA, ENT_IOB, ENT_TYPE, ENT_ID, NORM, ENT_KB_ID]
if self.is_tagged: if self.is_tagged:
@ -1084,7 +1086,7 @@ cdef class Doc:
exclude (list): String names of serialization fields to exclude. exclude (list): String names of serialization fields to exclude.
RETURNS (Doc): Itself. RETURNS (Doc): Itself.
DOCS: https://spacy.io/api/doc#from_dict DOCS: https://nightly.spacy.io/api/doc#from_dict
""" """
if self.length != 0: if self.length != 0:
raise ValueError(Errors.E033.format(length=self.length)) raise ValueError(Errors.E033.format(length=self.length))
@ -1164,8 +1166,8 @@ cdef class Doc:
retokenization are invalidated, although they may accidentally retokenization are invalidated, although they may accidentally
continue to work. continue to work.
DOCS: https://spacy.io/api/doc#retokenize DOCS: https://nightly.spacy.io/api/doc#retokenize
USAGE: https://spacy.io/usage/linguistic-features#retokenization USAGE: https://nightly.spacy.io/usage/linguistic-features#retokenization
""" """
return Retokenizer(self) return Retokenizer(self)
@ -1200,7 +1202,7 @@ cdef class Doc:
be added to an "_" key in the data, e.g. "_": {"foo": "bar"}. be added to an "_" key in the data, e.g. "_": {"foo": "bar"}.
RETURNS (dict): The data in spaCy's JSON format. RETURNS (dict): The data in spaCy's JSON format.
DOCS: https://spacy.io/api/doc#to_json DOCS: https://nightly.spacy.io/api/doc#to_json
""" """
data = {"text": self.text} data = {"text": self.text}
if self.is_nered: if self.is_nered:

View File

@ -27,7 +27,7 @@ from .underscore import Underscore, get_ext_args
cdef class Span: cdef class Span:
"""A slice from a Doc object. """A slice from a Doc object.
DOCS: https://spacy.io/api/span DOCS: https://nightly.spacy.io/api/span
""" """
@classmethod @classmethod
def set_extension(cls, name, **kwargs): def set_extension(cls, name, **kwargs):
@ -40,8 +40,8 @@ cdef class Span:
method (callable): Optional method for method extension. method (callable): Optional method for method extension.
force (bool): Force overwriting existing attribute. force (bool): Force overwriting existing attribute.
DOCS: https://spacy.io/api/span#set_extension DOCS: https://nightly.spacy.io/api/span#set_extension
USAGE: https://spacy.io/usage/processing-pipelines#custom-components-attributes USAGE: https://nightly.spacy.io/usage/processing-pipelines#custom-components-attributes
""" """
if cls.has_extension(name) and not kwargs.get("force", False): if cls.has_extension(name) and not kwargs.get("force", False):
raise ValueError(Errors.E090.format(name=name, obj="Span")) raise ValueError(Errors.E090.format(name=name, obj="Span"))
@ -54,7 +54,7 @@ cdef class Span:
name (str): Name of the extension. name (str): Name of the extension.
RETURNS (tuple): A `(default, method, getter, setter)` tuple. RETURNS (tuple): A `(default, method, getter, setter)` tuple.
DOCS: https://spacy.io/api/span#get_extension DOCS: https://nightly.spacy.io/api/span#get_extension
""" """
return Underscore.span_extensions.get(name) return Underscore.span_extensions.get(name)
@ -65,7 +65,7 @@ cdef class Span:
name (str): Name of the extension. name (str): Name of the extension.
RETURNS (bool): Whether the extension has been registered. RETURNS (bool): Whether the extension has been registered.
DOCS: https://spacy.io/api/span#has_extension DOCS: https://nightly.spacy.io/api/span#has_extension
""" """
return name in Underscore.span_extensions return name in Underscore.span_extensions
@ -77,7 +77,7 @@ cdef class Span:
RETURNS (tuple): A `(default, method, getter, setter)` tuple of the RETURNS (tuple): A `(default, method, getter, setter)` tuple of the
removed extension. removed extension.
DOCS: https://spacy.io/api/span#remove_extension DOCS: https://nightly.spacy.io/api/span#remove_extension
""" """
if not cls.has_extension(name): if not cls.has_extension(name):
raise ValueError(Errors.E046.format(name=name)) raise ValueError(Errors.E046.format(name=name))
@ -95,7 +95,7 @@ cdef class Span:
vector (ndarray[ndim=1, dtype='float32']): A meaning representation vector (ndarray[ndim=1, dtype='float32']): A meaning representation
of the span. of the span.
DOCS: https://spacy.io/api/span#init DOCS: https://nightly.spacy.io/api/span#init
""" """
if not (0 <= start <= end <= len(doc)): if not (0 <= start <= end <= len(doc)):
raise IndexError(Errors.E035.format(start=start, end=end, length=len(doc))) raise IndexError(Errors.E035.format(start=start, end=end, length=len(doc)))
@ -151,7 +151,7 @@ cdef class Span:
RETURNS (int): The number of tokens in the span. RETURNS (int): The number of tokens in the span.
DOCS: https://spacy.io/api/span#len DOCS: https://nightly.spacy.io/api/span#len
""" """
self._recalculate_indices() self._recalculate_indices()
if self.end < self.start: if self.end < self.start:
@ -168,7 +168,7 @@ cdef class Span:
the span to get. the span to get.
RETURNS (Token or Span): The token at `span[i]`. RETURNS (Token or Span): The token at `span[i]`.
DOCS: https://spacy.io/api/span#getitem DOCS: https://nightly.spacy.io/api/span#getitem
""" """
self._recalculate_indices() self._recalculate_indices()
if isinstance(i, slice): if isinstance(i, slice):
@ -189,7 +189,7 @@ cdef class Span:
YIELDS (Token): A `Token` object. YIELDS (Token): A `Token` object.
DOCS: https://spacy.io/api/span#iter DOCS: https://nightly.spacy.io/api/span#iter
""" """
self._recalculate_indices() self._recalculate_indices()
for i in range(self.start, self.end): for i in range(self.start, self.end):
@ -210,7 +210,7 @@ cdef class Span:
copy_user_data (bool): Whether or not to copy the original doc's user data. copy_user_data (bool): Whether or not to copy the original doc's user data.
RETURNS (Doc): The `Doc` copy of the span. RETURNS (Doc): The `Doc` copy of the span.
DOCS: https://spacy.io/api/span#as_doc DOCS: https://nightly.spacy.io/api/span#as_doc
""" """
# TODO: make copy_user_data a keyword-only argument (Python 3 only) # TODO: make copy_user_data a keyword-only argument (Python 3 only)
words = [t.text for t in self] words = [t.text for t in self]
@ -292,7 +292,7 @@ cdef class Span:
RETURNS (np.array[ndim=2, dtype=numpy.int32]): LCA matrix with shape RETURNS (np.array[ndim=2, dtype=numpy.int32]): LCA matrix with shape
(n, n), where n = len(self). (n, n), where n = len(self).
DOCS: https://spacy.io/api/span#get_lca_matrix DOCS: https://nightly.spacy.io/api/span#get_lca_matrix
""" """
return numpy.asarray(_get_lca_matrix(self.doc, self.start, self.end)) return numpy.asarray(_get_lca_matrix(self.doc, self.start, self.end))
@ -304,7 +304,7 @@ cdef class Span:
`Span`, `Token` and `Lexeme` objects. `Span`, `Token` and `Lexeme` objects.
RETURNS (float): A scalar similarity score. Higher is more similar. RETURNS (float): A scalar similarity score. Higher is more similar.
DOCS: https://spacy.io/api/span#similarity DOCS: https://nightly.spacy.io/api/span#similarity
""" """
if "similarity" in self.doc.user_span_hooks: if "similarity" in self.doc.user_span_hooks:
return self.doc.user_span_hooks["similarity"](self, other) return self.doc.user_span_hooks["similarity"](self, other)
@ -400,7 +400,7 @@ cdef class Span:
RETURNS (tuple): Entities in the span, one `Span` per entity. RETURNS (tuple): Entities in the span, one `Span` per entity.
DOCS: https://spacy.io/api/span#ents DOCS: https://nightly.spacy.io/api/span#ents
""" """
ents = [] ents = []
for ent in self.doc.ents: for ent in self.doc.ents:
@ -415,7 +415,7 @@ cdef class Span:
RETURNS (bool): Whether a word vector is associated with the object. RETURNS (bool): Whether a word vector is associated with the object.
DOCS: https://spacy.io/api/span#has_vector DOCS: https://nightly.spacy.io/api/span#has_vector
""" """
if "has_vector" in self.doc.user_span_hooks: if "has_vector" in self.doc.user_span_hooks:
return self.doc.user_span_hooks["has_vector"](self) return self.doc.user_span_hooks["has_vector"](self)
@ -434,7 +434,7 @@ cdef class Span:
RETURNS (numpy.ndarray[ndim=1, dtype='float32']): A 1D numpy array RETURNS (numpy.ndarray[ndim=1, dtype='float32']): A 1D numpy array
representing the span's semantics. representing the span's semantics.
DOCS: https://spacy.io/api/span#vector DOCS: https://nightly.spacy.io/api/span#vector
""" """
if "vector" in self.doc.user_span_hooks: if "vector" in self.doc.user_span_hooks:
return self.doc.user_span_hooks["vector"](self) return self.doc.user_span_hooks["vector"](self)
@ -448,7 +448,7 @@ cdef class Span:
RETURNS (float): The L2 norm of the vector representation. RETURNS (float): The L2 norm of the vector representation.
DOCS: https://spacy.io/api/span#vector_norm DOCS: https://nightly.spacy.io/api/span#vector_norm
""" """
if "vector_norm" in self.doc.user_span_hooks: if "vector_norm" in self.doc.user_span_hooks:
return self.doc.user_span_hooks["vector"](self) return self.doc.user_span_hooks["vector"](self)
@ -508,7 +508,7 @@ cdef class Span:
YIELDS (Span): Base noun-phrase `Span` objects. YIELDS (Span): Base noun-phrase `Span` objects.
DOCS: https://spacy.io/api/span#noun_chunks DOCS: https://nightly.spacy.io/api/span#noun_chunks
""" """
if not self.doc.is_parsed: if not self.doc.is_parsed:
raise ValueError(Errors.E029) raise ValueError(Errors.E029)
@ -533,7 +533,7 @@ cdef class Span:
RETURNS (Token): The root token. RETURNS (Token): The root token.
DOCS: https://spacy.io/api/span#root DOCS: https://nightly.spacy.io/api/span#root
""" """
self._recalculate_indices() self._recalculate_indices()
if "root" in self.doc.user_span_hooks: if "root" in self.doc.user_span_hooks:
@ -590,7 +590,7 @@ cdef class Span:
RETURNS (tuple): A tuple of Token objects. RETURNS (tuple): A tuple of Token objects.
DOCS: https://spacy.io/api/span#lefts DOCS: https://nightly.spacy.io/api/span#lefts
""" """
return self.root.conjuncts return self.root.conjuncts
@ -601,7 +601,7 @@ cdef class Span:
YIELDS (Token):A left-child of a token of the span. YIELDS (Token):A left-child of a token of the span.
DOCS: https://spacy.io/api/span#lefts DOCS: https://nightly.spacy.io/api/span#lefts
""" """
for token in reversed(self): # Reverse, so we get tokens in order for token in reversed(self): # Reverse, so we get tokens in order
for left in token.lefts: for left in token.lefts:
@ -615,7 +615,7 @@ cdef class Span:
YIELDS (Token): A right-child of a token of the span. YIELDS (Token): A right-child of a token of the span.
DOCS: https://spacy.io/api/span#rights DOCS: https://nightly.spacy.io/api/span#rights
""" """
for token in self: for token in self:
for right in token.rights: for right in token.rights:
@ -630,7 +630,7 @@ cdef class Span:
RETURNS (int): The number of leftward immediate children of the RETURNS (int): The number of leftward immediate children of the
span, in the syntactic dependency parse. span, in the syntactic dependency parse.
DOCS: https://spacy.io/api/span#n_lefts DOCS: https://nightly.spacy.io/api/span#n_lefts
""" """
return len(list(self.lefts)) return len(list(self.lefts))
@ -642,7 +642,7 @@ cdef class Span:
RETURNS (int): The number of rightward immediate children of the RETURNS (int): The number of rightward immediate children of the
span, in the syntactic dependency parse. span, in the syntactic dependency parse.
DOCS: https://spacy.io/api/span#n_rights DOCS: https://nightly.spacy.io/api/span#n_rights
""" """
return len(list(self.rights)) return len(list(self.rights))
@ -652,7 +652,7 @@ cdef class Span:
YIELDS (Token): A token within the span, or a descendant from it. YIELDS (Token): A token within the span, or a descendant from it.
DOCS: https://spacy.io/api/span#subtree DOCS: https://nightly.spacy.io/api/span#subtree
""" """
for word in self.lefts: for word in self.lefts:
yield from word.subtree yield from word.subtree

View File

@ -30,7 +30,7 @@ cdef class Token:
"""An individual token i.e. a word, punctuation symbol, whitespace, """An individual token i.e. a word, punctuation symbol, whitespace,
etc. etc.
DOCS: https://spacy.io/api/token DOCS: https://nightly.spacy.io/api/token
""" """
@classmethod @classmethod
def set_extension(cls, name, **kwargs): def set_extension(cls, name, **kwargs):
@ -43,8 +43,8 @@ cdef class Token:
method (callable): Optional method for method extension. method (callable): Optional method for method extension.
force (bool): Force overwriting existing attribute. force (bool): Force overwriting existing attribute.
DOCS: https://spacy.io/api/token#set_extension DOCS: https://nightly.spacy.io/api/token#set_extension
USAGE: https://spacy.io/usage/processing-pipelines#custom-components-attributes USAGE: https://nightly.spacy.io/usage/processing-pipelines#custom-components-attributes
""" """
if cls.has_extension(name) and not kwargs.get("force", False): if cls.has_extension(name) and not kwargs.get("force", False):
raise ValueError(Errors.E090.format(name=name, obj="Token")) raise ValueError(Errors.E090.format(name=name, obj="Token"))
@ -57,7 +57,7 @@ cdef class Token:
name (str): Name of the extension. name (str): Name of the extension.
RETURNS (tuple): A `(default, method, getter, setter)` tuple. RETURNS (tuple): A `(default, method, getter, setter)` tuple.
DOCS: https://spacy.io/api/token#get_extension DOCS: https://nightly.spacy.io/api/token#get_extension
""" """
return Underscore.token_extensions.get(name) return Underscore.token_extensions.get(name)
@ -68,7 +68,7 @@ cdef class Token:
name (str): Name of the extension. name (str): Name of the extension.
RETURNS (bool): Whether the extension has been registered. RETURNS (bool): Whether the extension has been registered.
DOCS: https://spacy.io/api/token#has_extension DOCS: https://nightly.spacy.io/api/token#has_extension
""" """
return name in Underscore.token_extensions return name in Underscore.token_extensions
@ -80,7 +80,7 @@ cdef class Token:
RETURNS (tuple): A `(default, method, getter, setter)` tuple of the RETURNS (tuple): A `(default, method, getter, setter)` tuple of the
removed extension. removed extension.
DOCS: https://spacy.io/api/token#remove_extension DOCS: https://nightly.spacy.io/api/token#remove_extension
""" """
if not cls.has_extension(name): if not cls.has_extension(name):
raise ValueError(Errors.E046.format(name=name)) raise ValueError(Errors.E046.format(name=name))
@ -93,7 +93,7 @@ cdef class Token:
doc (Doc): The parent document. doc (Doc): The parent document.
offset (int): The index of the token within the document. offset (int): The index of the token within the document.
DOCS: https://spacy.io/api/token#init DOCS: https://nightly.spacy.io/api/token#init
""" """
self.vocab = vocab self.vocab = vocab
self.doc = doc self.doc = doc
@ -108,7 +108,7 @@ cdef class Token:
RETURNS (int): The number of unicode characters in the token. RETURNS (int): The number of unicode characters in the token.
DOCS: https://spacy.io/api/token#len DOCS: https://nightly.spacy.io/api/token#len
""" """
return self.c.lex.length return self.c.lex.length
@ -171,7 +171,7 @@ cdef class Token:
flag_id (int): The ID of the flag attribute. flag_id (int): The ID of the flag attribute.
RETURNS (bool): Whether the flag is set. RETURNS (bool): Whether the flag is set.
DOCS: https://spacy.io/api/token#check_flag DOCS: https://nightly.spacy.io/api/token#check_flag
""" """
return Lexeme.c_check_flag(self.c.lex, flag_id) return Lexeme.c_check_flag(self.c.lex, flag_id)
@ -181,7 +181,7 @@ cdef class Token:
i (int): The relative position of the token to get. Defaults to 1. i (int): The relative position of the token to get. Defaults to 1.
RETURNS (Token): The token at position `self.doc[self.i+i]`. RETURNS (Token): The token at position `self.doc[self.i+i]`.
DOCS: https://spacy.io/api/token#nbor DOCS: https://nightly.spacy.io/api/token#nbor
""" """
if self.i+i < 0 or (self.i+i >= len(self.doc)): if self.i+i < 0 or (self.i+i >= len(self.doc)):
raise IndexError(Errors.E042.format(i=self.i, j=i, length=len(self.doc))) raise IndexError(Errors.E042.format(i=self.i, j=i, length=len(self.doc)))
@ -195,7 +195,7 @@ cdef class Token:
`Span`, `Token` and `Lexeme` objects. `Span`, `Token` and `Lexeme` objects.
RETURNS (float): A scalar similarity score. Higher is more similar. RETURNS (float): A scalar similarity score. Higher is more similar.
DOCS: https://spacy.io/api/token#similarity DOCS: https://nightly.spacy.io/api/token#similarity
""" """
if "similarity" in self.doc.user_token_hooks: if "similarity" in self.doc.user_token_hooks:
return self.doc.user_token_hooks["similarity"](self, other) return self.doc.user_token_hooks["similarity"](self, other)
@ -373,7 +373,7 @@ cdef class Token:
RETURNS (bool): Whether a word vector is associated with the object. RETURNS (bool): Whether a word vector is associated with the object.
DOCS: https://spacy.io/api/token#has_vector DOCS: https://nightly.spacy.io/api/token#has_vector
""" """
if "has_vector" in self.doc.user_token_hooks: if "has_vector" in self.doc.user_token_hooks:
return self.doc.user_token_hooks["has_vector"](self) return self.doc.user_token_hooks["has_vector"](self)
@ -388,7 +388,7 @@ cdef class Token:
RETURNS (numpy.ndarray[ndim=1, dtype='float32']): A 1D numpy array RETURNS (numpy.ndarray[ndim=1, dtype='float32']): A 1D numpy array
representing the token's semantics. representing the token's semantics.
DOCS: https://spacy.io/api/token#vector DOCS: https://nightly.spacy.io/api/token#vector
""" """
if "vector" in self.doc.user_token_hooks: if "vector" in self.doc.user_token_hooks:
return self.doc.user_token_hooks["vector"](self) return self.doc.user_token_hooks["vector"](self)
@ -403,7 +403,7 @@ cdef class Token:
RETURNS (float): The L2 norm of the vector representation. RETURNS (float): The L2 norm of the vector representation.
DOCS: https://spacy.io/api/token#vector_norm DOCS: https://nightly.spacy.io/api/token#vector_norm
""" """
if "vector_norm" in self.doc.user_token_hooks: if "vector_norm" in self.doc.user_token_hooks:
return self.doc.user_token_hooks["vector_norm"](self) return self.doc.user_token_hooks["vector_norm"](self)
@ -426,7 +426,7 @@ cdef class Token:
RETURNS (int): The number of leftward immediate children of the RETURNS (int): The number of leftward immediate children of the
word, in the syntactic dependency parse. word, in the syntactic dependency parse.
DOCS: https://spacy.io/api/token#n_lefts DOCS: https://nightly.spacy.io/api/token#n_lefts
""" """
return self.c.l_kids return self.c.l_kids
@ -438,7 +438,7 @@ cdef class Token:
RETURNS (int): The number of rightward immediate children of the RETURNS (int): The number of rightward immediate children of the
word, in the syntactic dependency parse. word, in the syntactic dependency parse.
DOCS: https://spacy.io/api/token#n_rights DOCS: https://nightly.spacy.io/api/token#n_rights
""" """
return self.c.r_kids return self.c.r_kids
@ -470,7 +470,7 @@ cdef class Token:
RETURNS (bool / None): Whether the token starts a sentence. RETURNS (bool / None): Whether the token starts a sentence.
None if unknown. None if unknown.
DOCS: https://spacy.io/api/token#is_sent_start DOCS: https://nightly.spacy.io/api/token#is_sent_start
""" """
def __get__(self): def __get__(self):
if self.c.sent_start == 0: if self.c.sent_start == 0:
@ -499,7 +499,7 @@ cdef class Token:
RETURNS (bool / None): Whether the token ends a sentence. RETURNS (bool / None): Whether the token ends a sentence.
None if unknown. None if unknown.
DOCS: https://spacy.io/api/token#is_sent_end DOCS: https://nightly.spacy.io/api/token#is_sent_end
""" """
def __get__(self): def __get__(self):
if self.i + 1 == len(self.doc): if self.i + 1 == len(self.doc):
@ -521,7 +521,7 @@ cdef class Token:
YIELDS (Token): A left-child of the token. YIELDS (Token): A left-child of the token.
DOCS: https://spacy.io/api/token#lefts DOCS: https://nightly.spacy.io/api/token#lefts
""" """
cdef int nr_iter = 0 cdef int nr_iter = 0
cdef const TokenC* ptr = self.c - (self.i - self.c.l_edge) cdef const TokenC* ptr = self.c - (self.i - self.c.l_edge)
@ -541,7 +541,7 @@ cdef class Token:
YIELDS (Token): A right-child of the token. YIELDS (Token): A right-child of the token.
DOCS: https://spacy.io/api/token#rights DOCS: https://nightly.spacy.io/api/token#rights
""" """
cdef const TokenC* ptr = self.c + (self.c.r_edge - self.i) cdef const TokenC* ptr = self.c + (self.c.r_edge - self.i)
tokens = [] tokens = []
@ -563,7 +563,7 @@ cdef class Token:
YIELDS (Token): A child token such that `child.head==self`. YIELDS (Token): A child token such that `child.head==self`.
DOCS: https://spacy.io/api/token#children DOCS: https://nightly.spacy.io/api/token#children
""" """
yield from self.lefts yield from self.lefts
yield from self.rights yield from self.rights
@ -576,7 +576,7 @@ cdef class Token:
YIELDS (Token): A descendent token such that YIELDS (Token): A descendent token such that
`self.is_ancestor(descendent) or token == self`. `self.is_ancestor(descendent) or token == self`.
DOCS: https://spacy.io/api/token#subtree DOCS: https://nightly.spacy.io/api/token#subtree
""" """
for word in self.lefts: for word in self.lefts:
yield from word.subtree yield from word.subtree
@ -607,7 +607,7 @@ cdef class Token:
YIELDS (Token): A sequence of ancestor tokens such that YIELDS (Token): A sequence of ancestor tokens such that
`ancestor.is_ancestor(self)`. `ancestor.is_ancestor(self)`.
DOCS: https://spacy.io/api/token#ancestors DOCS: https://nightly.spacy.io/api/token#ancestors
""" """
cdef const TokenC* head_ptr = self.c cdef const TokenC* head_ptr = self.c
# Guard against infinite loop, no token can have # Guard against infinite loop, no token can have
@ -625,7 +625,7 @@ cdef class Token:
descendant (Token): Another token. descendant (Token): Another token.
RETURNS (bool): Whether this token is the ancestor of the descendant. RETURNS (bool): Whether this token is the ancestor of the descendant.
DOCS: https://spacy.io/api/token#is_ancestor DOCS: https://nightly.spacy.io/api/token#is_ancestor
""" """
if self.doc is not descendant.doc: if self.doc is not descendant.doc:
return False return False
@ -729,7 +729,7 @@ cdef class Token:
RETURNS (tuple): The coordinated tokens. RETURNS (tuple): The coordinated tokens.
DOCS: https://spacy.io/api/token#conjuncts DOCS: https://nightly.spacy.io/api/token#conjuncts
""" """
cdef Token word, child cdef Token word, child
if "conjuncts" in self.doc.user_token_hooks: if "conjuncts" in self.doc.user_token_hooks:

View File

@ -76,7 +76,7 @@ class registry(thinc.registry):
lemmatizers = catalogue.create("spacy", "lemmatizers", entry_points=True) lemmatizers = catalogue.create("spacy", "lemmatizers", entry_points=True)
lookups = catalogue.create("spacy", "lookups", entry_points=True) lookups = catalogue.create("spacy", "lookups", entry_points=True)
displacy_colors = catalogue.create("spacy", "displacy_colors", entry_points=True) displacy_colors = catalogue.create("spacy", "displacy_colors", entry_points=True)
assets = catalogue.create("spacy", "assets", entry_points=True) misc = catalogue.create("spacy", "misc", entry_points=True)
# Callback functions used to manipulate nlp object etc. # Callback functions used to manipulate nlp object etc.
callbacks = catalogue.create("spacy", "callbacks") callbacks = catalogue.create("spacy", "callbacks")
batchers = catalogue.create("spacy", "batchers", entry_points=True) batchers = catalogue.create("spacy", "batchers", entry_points=True)

View File

@ -44,7 +44,7 @@ cdef class Vectors:
the table need to be assigned - so len(list(vectors.keys())) may be the table need to be assigned - so len(list(vectors.keys())) may be
greater or smaller than vectors.shape[0]. greater or smaller than vectors.shape[0].
DOCS: https://spacy.io/api/vectors DOCS: https://nightly.spacy.io/api/vectors
""" """
cdef public object name cdef public object name
cdef public object data cdef public object data
@ -59,7 +59,7 @@ cdef class Vectors:
keys (iterable): A sequence of keys, aligned with the data. keys (iterable): A sequence of keys, aligned with the data.
name (str): A name to identify the vectors table. name (str): A name to identify the vectors table.
DOCS: https://spacy.io/api/vectors#init DOCS: https://nightly.spacy.io/api/vectors#init
""" """
self.name = name self.name = name
if data is None: if data is None:
@ -83,7 +83,7 @@ cdef class Vectors:
RETURNS (tuple): A `(rows, dims)` pair. RETURNS (tuple): A `(rows, dims)` pair.
DOCS: https://spacy.io/api/vectors#shape DOCS: https://nightly.spacy.io/api/vectors#shape
""" """
return self.data.shape return self.data.shape
@ -93,7 +93,7 @@ cdef class Vectors:
RETURNS (int): The vector size. RETURNS (int): The vector size.
DOCS: https://spacy.io/api/vectors#size DOCS: https://nightly.spacy.io/api/vectors#size
""" """
return self.data.shape[0] * self.data.shape[1] return self.data.shape[0] * self.data.shape[1]
@ -103,7 +103,7 @@ cdef class Vectors:
RETURNS (bool): `True` if no slots are available for new keys. RETURNS (bool): `True` if no slots are available for new keys.
DOCS: https://spacy.io/api/vectors#is_full DOCS: https://nightly.spacy.io/api/vectors#is_full
""" """
return self._unset.size() == 0 return self._unset.size() == 0
@ -114,7 +114,7 @@ cdef class Vectors:
RETURNS (int): The number of keys in the table. RETURNS (int): The number of keys in the table.
DOCS: https://spacy.io/api/vectors#n_keys DOCS: https://nightly.spacy.io/api/vectors#n_keys
""" """
return len(self.key2row) return len(self.key2row)
@ -127,7 +127,7 @@ cdef class Vectors:
key (int): The key to get the vector for. key (int): The key to get the vector for.
RETURNS (ndarray): The vector for the key. RETURNS (ndarray): The vector for the key.
DOCS: https://spacy.io/api/vectors#getitem DOCS: https://nightly.spacy.io/api/vectors#getitem
""" """
i = self.key2row[key] i = self.key2row[key]
if i is None: if i is None:
@ -141,7 +141,7 @@ cdef class Vectors:
key (int): The key to set the vector for. key (int): The key to set the vector for.
vector (ndarray): The vector to set. vector (ndarray): The vector to set.
DOCS: https://spacy.io/api/vectors#setitem DOCS: https://nightly.spacy.io/api/vectors#setitem
""" """
i = self.key2row[key] i = self.key2row[key]
self.data[i] = vector self.data[i] = vector
@ -153,7 +153,7 @@ cdef class Vectors:
YIELDS (int): A key in the table. YIELDS (int): A key in the table.
DOCS: https://spacy.io/api/vectors#iter DOCS: https://nightly.spacy.io/api/vectors#iter
""" """
yield from self.key2row yield from self.key2row
@ -162,7 +162,7 @@ cdef class Vectors:
RETURNS (int): The number of vectors in the data. RETURNS (int): The number of vectors in the data.
DOCS: https://spacy.io/api/vectors#len DOCS: https://nightly.spacy.io/api/vectors#len
""" """
return self.data.shape[0] return self.data.shape[0]
@ -172,7 +172,7 @@ cdef class Vectors:
key (int): The key to check. key (int): The key to check.
RETURNS (bool): Whether the key has a vector entry. RETURNS (bool): Whether the key has a vector entry.
DOCS: https://spacy.io/api/vectors#contains DOCS: https://nightly.spacy.io/api/vectors#contains
""" """
return key in self.key2row return key in self.key2row
@ -189,7 +189,7 @@ cdef class Vectors:
inplace (bool): Reallocate the memory. inplace (bool): Reallocate the memory.
RETURNS (list): The removed items as a list of `(key, row)` tuples. RETURNS (list): The removed items as a list of `(key, row)` tuples.
DOCS: https://spacy.io/api/vectors#resize DOCS: https://nightly.spacy.io/api/vectors#resize
""" """
xp = get_array_module(self.data) xp = get_array_module(self.data)
if inplace: if inplace:
@ -224,7 +224,7 @@ cdef class Vectors:
YIELDS (ndarray): A vector in the table. YIELDS (ndarray): A vector in the table.
DOCS: https://spacy.io/api/vectors#values DOCS: https://nightly.spacy.io/api/vectors#values
""" """
for row, vector in enumerate(range(self.data.shape[0])): for row, vector in enumerate(range(self.data.shape[0])):
if not self._unset.count(row): if not self._unset.count(row):
@ -235,7 +235,7 @@ cdef class Vectors:
YIELDS (tuple): A key/vector pair. YIELDS (tuple): A key/vector pair.
DOCS: https://spacy.io/api/vectors#items DOCS: https://nightly.spacy.io/api/vectors#items
""" """
for key, row in self.key2row.items(): for key, row in self.key2row.items():
yield key, self.data[row] yield key, self.data[row]
@ -281,7 +281,7 @@ cdef class Vectors:
row (int / None): The row number of a vector to map the key to. row (int / None): The row number of a vector to map the key to.
RETURNS (int): The row the vector was added to. RETURNS (int): The row the vector was added to.
DOCS: https://spacy.io/api/vectors#add DOCS: https://nightly.spacy.io/api/vectors#add
""" """
# use int for all keys and rows in key2row for more efficient access # use int for all keys and rows in key2row for more efficient access
# and serialization # and serialization
@ -368,7 +368,7 @@ cdef class Vectors:
path (str / Path): A path to a directory, which will be created if path (str / Path): A path to a directory, which will be created if
it doesn't exists. it doesn't exists.
DOCS: https://spacy.io/api/vectors#to_disk DOCS: https://nightly.spacy.io/api/vectors#to_disk
""" """
xp = get_array_module(self.data) xp = get_array_module(self.data)
if xp is numpy: if xp is numpy:
@ -396,7 +396,7 @@ cdef class Vectors:
path (str / Path): Directory path, string or Path-like object. path (str / Path): Directory path, string or Path-like object.
RETURNS (Vectors): The modified object. RETURNS (Vectors): The modified object.
DOCS: https://spacy.io/api/vectors#from_disk DOCS: https://nightly.spacy.io/api/vectors#from_disk
""" """
def load_key2row(path): def load_key2row(path):
if path.exists(): if path.exists():
@ -432,7 +432,7 @@ cdef class Vectors:
exclude (list): String names of serialization fields to exclude. exclude (list): String names of serialization fields to exclude.
RETURNS (bytes): The serialized form of the `Vectors` object. RETURNS (bytes): The serialized form of the `Vectors` object.
DOCS: https://spacy.io/api/vectors#to_bytes DOCS: https://nightly.spacy.io/api/vectors#to_bytes
""" """
def serialize_weights(): def serialize_weights():
if hasattr(self.data, "to_bytes"): if hasattr(self.data, "to_bytes"):
@ -453,7 +453,7 @@ cdef class Vectors:
exclude (list): String names of serialization fields to exclude. exclude (list): String names of serialization fields to exclude.
RETURNS (Vectors): The `Vectors` object. RETURNS (Vectors): The `Vectors` object.
DOCS: https://spacy.io/api/vectors#from_bytes DOCS: https://nightly.spacy.io/api/vectors#from_bytes
""" """
def deserialize_weights(b): def deserialize_weights(b):
if hasattr(self.data, "from_bytes"): if hasattr(self.data, "from_bytes"):

View File

@ -54,7 +54,7 @@ cdef class Vocab:
instance also provides access to the `StringStore`, and owns underlying instance also provides access to the `StringStore`, and owns underlying
C-data that is shared between `Doc` objects. C-data that is shared between `Doc` objects.
DOCS: https://spacy.io/api/vocab DOCS: https://nightly.spacy.io/api/vocab
""" """
def __init__(self, lex_attr_getters=None, strings=tuple(), lookups=None, def __init__(self, lex_attr_getters=None, strings=tuple(), lookups=None,
oov_prob=-20., vectors_name=None, writing_system={}, oov_prob=-20., vectors_name=None, writing_system={},
@ -117,7 +117,7 @@ cdef class Vocab:
available bit will be chosen. available bit will be chosen.
RETURNS (int): The integer ID by which the flag value can be checked. RETURNS (int): The integer ID by which the flag value can be checked.
DOCS: https://spacy.io/api/vocab#add_flag DOCS: https://nightly.spacy.io/api/vocab#add_flag
""" """
if flag_id == -1: if flag_id == -1:
for bit in range(1, 64): for bit in range(1, 64):
@ -201,7 +201,7 @@ cdef class Vocab:
string (unicode): The ID string. string (unicode): The ID string.
RETURNS (bool) Whether the string has an entry in the vocabulary. RETURNS (bool) Whether the string has an entry in the vocabulary.
DOCS: https://spacy.io/api/vocab#contains DOCS: https://nightly.spacy.io/api/vocab#contains
""" """
cdef hash_t int_key cdef hash_t int_key
if isinstance(key, bytes): if isinstance(key, bytes):
@ -218,7 +218,7 @@ cdef class Vocab:
YIELDS (Lexeme): An entry in the vocabulary. YIELDS (Lexeme): An entry in the vocabulary.
DOCS: https://spacy.io/api/vocab#iter DOCS: https://nightly.spacy.io/api/vocab#iter
""" """
cdef attr_t key cdef attr_t key
cdef size_t addr cdef size_t addr
@ -241,7 +241,7 @@ cdef class Vocab:
>>> apple = nlp.vocab.strings["apple"] >>> apple = nlp.vocab.strings["apple"]
>>> assert nlp.vocab[apple] == nlp.vocab[u"apple"] >>> assert nlp.vocab[apple] == nlp.vocab[u"apple"]
DOCS: https://spacy.io/api/vocab#getitem DOCS: https://nightly.spacy.io/api/vocab#getitem
""" """
cdef attr_t orth cdef attr_t orth
if isinstance(id_or_string, unicode): if isinstance(id_or_string, unicode):
@ -309,7 +309,7 @@ cdef class Vocab:
word was mapped to, and `score` the similarity score between the word was mapped to, and `score` the similarity score between the
two words. two words.
DOCS: https://spacy.io/api/vocab#prune_vectors DOCS: https://nightly.spacy.io/api/vocab#prune_vectors
""" """
xp = get_array_module(self.vectors.data) xp = get_array_module(self.vectors.data)
# Make prob negative so it sorts by rank ascending # Make prob negative so it sorts by rank ascending
@ -349,7 +349,7 @@ cdef class Vocab:
and shape determined by the `vocab.vectors` instance. Usually, a and shape determined by the `vocab.vectors` instance. Usually, a
numpy ndarray of shape (300,) and dtype float32. numpy ndarray of shape (300,) and dtype float32.
DOCS: https://spacy.io/api/vocab#get_vector DOCS: https://nightly.spacy.io/api/vocab#get_vector
""" """
if isinstance(orth, str): if isinstance(orth, str):
orth = self.strings.add(orth) orth = self.strings.add(orth)
@ -396,7 +396,7 @@ cdef class Vocab:
orth (int / unicode): The word. orth (int / unicode): The word.
vector (numpy.ndarray[ndim=1, dtype='float32']): The vector to set. vector (numpy.ndarray[ndim=1, dtype='float32']): The vector to set.
DOCS: https://spacy.io/api/vocab#set_vector DOCS: https://nightly.spacy.io/api/vocab#set_vector
""" """
if isinstance(orth, str): if isinstance(orth, str):
orth = self.strings.add(orth) orth = self.strings.add(orth)
@ -418,7 +418,7 @@ cdef class Vocab:
orth (int / unicode): The word. orth (int / unicode): The word.
RETURNS (bool): Whether the word has a vector. RETURNS (bool): Whether the word has a vector.
DOCS: https://spacy.io/api/vocab#has_vector DOCS: https://nightly.spacy.io/api/vocab#has_vector
""" """
if isinstance(orth, str): if isinstance(orth, str):
orth = self.strings.add(orth) orth = self.strings.add(orth)
@ -431,7 +431,7 @@ cdef class Vocab:
it doesn't exist. it doesn't exist.
exclude (list): String names of serialization fields to exclude. exclude (list): String names of serialization fields to exclude.
DOCS: https://spacy.io/api/vocab#to_disk DOCS: https://nightly.spacy.io/api/vocab#to_disk
""" """
path = util.ensure_path(path) path = util.ensure_path(path)
if not path.exists(): if not path.exists():
@ -452,7 +452,7 @@ cdef class Vocab:
exclude (list): String names of serialization fields to exclude. exclude (list): String names of serialization fields to exclude.
RETURNS (Vocab): The modified `Vocab` object. RETURNS (Vocab): The modified `Vocab` object.
DOCS: https://spacy.io/api/vocab#to_disk DOCS: https://nightly.spacy.io/api/vocab#to_disk
""" """
path = util.ensure_path(path) path = util.ensure_path(path)
getters = ["strings", "vectors"] getters = ["strings", "vectors"]
@ -477,7 +477,7 @@ cdef class Vocab:
exclude (list): String names of serialization fields to exclude. exclude (list): String names of serialization fields to exclude.
RETURNS (bytes): The serialized form of the `Vocab` object. RETURNS (bytes): The serialized form of the `Vocab` object.
DOCS: https://spacy.io/api/vocab#to_bytes DOCS: https://nightly.spacy.io/api/vocab#to_bytes
""" """
def deserialize_vectors(): def deserialize_vectors():
if self.vectors is None: if self.vectors is None:
@ -499,7 +499,7 @@ cdef class Vocab:
exclude (list): String names of serialization fields to exclude. exclude (list): String names of serialization fields to exclude.
RETURNS (Vocab): The `Vocab` object. RETURNS (Vocab): The `Vocab` object.
DOCS: https://spacy.io/api/vocab#from_bytes DOCS: https://nightly.spacy.io/api/vocab#from_bytes
""" """
def serialize_vectors(b): def serialize_vectors(b):
if self.vectors is None: if self.vectors is None:

View File

@ -25,36 +25,6 @@ usage documentation on
## Tok2Vec architectures {#tok2vec-arch source="spacy/ml/models/tok2vec.py"} ## Tok2Vec architectures {#tok2vec-arch source="spacy/ml/models/tok2vec.py"}
### spacy.HashEmbedCNN.v1 {#HashEmbedCNN}
> #### Example Config
>
> ```ini
> [model]
> @architectures = "spacy.HashEmbedCNN.v1"
> pretrained_vectors = null
> width = 96
> depth = 4
> embed_size = 2000
> window_size = 1
> maxout_pieces = 3
> subword_features = true
> ```
Build spaCy's "standard" embedding layer, which uses hash embedding with subword
features and a CNN with layer-normalized maxout.
| Name | Description |
| -------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `width` | The width of the input and output. These are required to be the same, so that residual connections can be used. Recommended values are `96`, `128` or `300`. ~~int~~ |
| `depth` | The number of convolutional layers to use. Recommended values are between `2` and `8`. ~~int~~ |
| `embed_size` | The number of rows in the hash embedding tables. This can be surprisingly small, due to the use of the hash embeddings. Recommended values are between `2000` and `10000`. ~~int~~ |
| `window_size` | The number of tokens on either side to concatenate during the convolutions. The receptive field of the CNN will be `depth * (window_size * 2 + 1)`, so a 4-layer network with a window size of `2` will be sensitive to 17 words at a time. Recommended value is `1`. ~~int~~ |
| `maxout_pieces` | The number of pieces to use in the maxout non-linearity. If `1`, the [`Mish`](https://thinc.ai/docs/api-layers#mish) non-linearity is used instead. Recommended values are `1`-`3`. ~~int~~ |
| `subword_features` | Whether to also embed subword features, specifically the prefix, suffix and word shape. This is recommended for alphabetic languages like English, but not if single-character tokens are used for a language such as Chinese. ~~bool~~ |
| `pretrained_vectors` | Whether to also use static vectors. ~~bool~~ |
| **CREATES** | The model using the architecture. ~~Model[List[Doc], List[Floats2d]]~~ |
### spacy.Tok2Vec.v1 {#Tok2Vec} ### spacy.Tok2Vec.v1 {#Tok2Vec}
> #### Example config > #### Example config
@ -72,7 +42,8 @@ features and a CNN with layer-normalized maxout.
> # ... > # ...
> ``` > ```
Construct a tok2vec model out of embedding and encoding subnetworks. See the Construct a tok2vec model out of two subnetworks: one for embedding and one for
encoding. See the
["Embed, Encode, Attend, Predict"](https://explosion.ai/blog/deep-learning-formula-nlp) ["Embed, Encode, Attend, Predict"](https://explosion.ai/blog/deep-learning-formula-nlp)
blog post for background. blog post for background.
@ -82,6 +53,39 @@ blog post for background.
| `encode` | Encode context into the embeddings, using an architecture such as a CNN, BiLSTM or transformer. For example, [MaxoutWindowEncoder](/api/architectures#MaxoutWindowEncoder). ~~Model[List[Floats2d], List[Floats2d]]~~ | | `encode` | Encode context into the embeddings, using an architecture such as a CNN, BiLSTM or transformer. For example, [MaxoutWindowEncoder](/api/architectures#MaxoutWindowEncoder). ~~Model[List[Floats2d], List[Floats2d]]~~ |
| **CREATES** | The model using the architecture. ~~Model[List[Doc], List[Floats2d]]~~ | | **CREATES** | The model using the architecture. ~~Model[List[Doc], List[Floats2d]]~~ |
### spacy.HashEmbedCNN.v1 {#HashEmbedCNN}
> #### Example Config
>
> ```ini
> [model]
> @architectures = "spacy.HashEmbedCNN.v1"
> pretrained_vectors = null
> width = 96
> depth = 4
> embed_size = 2000
> window_size = 1
> maxout_pieces = 3
> subword_features = true
> ```
Build spaCy's "standard" tok2vec layer. This layer is defined by a
[MultiHashEmbed](/api/architectures#MultiHashEmbed) embedding layer that uses
subword features, and a
[MaxoutWindowEncoder](/api/architectures#MaxoutWindowEncoder) encoding layer
consisting of a CNN and a layer-normalized maxout activation function.
| Name | Description |
| -------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `width` | The width of the input and output. These are required to be the same, so that residual connections can be used. Recommended values are `96`, `128` or `300`. ~~int~~ |
| `depth` | The number of convolutional layers to use. Recommended values are between `2` and `8`. ~~int~~ |
| `embed_size` | The number of rows in the hash embedding tables. This can be surprisingly small, due to the use of the hash embeddings. Recommended values are between `2000` and `10000`. ~~int~~ |
| `window_size` | The number of tokens on either side to concatenate during the convolutions. The receptive field of the CNN will be `depth * (window_size * 2 + 1)`, so a 4-layer network with a window size of `2` will be sensitive to 17 words at a time. Recommended value is `1`. ~~int~~ |
| `maxout_pieces` | The number of pieces to use in the maxout non-linearity. If `1`, the [`Mish`](https://thinc.ai/docs/api-layers#mish) non-linearity is used instead. Recommended values are `1`-`3`. ~~int~~ |
| `subword_features` | Whether to also embed subword features, specifically the prefix, suffix and word shape. This is recommended for alphabetic languages like English, but not if single-character tokens are used for a language such as Chinese. ~~bool~~ |
| `pretrained_vectors` | Whether to also use static vectors. ~~bool~~ |
| **CREATES** | The model using the architecture. ~~Model[List[Doc], List[Floats2d]]~~ |
### spacy.Tok2VecListener.v1 {#Tok2VecListener} ### spacy.Tok2VecListener.v1 {#Tok2VecListener}
> #### Example config > #### Example config
@ -316,7 +320,7 @@ for details and system requirements.
> tokenizer_config = {"use_fast": true} > tokenizer_config = {"use_fast": true}
> >
> [model.get_spans] > [model.get_spans]
> @span_getters = "strided_spans.v1" > @span_getters = "spacy-transformers.strided_spans.v1"
> window = 128 > window = 128
> stride = 96 > stride = 96
> ``` > ```
@ -669,11 +673,11 @@ into the "real world". This requires 3 main components:
> subword_features = true > subword_features = true
> >
> [kb_loader] > [kb_loader]
> @assets = "spacy.EmptyKB.v1" > @misc = "spacy.EmptyKB.v1"
> entity_vector_length = 64 > entity_vector_length = 64
> >
> [get_candidates] > [get_candidates]
> @assets = "spacy.CandidateGenerator.v1" > @misc = "spacy.CandidateGenerator.v1"
> ``` > ```
The `EntityLinker` model architecture is a Thinc `Model` with a The `EntityLinker` model architecture is a Thinc `Model` with a

View File

@ -1,6 +1,6 @@
--- ---
title: Command Line Interface title: Command Line Interface
teaser: Download, train and package models, and debug spaCy teaser: Download, train and package pipelines, and debug spaCy
source: spacy/cli source: spacy/cli
menu: menu:
- ['download', 'download'] - ['download', 'download']
@ -17,45 +17,47 @@ menu:
--- ---
spaCy's CLI provides a range of helpful commands for downloading and training spaCy's CLI provides a range of helpful commands for downloading and training
models, converting data and debugging your config, data and installation. For a pipelines, converting data and debugging your config, data and installation. For
list of available commands, you can type `python -m spacy --help`. You can also a list of available commands, you can type `python -m spacy --help`. You can
add the `--help` flag to any command or subcommand to see the description, also add the `--help` flag to any command or subcommand to see the description,
available arguments and usage. available arguments and usage.
## download {#download tag="command"} ## download {#download tag="command"}
Download [models](/usage/models) for spaCy. The downloader finds the Download [trained pipelines](/usage/models) for spaCy. The downloader finds the
best-matching compatible version and uses `pip install` to download the model as best-matching compatible version and uses `pip install` to download the Python
a package. Direct downloads don't perform any compatibility checks and require package. Direct downloads don't perform any compatibility checks and require the
the model name to be specified with its version (e.g. `en_core_web_sm-2.2.0`). pipeline name to be specified with its version (e.g. `en_core_web_sm-2.2.0`).
> #### Downloading best practices > #### Downloading best practices
> >
> The `download` command is mostly intended as a convenient, interactive wrapper > The `download` command is mostly intended as a convenient, interactive wrapper
> it performs compatibility checks and prints detailed messages in case things > it performs compatibility checks and prints detailed messages in case things
> go wrong. It's **not recommended** to use this command as part of an automated > go wrong. It's **not recommended** to use this command as part of an automated
> process. If you know which model your project needs, you should consider a > process. If you know which package your project needs, you should consider a
> [direct download via pip](/usage/models#download-pip), or uploading the model > [direct download via pip](/usage/models#download-pip), or uploading the
> to a local PyPi installation and fetching it straight from there. This will > package to a local PyPi installation and fetching it straight from there. This
> also allow you to add it as a versioned package dependency to your project. > will also allow you to add it as a versioned package dependency to your
> project.
```cli ```cli
$ python -m spacy download [model] [--direct] [pip_args] $ python -m spacy download [model] [--direct] [pip_args]
``` ```
| Name | Description | | Name | Description |
| ------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | | ------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `model` | Model name, e.g. [`en_core_web_sm`](/models/en#en_core_web_sm). ~~str (positional)~~ | | `model` | Pipeline package name, e.g. [`en_core_web_sm`](/models/en#en_core_web_sm). ~~str (positional)~~ |
| `--direct`, `-d` | Force direct download of exact model version. ~~bool (flag)~~ | | `--direct`, `-d` | Force direct download of exact package version. ~~bool (flag)~~ |
| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ | | `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |
| pip args <Tag variant="new">2.1</Tag> | Additional installation options to be passed to `pip install` when installing the model package. For example, `--user` to install to the user home directory or `--no-deps` to not install model dependencies. ~~Any (option/flag)~~ | | pip args <Tag variant="new">2.1</Tag> | Additional installation options to be passed to `pip install` when installing the pipeline package. For example, `--user` to install to the user home directory or `--no-deps` to not install package dependencies. ~~Any (option/flag)~~ |
| **CREATES** | The installed model package in your `site-packages` directory. | | **CREATES** | The installed pipeline package in your `site-packages` directory. |
## info {#info tag="command"} ## info {#info tag="command"}
Print information about your spaCy installation, models and local setup, and Print information about your spaCy installation, trained pipelines and local
generate [Markdown](https://en.wikipedia.org/wiki/Markdown)-formatted markup to setup, and generate [Markdown](https://en.wikipedia.org/wiki/Markdown)-formatted
copy-paste into [GitHub issues](https://github.com/explosion/spaCy/issues). markup to copy-paste into
[GitHub issues](https://github.com/explosion/spaCy/issues).
```cli ```cli
$ python -m spacy info [--markdown] [--silent] $ python -m spacy info [--markdown] [--silent]
@ -66,8 +68,8 @@ $ python -m spacy info [model] [--markdown] [--silent]
``` ```
| Name | Description | | Name | Description |
| ------------------------------------------------ | ------------------------------------------------------------------------------ | | ------------------------------------------------ | ----------------------------------------------------------------------------------------- |
| `model` | A model, i.e. package name or path (optional). ~~Optional[str] \(positional)~~ | | `model` | A trained pipeline, i.e. package name or path (optional). ~~Optional[str] \(positional)~~ |
| `--markdown`, `-md` | Print information as Markdown. ~~bool (flag)~~ | | `--markdown`, `-md` | Print information as Markdown. ~~bool (flag)~~ |
| `--silent`, `-s` <Tag variant="new">2.0.12</Tag> | Don't print anything, just return the values. ~~bool (flag)~~ | | `--silent`, `-s` <Tag variant="new">2.0.12</Tag> | Don't print anything, just return the values. ~~bool (flag)~~ |
| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ | | `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |
@ -75,31 +77,31 @@ $ python -m spacy info [model] [--markdown] [--silent]
## validate {#validate new="2" tag="command"} ## validate {#validate new="2" tag="command"}
Find all models installed in the current environment and check whether they are Find all trained pipeline packages installed in the current environment and
compatible with the currently installed version of spaCy. Should be run after check whether they are compatible with the currently installed version of spaCy.
upgrading spaCy via `pip install -U spacy` to ensure that all installed models Should be run after upgrading spaCy via `pip install -U spacy` to ensure that
are can be used with the new version. It will show a list of models and their all installed packages are can be used with the new version. It will show a list
installed versions. If any model is out of date, the latest compatible versions of packages and their installed versions. If any package is out of date, the
and command for updating are shown. latest compatible versions and command for updating are shown.
> #### Automated validation > #### Automated validation
> >
> You can also use the `validate` command as part of your build process or test > You can also use the `validate` command as part of your build process or test
> suite, to ensure all models are up to date before proceeding. If incompatible > suite, to ensure all packages are up to date before proceeding. If
> models are found, it will return `1`. > incompatible packages are found, it will return `1`.
```cli ```cli
$ python -m spacy validate $ python -m spacy validate
``` ```
| Name | Description | | Name | Description |
| ---------- | --------------------------------------------------------- | | ---------- | -------------------------------------------------------------------- |
| **PRINTS** | Details about the compatibility of your installed models. | | **PRINTS** | Details about the compatibility of your installed pipeline packages. |
## init {#init new="3"} ## init {#init new="3"}
The `spacy init` CLI includes helpful commands for initializing training config The `spacy init` CLI includes helpful commands for initializing training config
files and model directories. files and pipeline directories.
### init config {#init-config new="3" tag="command"} ### init config {#init-config new="3" tag="command"}
@ -125,7 +127,7 @@ $ python -m spacy init config [output_file] [--lang] [--pipeline] [--optimize] [
| ------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | ------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `output_file` | Path to output `.cfg` file or `-` to write the config to stdout (so you can pipe it forward to a file). Note that if you're writing to stdout, no additional logging info is printed. ~~Path (positional)~~ | | `output_file` | Path to output `.cfg` file or `-` to write the config to stdout (so you can pipe it forward to a file). Note that if you're writing to stdout, no additional logging info is printed. ~~Path (positional)~~ |
| `--lang`, `-l` | Optional code of the [language](/usage/models#languages) to use. Defaults to `"en"`. ~~str (option)~~ | | `--lang`, `-l` | Optional code of the [language](/usage/models#languages) to use. Defaults to `"en"`. ~~str (option)~~ |
| `--pipeline`, `-p` | Comma-separated list of trainable [pipeline components](/usage/processing-pipelines#built-in) to include in the model. Defaults to `"tagger,parser,ner"`. ~~str (option)~~ | | `--pipeline`, `-p` | Comma-separated list of trainable [pipeline components](/usage/processing-pipelines#built-in) to include. Defaults to `"tagger,parser,ner"`. ~~str (option)~~ |
| `--optimize`, `-o` | `"efficiency"` or `"accuracy"`. Whether to optimize for efficiency (faster inference, smaller model, lower memory consumption) or higher accuracy (potentially larger and slower model). This will impact the choice of architecture, pretrained weights and related hyperparameters. Defaults to `"efficiency"`. ~~str (option)~~ | | `--optimize`, `-o` | `"efficiency"` or `"accuracy"`. Whether to optimize for efficiency (faster inference, smaller model, lower memory consumption) or higher accuracy (potentially larger and slower model). This will impact the choice of architecture, pretrained weights and related hyperparameters. Defaults to `"efficiency"`. ~~str (option)~~ |
| `--cpu`, `-C` | Whether the model needs to run on CPU. This will impact the choice of architecture, pretrained weights and related hyperparameters. ~~bool (flag)~~ | | `--cpu`, `-C` | Whether the model needs to run on CPU. This will impact the choice of architecture, pretrained weights and related hyperparameters. ~~bool (flag)~~ |
| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ | | `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |
@ -165,36 +167,38 @@ $ python -m spacy init fill-config [base_path] [output_file] [--diff]
| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ | | `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |
| **CREATES** | Complete and auto-filled config file for training. | | **CREATES** | Complete and auto-filled config file for training. |
### init model {#init-model new="2" tag="command"} ### init vocab {#init-vocab new="3" tag="command"}
Create a new model directory from raw data, like word frequencies, Brown Create a blank pipeline directory from raw data, like word frequencies, Brown
clusters and word vectors. Note that in order to populate the model's vocab, you clusters and word vectors. Note that in order to populate the vocabulary, you
need to pass in a JSONL-formatted need to pass in a JSONL-formatted
[vocabulary file](/api/data-formats#vocab-jsonl) as `--jsonl-loc` with optional [vocabulary file](/api/data-formats#vocab-jsonl) as `--jsonl-loc` with optional
`id` values that correspond to the vectors table. Just loading in vectors will `id` values that correspond to the vectors table. Just loading in vectors will
not automatically populate the vocab. not automatically populate the vocab.
<Infobox title="New in v3.0" variant="warning"> <Infobox title="New in v3.0" variant="warning" id="init-model">
The `init-model` command is now available as a subcommand of `spacy init`. This command was previously called `init-model`.
</Infobox> </Infobox>
```cli ```cli
$ python -m spacy init model [lang] [output_dir] [--jsonl-loc] [--vectors-loc] [--prune-vectors] $ python -m spacy init vocab [lang] [output_dir] [--jsonl-loc] [--vectors-loc] [--prune-vectors] [--vectors-name] [--meta-name] [--base]
``` ```
| Name | Description | | Name | Description |
| ------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | ------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `lang` | Model language [ISO code](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes), e.g. `en`. ~~str (positional)~~ | | `lang` | Pipeline language [ISO code](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes), e.g. `en`. ~~str (positional)~~ |
| `output_dir` | Model output directory. Will be created if it doesn't exist. ~~Path (positional)~~ | | `output_dir` | Pipeline output directory. Will be created if it doesn't exist. ~~Path (positional)~~ |
| `--jsonl-loc`, `-j` | Optional location of JSONL-formatted [vocabulary file](/api/data-formats#vocab-jsonl) with lexical attributes. ~~Optional[Path] \(option)~~ | | `--jsonl-loc`, `-j` | Optional location of JSONL-formatted [vocabulary file](/api/data-formats#vocab-jsonl) with lexical attributes. ~~Optional[Path] \(option)~~ |
| `--vectors-loc`, `-v` | Optional location of vectors. Should be a file where the first row contains the dimensions of the vectors, followed by a space-separated Word2Vec table. File can be provided in `.txt` format or as a zipped text file in `.zip` or `.tar.gz` format. ~~Optional[Path] \(option)~~ | | `--vectors-loc`, `-v` | Optional location of vectors. Should be a file where the first row contains the dimensions of the vectors, followed by a space-separated Word2Vec table. File can be provided in `.txt` format or as a zipped text file in `.zip` or `.tar.gz` format. ~~Optional[Path] \(option)~~ |
| `--truncate-vectors`, `-t` <Tag variant="new">2.3</Tag> | Number of vectors to truncate to when reading in vectors file. Defaults to `0` for no truncation. ~~int (option)~~ | | `--truncate-vectors`, `-t` <Tag variant="new">2.3</Tag> | Number of vectors to truncate to when reading in vectors file. Defaults to `0` for no truncation. ~~int (option)~~ |
| `--prune-vectors`, `-V` | Number of vectors to prune the vocabulary to. Defaults to `-1` for no pruning. ~~int (option)~~ | | `--prune-vectors`, `-V` | Number of vectors to prune the vocabulary to. Defaults to `-1` for no pruning. ~~int (option)~~ |
| `--vectors-name`, `-vn` | Name to assign to the word vectors in the `meta.json`, e.g. `en_core_web_md.vectors`. ~~str (option)~~ | | `--vectors-name`, `-vn` | Name to assign to the word vectors in the `meta.json`, e.g. `en_core_web_md.vectors`. ~~Optional[str] \(option)~~ |
| `--meta-name`, `-mn` | Optional name of the package for the pipeline meta. ~~Optional[str] \(option)~~ |
| `--base`, `-b` | Optional name of or path to base pipeline to start with (mostly relevant for pipelines with custom tokenizers). ~~Optional[str] \(option)~~ |
| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ | | `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |
| **CREATES** | A spaCy model containing the vocab and vectors. | | **CREATES** | A spaCy pipeline directory containing the vocab and vectors. |
## convert {#convert tag="command"} ## convert {#convert tag="command"}
@ -205,7 +209,7 @@ management functions. The converter can be specified on the command line, or
chosen based on the file extension of the input file. chosen based on the file extension of the input file.
```cli ```cli
$ python -m spacy convert [input_file] [output_dir] [--converter] [--file-type] [--n-sents] [--seg-sents] [--model] [--morphology] [--merge-subtokens] [--ner-map] [--lang] $ python -m spacy convert [input_file] [output_dir] [--converter] [--file-type] [--n-sents] [--seg-sents] [--base] [--morphology] [--merge-subtokens] [--ner-map] [--lang]
``` ```
| Name | Description | | Name | Description |
@ -216,7 +220,7 @@ $ python -m spacy convert [input_file] [output_dir] [--converter] [--file-type]
| `--file-type`, `-t` <Tag variant="new">2.1</Tag> | Type of file to create. Either `spacy` (default) for binary [`DocBin`](/api/docbin) data or `json` for v2.x JSON format. ~~str (option)~~ | | `--file-type`, `-t` <Tag variant="new">2.1</Tag> | Type of file to create. Either `spacy` (default) for binary [`DocBin`](/api/docbin) data or `json` for v2.x JSON format. ~~str (option)~~ |
| `--n-sents`, `-n` | Number of sentences per document. ~~int (option)~~ | | `--n-sents`, `-n` | Number of sentences per document. ~~int (option)~~ |
| `--seg-sents`, `-s` <Tag variant="new">2.2</Tag> | Segment sentences (for `--converter ner`). ~~bool (flag)~~ | | `--seg-sents`, `-s` <Tag variant="new">2.2</Tag> | Segment sentences (for `--converter ner`). ~~bool (flag)~~ |
| `--model`, `-b` <Tag variant="new">2.2</Tag> | Model for parser-based sentence segmentation (for `--seg-sents`). ~~Optional[str](option)~~ | | `--base`, `-b` | Trained spaCy pipeline for sentence segmentation to use as base (for `--seg-sents`). ~~Optional[str](option)~~ |
| `--morphology`, `-m` | Enable appending morphology to tags. ~~bool (flag)~~ | | `--morphology`, `-m` | Enable appending morphology to tags. ~~bool (flag)~~ |
| `--ner-map`, `-nm` | NER tag mapping (as JSON-encoded dict of entity types). ~~Optional[Path](option)~~ | | `--ner-map`, `-nm` | NER tag mapping (as JSON-encoded dict of entity types). ~~Optional[Path](option)~~ |
| `--lang`, `-l` <Tag variant="new">2.1</Tag> | Language code (if tokenizer required). ~~Optional[str] \(option)~~ | | `--lang`, `-l` <Tag variant="new">2.1</Tag> | Language code (if tokenizer required). ~~Optional[str] \(option)~~ |
@ -267,7 +271,7 @@ training -> dropout field required
training -> optimizer field required training -> optimizer field required
training -> optimize extra fields not permitted training -> optimize extra fields not permitted
{'vectors': 'en_vectors_web_lg', 'seed': 0, 'accumulate_gradient': 1, 'init_tok2vec': None, 'raw_text': None, 'patience': 1600, 'max_epochs': 0, 'max_steps': 20000, 'eval_frequency': 200, 'frozen_components': [], 'optimize': None, 'batcher': {'@batchers': 'batch_by_words.v1', 'discard_oversize': False, 'tolerance': 0.2, 'get_length': None, 'size': {'@schedules': 'compounding.v1', 'start': 100, 'stop': 1000, 'compound': 1.001, 't': 0.0}}, 'dev_corpus': {'@readers': 'spacy.Corpus.v1', 'path': '', 'max_length': 0, 'gold_preproc': False, 'limit': 0}, 'score_weights': {'tag_acc': 0.5, 'dep_uas': 0.25, 'dep_las': 0.25, 'sents_f': 0.0}, 'train_corpus': {'@readers': 'spacy.Corpus.v1', 'path': '', 'max_length': 0, 'gold_preproc': False, 'limit': 0}} {'vectors': 'en_vectors_web_lg', 'seed': 0, 'accumulate_gradient': 1, 'init_tok2vec': None, 'raw_text': None, 'patience': 1600, 'max_epochs': 0, 'max_steps': 20000, 'eval_frequency': 200, 'frozen_components': [], 'optimize': None, 'batcher': {'@batchers': 'spacy.batch_by_words.v1', 'discard_oversize': False, 'tolerance': 0.2, 'get_length': None, 'size': {'@schedules': 'compounding.v1', 'start': 100, 'stop': 1000, 'compound': 1.001, 't': 0.0}}, 'dev_corpus': {'@readers': 'spacy.Corpus.v1', 'path': '', 'max_length': 0, 'gold_preproc': False, 'limit': 0}, 'score_weights': {'tag_acc': 0.5, 'dep_uas': 0.25, 'dep_las': 0.25, 'sents_f': 0.0}, 'train_corpus': {'@readers': 'spacy.Corpus.v1', 'path': '', 'max_length': 0, 'gold_preproc': False, 'limit': 0}}
If your config contains missing values, you can run the 'init fill-config' If your config contains missing values, you can run the 'init fill-config'
command to fill in all the defaults, if possible: command to fill in all the defaults, if possible:
@ -357,7 +361,7 @@ Module spacy.gold.loggers
File /path/to/spacy/gold/loggers.py (line 8) File /path/to/spacy/gold/loggers.py (line 8)
[training.batcher] [training.batcher]
Registry @batchers Registry @batchers
Name batch_by_words.v1 Name spacy.batch_by_words.v1
Module spacy.gold.batchers Module spacy.gold.batchers
File /path/to/spacy/gold/batchers.py (line 49) File /path/to/spacy/gold/batchers.py (line 49)
[training.batcher.size] [training.batcher.size]
@ -594,11 +598,11 @@ $ python -m spacy debug profile [model] [inputs] [--n-texts]
| Name | Description | | Name | Description |
| ----------------- | ---------------------------------------------------------------------------------- | | ----------------- | ---------------------------------------------------------------------------------- |
| `model` | A loadable spaCy model. ~~str (positional)~~ | | `model` | A loadable spaCy pipeline (package name or path). ~~str (positional)~~ |
| `inputs` | Optional path to input file, or `-` for standard input. ~~Path (positional)~~ | | `inputs` | Optional path to input file, or `-` for standard input. ~~Path (positional)~~ |
| `--n-texts`, `-n` | Maximum number of texts to use if available. Defaults to `10000`. ~~int (option)~~ | | `--n-texts`, `-n` | Maximum number of texts to use if available. Defaults to `10000`. ~~int (option)~~ |
| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ | | `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |
| **PRINTS** | Profiling information for the model. | | **PRINTS** | Profiling information for the pipeline. |
### debug model {#debug-model new="3" tag="command"} ### debug model {#debug-model new="3" tag="command"}
@ -724,10 +728,10 @@ $ python -m spacy debug model ./config.cfg tagger -l "5,15" -DIM -PAR -P0 -P1 -P
## train {#train tag="command"} ## train {#train tag="command"}
Train a model. Expects data in spaCy's Train a pipeline. Expects data in spaCy's
[binary format](/api/data-formats#training) and a [binary format](/api/data-formats#training) and a
[config file](/api/data-formats#config) with all settings and hyperparameters. [config file](/api/data-formats#config) with all settings and hyperparameters.
Will save out the best model from all epochs, as well as the final model. The Will save out the best model from all epochs, as well as the final pipeline. The
`--code` argument can be used to provide a Python file that's imported before `--code` argument can be used to provide a Python file that's imported before
the training process starts. This lets you register the training process starts. This lets you register
[custom functions](/usage/training#custom-functions) and architectures and refer [custom functions](/usage/training#custom-functions) and architectures and refer
@ -753,12 +757,12 @@ $ python -m spacy train [config_path] [--output] [--code] [--verbose] [overrides
| Name | Description | | Name | Description |
| ----------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | | ----------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| `config_path` | Path to [training config](/api/data-formats#config) file containing all settings and hyperparameters. ~~Path (positional)~~ | | `config_path` | Path to [training config](/api/data-formats#config) file containing all settings and hyperparameters. ~~Path (positional)~~ |
| `--output`, `-o` | Directory to store model in. Will be created if it doesn't exist. ~~Optional[Path] \(positional)~~ | | `--output`, `-o` | Directory to store trained pipeline in. Will be created if it doesn't exist. ~~Optional[Path] \(positional)~~ |
| `--code`, `-c` | Path to Python file with additional code to be imported. Allows [registering custom functions](/usage/training#custom-functions) for new architectures. ~~Optional[Path] \(option)~~ | | `--code`, `-c` | Path to Python file with additional code to be imported. Allows [registering custom functions](/usage/training#custom-functions) for new architectures. ~~Optional[Path] \(option)~~ |
| `--verbose`, `-V` | Show more detailed messages during training. ~~bool (flag)~~ | | `--verbose`, `-V` | Show more detailed messages during training. ~~bool (flag)~~ |
| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ | | `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |
| overrides | Config parameters to override. Should be options starting with `--` that correspond to the config section and value to override, e.g. `--paths.train ./train.spacy`. ~~Any (option/flag)~~ | | overrides | Config parameters to override. Should be options starting with `--` that correspond to the config section and value to override, e.g. `--paths.train ./train.spacy`. ~~Any (option/flag)~~ |
| **CREATES** | The final model and the best model. | | **CREATES** | The final trained pipeline and the best trained pipeline. |
## pretrain {#pretrain new="2.1" tag="command,experimental"} ## pretrain {#pretrain new="2.1" tag="command,experimental"}
@ -769,7 +773,7 @@ a component like a CNN, BiLSTM, etc to predict vectors which match the
pretrained ones. The weights are saved to a directory after each epoch. You can pretrained ones. The weights are saved to a directory after each epoch. You can
then include a **path to one of these pretrained weights files** in your then include a **path to one of these pretrained weights files** in your
[training config](/usage/training#config) as the `init_tok2vec` setting when you [training config](/usage/training#config) as the `init_tok2vec` setting when you
train your model. This technique may be especially helpful if you have little train your pipeline. This technique may be especially helpful if you have little
labelled data. See the usage docs on [pretraining](/usage/training#pretraining) labelled data. See the usage docs on [pretraining](/usage/training#pretraining)
for more info. for more info.
@ -792,7 +796,7 @@ $ python -m spacy pretrain [texts_loc] [output_dir] [config_path] [--code] [--re
| Name | Description | | Name | Description |
| ----------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | ----------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `texts_loc` | Path to JSONL file with raw texts to learn from, with text provided as the key `"text"` or tokens as the key `"tokens"`. [See here](/api/data-formats#pretrain) for details. ~~Path (positional)~~ | | `texts_loc` | Path to JSONL file with raw texts to learn from, with text provided as the key `"text"` or tokens as the key `"tokens"`. [See here](/api/data-formats#pretrain) for details. ~~Path (positional)~~ |
| `output_dir` | Directory to write models to on each epoch. ~~Path (positional)~~ | | `output_dir` | Directory to save binary weights to on each epoch. ~~Path (positional)~~ |
| `config_path` | Path to [training config](/api/data-formats#config) file containing all settings and hyperparameters. ~~Path (positional)~~ | | `config_path` | Path to [training config](/api/data-formats#config) file containing all settings and hyperparameters. ~~Path (positional)~~ |
| `--code`, `-c` | Path to Python file with additional code to be imported. Allows [registering custom functions](/usage/training#custom-functions) for new architectures. ~~Optional[Path] \(option)~~ | | `--code`, `-c` | Path to Python file with additional code to be imported. Allows [registering custom functions](/usage/training#custom-functions) for new architectures. ~~Optional[Path] \(option)~~ |
| `--resume-path`, `-r` | Path to pretrained weights from which to resume pretraining. ~~Optional[Path] \(option)~~ | | `--resume-path`, `-r` | Path to pretrained weights from which to resume pretraining. ~~Optional[Path] \(option)~~ |
@ -803,7 +807,8 @@ $ python -m spacy pretrain [texts_loc] [output_dir] [config_path] [--code] [--re
## evaluate {#evaluate new="2" tag="command"} ## evaluate {#evaluate new="2" tag="command"}
Evaluate a model. Expects a loadable spaCy model and evaluation data in the Evaluate a trained pipeline. Expects a loadable spaCy pipeline (package name or
path) and evaluation data in the
[binary `.spacy` format](/api/data-formats#binary-training). The [binary `.spacy` format](/api/data-formats#binary-training). The
`--gold-preproc` option sets up the evaluation examples with gold-standard `--gold-preproc` option sets up the evaluation examples with gold-standard
sentences and tokens for the predictions. Gold preprocessing helps the sentences and tokens for the predictions. Gold preprocessing helps the
@ -819,7 +824,7 @@ $ python -m spacy evaluate [model] [data_path] [--output] [--gold-preproc] [--gp
| Name | Description | | Name | Description |
| ------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | ------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `model` | Model to evaluate. Can be a package or a path to a model data directory. ~~str (positional)~~ | | `model` | Pipeline to evaluate. Can be a package or a path to a data directory. ~~str (positional)~~ |
| `data_path` | Location of evaluation data in spaCy's [binary format](/api/data-formats#training). ~~Path (positional)~~ | | `data_path` | Location of evaluation data in spaCy's [binary format](/api/data-formats#training). ~~Path (positional)~~ |
| `--output`, `-o` | Output JSON file for metrics. If not set, no metrics will be exported. ~~Optional[Path] \(option)~~ | | `--output`, `-o` | Output JSON file for metrics. If not set, no metrics will be exported. ~~Optional[Path] \(option)~~ |
| `--gold-preproc`, `-G` | Use gold preprocessing. ~~bool (flag)~~ | | `--gold-preproc`, `-G` | Use gold preprocessing. ~~bool (flag)~~ |
@ -831,13 +836,12 @@ $ python -m spacy evaluate [model] [data_path] [--output] [--gold-preproc] [--gp
## package {#package tag="command"} ## package {#package tag="command"}
Generate an installable Generate an installable [Python package](/usage/training#models-generating) from
[model Python package](/usage/training#models-generating) from an existing model an existing pipeline data directory. All data files are copied over. If the path
data directory. All data files are copied over. If the path to a to a [`meta.json`](/api/data-formats#meta) is supplied, or a `meta.json` is
[`meta.json`](/api/data-formats#meta) is supplied, or a `meta.json` is found in found in the input directory, this file is used. Otherwise, the data can be
the input directory, this file is used. Otherwise, the data can be entered entered directly from the command line. spaCy will then create a `.tar.gz`
directly from the command line. spaCy will then create a `.tar.gz` archive file archive file that you can distribute and install with `pip install`.
that you can distribute and install with `pip install`.
<Infobox title="New in v3.0" variant="warning"> <Infobox title="New in v3.0" variant="warning">
@ -855,13 +859,13 @@ $ python -m spacy package [input_dir] [output_dir] [--meta-path] [--create-meta]
> >
> ```cli > ```cli
> $ python -m spacy package /input /output > $ python -m spacy package /input /output
> $ cd /output/en_model-0.0.0 > $ cd /output/en_pipeline-0.0.0
> $ pip install dist/en_model-0.0.0.tar.gz > $ pip install dist/en_pipeline-0.0.0.tar.gz
> ``` > ```
| Name | Description | | Name | Description |
| ------------------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | ------------------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `input_dir` | Path to directory containing model data. ~~Path (positional)~~ | | `input_dir` | Path to directory containing pipeline data. ~~Path (positional)~~ |
| `output_dir` | Directory to create package folder in. ~~Path (positional)~~ | | `output_dir` | Directory to create package folder in. ~~Path (positional)~~ |
| `--meta-path`, `-m` <Tag variant="new">2</Tag> | Path to [`meta.json`](/api/data-formats#meta) file (optional). ~~Optional[Path] \(option)~~ | | `--meta-path`, `-m` <Tag variant="new">2</Tag> | Path to [`meta.json`](/api/data-formats#meta) file (optional). ~~Optional[Path] \(option)~~ |
| `--create-meta`, `-C` <Tag variant="new">2</Tag> | Create a `meta.json` file on the command line, even if one already exists in the directory. If an existing file is found, its entries will be shown as the defaults in the command line prompt. ~~bool (flag)~~ | | `--create-meta`, `-C` <Tag variant="new">2</Tag> | Create a `meta.json` file on the command line, even if one already exists in the directory. If an existing file is found, its entries will be shown as the defaults in the command line prompt. ~~bool (flag)~~ |
@ -869,13 +873,13 @@ $ python -m spacy package [input_dir] [output_dir] [--meta-path] [--create-meta]
| `--version`, `-v` <Tag variant="new">3</Tag> | Package version to override in meta. Useful when training new versions, as it doesn't require editing the meta template. ~~Optional[str] \(option)~~ | | `--version`, `-v` <Tag variant="new">3</Tag> | Package version to override in meta. Useful when training new versions, as it doesn't require editing the meta template. ~~Optional[str] \(option)~~ |
| `--force`, `-f` | Force overwriting of existing folder in output directory. ~~bool (flag)~~ | | `--force`, `-f` | Force overwriting of existing folder in output directory. ~~bool (flag)~~ |
| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ | | `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |
| **CREATES** | A Python package containing the spaCy model. | | **CREATES** | A Python package containing the spaCy pipeline. |
## project {#project new="3"} ## project {#project new="3"}
The `spacy project` CLI includes subcommands for working with The `spacy project` CLI includes subcommands for working with
[spaCy projects](/usage/projects), end-to-end workflows for building and [spaCy projects](/usage/projects), end-to-end workflows for building and
deploying custom spaCy models. deploying custom spaCy pipelines.
### project clone {#project-clone tag="command"} ### project clone {#project-clone tag="command"}
@ -1015,9 +1019,9 @@ Download all files or directories listed as `outputs` for commands, unless they
are not already present locally. When searching for files in the remote, `pull` are not already present locally. When searching for files in the remote, `pull`
won't just look at the output path, but will also consider the **command won't just look at the output path, but will also consider the **command
string** and the **hashes of the dependencies**. For instance, let's say you've string** and the **hashes of the dependencies**. For instance, let's say you've
previously pushed a model checkpoint to the remote, but now you've changed some previously pushed a checkpoint to the remote, but now you've changed some
hyper-parameters. Because you've changed the inputs to the command, if you run hyper-parameters. Because you've changed the inputs to the command, if you run
`pull`, you won't retrieve the stale result. If you train your model and push `pull`, you won't retrieve the stale result. If you train your pipeline and push
the outputs to the remote, the outputs will be saved alongside the prior the outputs to the remote, the outputs will be saved alongside the prior
outputs, so if you change the config back, you'll be able to fetch back the outputs, so if you change the config back, you'll be able to fetch back the
result. result.

View File

@ -6,18 +6,18 @@ menu:
- ['Training Data', 'training'] - ['Training Data', 'training']
- ['Pretraining Data', 'pretraining'] - ['Pretraining Data', 'pretraining']
- ['Vocabulary', 'vocab-jsonl'] - ['Vocabulary', 'vocab-jsonl']
- ['Model Meta', 'meta'] - ['Pipeline Meta', 'meta']
--- ---
This section documents input and output formats of data used by spaCy, including This section documents input and output formats of data used by spaCy, including
the [training config](/usage/training#config), training data and lexical the [training config](/usage/training#config), training data and lexical
vocabulary data. For an overview of label schemes used by the models, see the vocabulary data. For an overview of label schemes used by the models, see the
[models directory](/models). Each model documents the label schemes used in its [models directory](/models). Each trained pipeline documents the label schemes
components, depending on the data it was trained on. used in its components, depending on the data it was trained on.
## Training config {#config new="3"} ## Training config {#config new="3"}
Config files define the training process and model pipeline and can be passed to Config files define the training process and pipeline and can be passed to
[`spacy train`](/api/cli#train). They use [`spacy train`](/api/cli#train). They use
[Thinc's configuration system](https://thinc.ai/docs/usage-config) under the [Thinc's configuration system](https://thinc.ai/docs/usage-config) under the
hood. For details on how to use training configs, see the hood. For details on how to use training configs, see the
@ -75,10 +75,10 @@ Defines the `nlp` object, its tokenizer and
[processing pipeline](/usage/processing-pipelines) component names. [processing pipeline](/usage/processing-pipelines) component names.
| Name | Description | | Name | Description |
| ------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | ------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `lang` | Model language [ISO code](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes). Defaults to `null`. ~~str~~ | | `lang` | Pipeline language [ISO code](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes). Defaults to `null`. ~~str~~ |
| `pipeline` | Names of pipeline components in order. Should correspond to sections in the `[components]` block, e.g. `[components.ner]`. See docs on [defining components](/usage/training#config-components). Defaults to `[]`. ~~List[str]~~ | | `pipeline` | Names of pipeline components in order. Should correspond to sections in the `[components]` block, e.g. `[components.ner]`. See docs on [defining components](/usage/training#config-components). Defaults to `[]`. ~~List[str]~~ |
| `disabled` | Names of pipeline components that are loaded but disabled by default and not run as part of the pipeline. Should correspond to components listed in `pipeline`. After a model is loaded, disabled components can be enabled using [`Language.enable_pipe`](/api/language#enable_pipe). ~~List[str]~~ | | `disabled` | Names of pipeline components that are loaded but disabled by default and not run as part of the pipeline. Should correspond to components listed in `pipeline`. After a pipeline is loaded, disabled components can be enabled using [`Language.enable_pipe`](/api/language#enable_pipe). ~~List[str]~~ |
| `load_vocab_data` | Whether to load additional lexeme and vocab data from [`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data) if available. Defaults to `true`. ~~bool~~ | | `load_vocab_data` | Whether to load additional lexeme and vocab data from [`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data) if available. Defaults to `true`. ~~bool~~ |
| `before_creation` | Optional [callback](/usage/training#custom-code-nlp-callbacks) to modify `Language` subclass before it's initialized. Defaults to `null`. ~~Optional[Callable[[Type[Language]], Type[Language]]]~~ | | `before_creation` | Optional [callback](/usage/training#custom-code-nlp-callbacks) to modify `Language` subclass before it's initialized. Defaults to `null`. ~~Optional[Callable[[Type[Language]], Type[Language]]]~~ |
| `after_creation` | Optional [callback](/usage/training#custom-code-nlp-callbacks) to modify `nlp` object right after it's initialized. Defaults to `null`. ~~Optional[Callable[[Language], Language]]~~ | | `after_creation` | Optional [callback](/usage/training#custom-code-nlp-callbacks) to modify `nlp` object right after it's initialized. Defaults to `null`. ~~Optional[Callable[[Language], Language]]~~ |
@ -105,8 +105,8 @@ This section includes definitions of the
[pipeline components](/usage/processing-pipelines) and their models, if [pipeline components](/usage/processing-pipelines) and their models, if
available. Components in this section can be referenced in the `pipeline` of the available. Components in this section can be referenced in the `pipeline` of the
`[nlp]` block. Component blocks need to specify either a `factory` (named `[nlp]` block. Component blocks need to specify either a `factory` (named
function to use to create component) or a `source` (name of path of pretrained function to use to create component) or a `source` (name of path of trained
model to copy components from). See the docs on pipeline to copy components from). See the docs on
[defining pipeline components](/usage/training#config-components) for details. [defining pipeline components](/usage/training#config-components) for details.
### paths, system {#config-variables tag="variables"} ### paths, system {#config-variables tag="variables"}
@ -145,7 +145,7 @@ process that are used when you run [`spacy train`](/api/cli#train).
| `score_weights` | Score names shown in metrics mapped to their weight towards the final weighted score. See [here](/usage/training#metrics) for details. Defaults to `{}`. ~~Dict[str, float]~~ | | `score_weights` | Score names shown in metrics mapped to their weight towards the final weighted score. See [here](/usage/training#metrics) for details. Defaults to `{}`. ~~Dict[str, float]~~ |
| `seed` | The random seed. Defaults to variable `${system.seed}`. ~~int~~ | | `seed` | The random seed. Defaults to variable `${system.seed}`. ~~int~~ |
| `train_corpus` | Callable that takes the current `nlp` object and yields [`Example`](/api/example) objects. Defaults to [`Corpus`](/api/corpus). ~~Callable[[Language], Iterator[Example]]~~ | | `train_corpus` | Callable that takes the current `nlp` object and yields [`Example`](/api/example) objects. Defaults to [`Corpus`](/api/corpus). ~~Callable[[Language], Iterator[Example]]~~ |
| `vectors` | Model name or path to model containing pretrained word vectors to use, e.g. created with [`init model`](/api/cli#init-model). Defaults to `null`. ~~Optional[str]~~ | | `vectors` | Name or path of pipeline containing pretrained word vectors to use, e.g. created with [`init vocab`](/api/cli#init-vocab). Defaults to `null`. ~~Optional[str]~~ |
### pretraining {#config-pretraining tag="section,optional"} ### pretraining {#config-pretraining tag="section,optional"}
@ -184,7 +184,7 @@ run [`spacy pretrain`](/api/cli#pretrain).
The main data format used in spaCy v3.0 is a **binary format** created by The main data format used in spaCy v3.0 is a **binary format** created by
serializing a [`DocBin`](/api/docbin), which represents a collection of `Doc` serializing a [`DocBin`](/api/docbin), which represents a collection of `Doc`
objects. This means that you can train spaCy models using the same format it objects. This means that you can train spaCy pipelines using the same format it
outputs: annotated `Doc` objects. The binary format is extremely **efficient in outputs: annotated `Doc` objects. The binary format is extremely **efficient in
storage**, especially when packing multiple documents together. storage**, especially when packing multiple documents together.
@ -286,8 +286,8 @@ a dictionary of gold-standard annotations.
[internal training API](/usage/training#api) and they're expected when you call [internal training API](/usage/training#api) and they're expected when you call
[`nlp.update`](/api/language#update). However, for most use cases, you [`nlp.update`](/api/language#update). However, for most use cases, you
**shouldn't** have to write your own training scripts. It's recommended to train **shouldn't** have to write your own training scripts. It's recommended to train
your models via the [`spacy train`](/api/cli#train) command with a config file your pipelines via the [`spacy train`](/api/cli#train) command with a config
to keep track of your settings and hyperparameters and your own file to keep track of your settings and hyperparameters and your own
[registered functions](/usage/training/#custom-code) to customize the setup. [registered functions](/usage/training/#custom-code) to customize the setup.
</Infobox> </Infobox>
@ -406,15 +406,15 @@ in line-by-line, while still making it easy to represent newlines in the data.
## Lexical data for vocabulary {#vocab-jsonl new="2"} ## Lexical data for vocabulary {#vocab-jsonl new="2"}
To populate a model's vocabulary, you can use the To populate a pipeline's vocabulary, you can use the
[`spacy init model`](/api/cli#init-model) command and load in a [`spacy init vocab`](/api/cli#init-vocab) command and load in a
[newline-delimited JSON](http://jsonlines.org/) (JSONL) file containing one [newline-delimited JSON](http://jsonlines.org/) (JSONL) file containing one
lexical entry per line via the `--jsonl-loc` option. The first line defines the lexical entry per line via the `--jsonl-loc` option. The first line defines the
language and vocabulary settings. All other lines are expected to be JSON language and vocabulary settings. All other lines are expected to be JSON
objects describing an individual lexeme. The lexical attributes will be then set objects describing an individual lexeme. The lexical attributes will be then set
as attributes on spaCy's [`Lexeme`](/api/lexeme#attributes) object. The `vocab` as attributes on spaCy's [`Lexeme`](/api/lexeme#attributes) object. The `vocab`
command outputs a ready-to-use spaCy model with a `Vocab` containing the lexical command outputs a ready-to-use spaCy pipeline with a `Vocab` containing the
data. lexical data.
```python ```python
### First line ### First line
@ -459,11 +459,11 @@ Here's an example of the 20 most frequent lexemes in the English training data:
https://github.com/explosion/spaCy/tree/master/examples/training/vocab-data.jsonl https://github.com/explosion/spaCy/tree/master/examples/training/vocab-data.jsonl
``` ```
## Model meta {#meta} ## Pipeline meta {#meta}
The model meta is available as the file `meta.json` and exported automatically The pipeline meta is available as the file `meta.json` and exported
when you save an `nlp` object to disk. Its contents are available as automatically when you save an `nlp` object to disk. Its contents are available
[`nlp.meta`](/api/language#meta). as [`nlp.meta`](/api/language#meta).
<Infobox variant="warning" title="Changed in v3.0"> <Infobox variant="warning" title="Changed in v3.0">
@ -473,8 +473,8 @@ creating a Python package with [`spacy package`](/api/cli#package). How to set
up the `nlp` object is now defined in the up the `nlp` object is now defined in the
[`config.cfg`](/api/data-formats#config), which includes detailed information [`config.cfg`](/api/data-formats#config), which includes detailed information
about the pipeline components and their model architectures, and all other about the pipeline components and their model architectures, and all other
settings and hyperparameters used to train the model. It's the **single source settings and hyperparameters used to train the pipeline. It's the **single
of truth** used for loading a model. source of truth** used for loading a pipeline.
</Infobox> </Infobox>
@ -482,12 +482,12 @@ of truth** used for loading a model.
> >
> ```json > ```json
> { > {
> "name": "example_model", > "name": "example_pipeline",
> "lang": "en", > "lang": "en",
> "version": "1.0.0", > "version": "1.0.0",
> "spacy_version": ">=3.0.0,<3.1.0", > "spacy_version": ">=3.0.0,<3.1.0",
> "parent_package": "spacy", > "parent_package": "spacy",
> "description": "Example model for spaCy", > "description": "Example pipeline for spaCy",
> "author": "You", > "author": "You",
> "email": "you@example.com", > "email": "you@example.com",
> "url": "https://example.com", > "url": "https://example.com",
@ -511,22 +511,22 @@ of truth** used for loading a model.
> ``` > ```
| Name | Description | | Name | Description |
| ---------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | | ---------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `lang` | Model language [ISO code](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes). Defaults to `"en"`. ~~str~~ | | `lang` | Pipeline language [ISO code](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes). Defaults to `"en"`. ~~str~~ |
| `name` | Model name, e.g. `"core_web_sm"`. The final model package name will be `{lang}_{name}`. Defaults to `"model"`. ~~str~~ | | `name` | Pipeline name, e.g. `"core_web_sm"`. The final package name will be `{lang}_{name}`. Defaults to `"pipeline"`. ~~str~~ |
| `version` | Model version. Will be used to version a Python package created with [`spacy package`](/api/cli#package). Defaults to `"0.0.0"`. ~~str~~ | | `version` | Pipeline version. Will be used to version a Python package created with [`spacy package`](/api/cli#package). Defaults to `"0.0.0"`. ~~str~~ |
| `spacy_version` | spaCy version range the model is compatible with. Defaults to the spaCy version used to create the model, up to next minor version, which is the default compatibility for the available [pretrained models](/models). For instance, a model trained with v3.0.0 will have the version range `">=3.0.0,<3.1.0"`. ~~str~~ | | `spacy_version` | spaCy version range the package is compatible with. Defaults to the spaCy version used to create the pipeline, up to next minor version, which is the default compatibility for the available [trained pipelines](/models). For instance, a pipeline trained with v3.0.0 will have the version range `">=3.0.0,<3.1.0"`. ~~str~~ |
| `parent_package` | Name of the spaCy package. Typically `"spacy"` or `"spacy_nightly"`. Defaults to `"spacy"`. ~~str~~ | | `parent_package` | Name of the spaCy package. Typically `"spacy"` or `"spacy_nightly"`. Defaults to `"spacy"`. ~~str~~ |
| `description` | Model description. Also used for Python package. Defaults to `""`. ~~str~~ | | `description` | Pipeline description. Also used for Python package. Defaults to `""`. ~~str~~ |
| `author` | Model author name. Also used for Python package. Defaults to `""`. ~~str~~ | | `author` | Pipeline author name. Also used for Python package. Defaults to `""`. ~~str~~ |
| `email` | Model author email. Also used for Python package. Defaults to `""`. ~~str~~ | | `email` | Pipeline author email. Also used for Python package. Defaults to `""`. ~~str~~ |
| `url` | Model author URL. Also used for Python package. Defaults to `""`. ~~str~~ | | `url` | Pipeline author URL. Also used for Python package. Defaults to `""`. ~~str~~ |
| `license` | Model license. Also used for Python package. Defaults to `""`. ~~str~~ | | `license` | Pipeline license. Also used for Python package. Defaults to `""`. ~~str~~ |
| `sources` | Data sources used to train the model. Typically a list of dicts with the keys `"name"`, `"url"`, `"author"` and `"license"`. [See here](https://github.com/explosion/spacy-models/tree/master/meta) for examples. Defaults to `None`. ~~Optional[List[Dict[str, str]]]~~ | | `sources` | Data sources used to train the pipeline. Typically a list of dicts with the keys `"name"`, `"url"`, `"author"` and `"license"`. [See here](https://github.com/explosion/spacy-models/tree/master/meta) for examples. Defaults to `None`. ~~Optional[List[Dict[str, str]]]~~ |
| `vectors` | Information about the word vectors included with the model. Typically a dict with the keys `"width"`, `"vectors"` (number of vectors), `"keys"` and `"name"`. ~~Dict[str, Any]~~ | | `vectors` | Information about the word vectors included with the pipeline. Typically a dict with the keys `"width"`, `"vectors"` (number of vectors), `"keys"` and `"name"`. ~~Dict[str, Any]~~ |
| `pipeline` | Names of pipeline component names in the model, in order. Corresponds to [`nlp.pipe_names`](/api/language#pipe_names). Only exists for reference and is not used to create the components. This information is defined in the [`config.cfg`](/api/data-formats#config). Defaults to `[]`. ~~List[str]~~ | | `pipeline` | Names of pipeline component names, in order. Corresponds to [`nlp.pipe_names`](/api/language#pipe_names). Only exists for reference and is not used to create the components. This information is defined in the [`config.cfg`](/api/data-formats#config). Defaults to `[]`. ~~List[str]~~ |
| `labels` | Label schemes of the trained pipeline components, keyed by component name. Corresponds to [`nlp.pipe_labels`](/api/language#pipe_labels). [See here](https://github.com/explosion/spacy-models/tree/master/meta) for examples. Defaults to `{}`. ~~Dict[str, Dict[str, List[str]]]~~ | | `labels` | Label schemes of the trained pipeline components, keyed by component name. Corresponds to [`nlp.pipe_labels`](/api/language#pipe_labels). [See here](https://github.com/explosion/spacy-models/tree/master/meta) for examples. Defaults to `{}`. ~~Dict[str, Dict[str, List[str]]]~~ |
| `accuracy` | Training accuracy, added automatically by [`spacy train`](/api/cli#train). Dictionary of [score names](/usage/training#metrics) mapped to scores. Defaults to `{}`. ~~Dict[str, Union[float, Dict[str, float]]]~~ | | `accuracy` | Training accuracy, added automatically by [`spacy train`](/api/cli#train). Dictionary of [score names](/usage/training#metrics) mapped to scores. Defaults to `{}`. ~~Dict[str, Union[float, Dict[str, float]]]~~ |
| `speed` | Model speed, added automatically by [`spacy train`](/api/cli#train). Typically a dictionary with the keys `"cpu"`, `"gpu"` and `"nwords"` (words per second). Defaults to `{}`. ~~Dict[str, Optional[Union[float, str]]]~~ | | `speed` | Inference speed, added automatically by [`spacy train`](/api/cli#train). Typically a dictionary with the keys `"cpu"`, `"gpu"` and `"nwords"` (words per second). Defaults to `{}`. ~~Dict[str, Optional[Union[float, str]]]~~ |
| `spacy_git_version` <Tag variant="new">3</Tag> | Git commit of [`spacy`](https://github.com/explosion/spaCy) used to create model. ~~str~~ | | `spacy_git_version` <Tag variant="new">3</Tag> | Git commit of [`spacy`](https://github.com/explosion/spaCy) used to create pipeline. ~~str~~ |
| other | Any other custom meta information you want to add. The data is preserved in [`nlp.meta`](/api/language#meta). ~~Any~~ | | other | Any other custom meta information you want to add. The data is preserved in [`nlp.meta`](/api/language#meta). ~~Any~~ |

View File

@ -13,8 +13,8 @@ An `EntityLinker` component disambiguates textual mentions (tagged as named
entities) to unique identifiers, grounding the named entities into the "real entities) to unique identifiers, grounding the named entities into the "real
world". It requires a `KnowledgeBase`, as well as a function to generate world". It requires a `KnowledgeBase`, as well as a function to generate
plausible candidates from that `KnowledgeBase` given a certain textual mention, plausible candidates from that `KnowledgeBase` given a certain textual mention,
and a ML model to pick the right candidate, given the local context of the and a machine learning model to pick the right candidate, given the local
mention. context of the mention.
## Config and implementation {#config} ## Config and implementation {#config}
@ -34,8 +34,8 @@ architectures and their arguments and hyperparameters.
> "incl_prior": True, > "incl_prior": True,
> "incl_context": True, > "incl_context": True,
> "model": DEFAULT_NEL_MODEL, > "model": DEFAULT_NEL_MODEL,
> "kb_loader": {'@assets': 'spacy.EmptyKB.v1', 'entity_vector_length': 64}, > "kb_loader": {'@misc': 'spacy.EmptyKB.v1', 'entity_vector_length': 64},
> "get_candidates": {'@assets': 'spacy.CandidateGenerator.v1'}, > "get_candidates": {'@misc': 'spacy.CandidateGenerator.v1'},
> } > }
> nlp.add_pipe("entity_linker", config=config) > nlp.add_pipe("entity_linker", config=config)
> ``` > ```
@ -66,7 +66,7 @@ https://github.com/explosion/spaCy/blob/develop/spacy/pipeline/entity_linker.py
> entity_linker = nlp.add_pipe("entity_linker", config=config) > entity_linker = nlp.add_pipe("entity_linker", config=config)
> >
> # Construction via add_pipe with custom KB and candidate generation > # Construction via add_pipe with custom KB and candidate generation
> config = {"kb": {"@assets": "my_kb.v1"}} > config = {"kb": {"@misc": "my_kb.v1"}}
> entity_linker = nlp.add_pipe("entity_linker", config=config) > entity_linker = nlp.add_pipe("entity_linker", config=config)
> >
> # Construction from class > # Construction from class

View File

@ -7,9 +7,9 @@ source: spacy/language.py
Usually you'll load this once per process as `nlp` and pass the instance around Usually you'll load this once per process as `nlp` and pass the instance around
your application. The `Language` class is created when you call your application. The `Language` class is created when you call
[`spacy.load()`](/api/top-level#spacy.load) and contains the shared vocabulary [`spacy.load`](/api/top-level#spacy.load) and contains the shared vocabulary and
and [language data](/usage/adding-languages), optional model data loaded from a [language data](/usage/adding-languages), optional binary weights, e.g. provided
[model package](/models) or a path, and a by a [trained pipeline](/models), and the
[processing pipeline](/usage/processing-pipelines) containing components like [processing pipeline](/usage/processing-pipelines) containing components like
the tagger or parser that are called on a document in order. You can also add the tagger or parser that are called on a document in order. You can also add
your own processing pipeline components that take a `Doc` object, modify it and your own processing pipeline components that take a `Doc` object, modify it and
@ -37,7 +37,7 @@ Initialize a `Language` object.
| `vocab` | A `Vocab` object. If `True`, a vocab is created using the default language data settings. ~~Vocab~~ | | `vocab` | A `Vocab` object. If `True`, a vocab is created using the default language data settings. ~~Vocab~~ |
| _keyword-only_ | | | _keyword-only_ | |
| `max_length` | Maximum number of characters allowed in a single text. Defaults to `10 ** 6`. ~~int~~ | | `max_length` | Maximum number of characters allowed in a single text. Defaults to `10 ** 6`. ~~int~~ |
| `meta` | Custom meta data for the `Language` class. Is written to by models to add model meta data. ~~dict~~ | | `meta` | Custom meta data for the `Language` class. Is written to by pipelines to add meta data. ~~dict~~ |
| `create_tokenizer` | Optional function that receives the `nlp` object and returns a tokenizer. ~~Callable[[Language], Callable[[str], Doc]]~~ | | `create_tokenizer` | Optional function that receives the `nlp` object and returns a tokenizer. ~~Callable[[Language], Callable[[str], Doc]]~~ |
## Language.from_config {#from_config tag="classmethod" new="3"} ## Language.from_config {#from_config tag="classmethod" new="3"}
@ -232,7 +232,7 @@ tuples of `Doc` and `GoldParse` objects.
## Language.resume_training {#resume_training tag="method,experimental" new="3"} ## Language.resume_training {#resume_training tag="method,experimental" new="3"}
Continue training a pretrained model. Create and return an optimizer, and Continue training a trained pipeline. Create and return an optimizer, and
initialize "rehearsal" for any pipeline component that has a `rehearse` method. initialize "rehearsal" for any pipeline component that has a `rehearse` method.
Rehearsal is used to prevent models from "forgetting" their initialized Rehearsal is used to prevent models from "forgetting" their initialized
"knowledge". To perform rehearsal, collect samples of text you want the models "knowledge". To perform rehearsal, collect samples of text you want the models
@ -314,7 +314,7 @@ the "catastrophic forgetting" problem. This feature is experimental.
## Language.evaluate {#evaluate tag="method"} ## Language.evaluate {#evaluate tag="method"}
Evaluate a model's pipeline components. Evaluate a pipeline's components.
<Infobox variant="warning" title="Changed in v3.0"> <Infobox variant="warning" title="Changed in v3.0">
@ -386,13 +386,13 @@ component, adds it to the pipeline and returns it.
> nlp.add_pipe("component", before="ner") > nlp.add_pipe("component", before="ner")
> component = nlp.add_pipe("component", name="custom_name", last=True) > component = nlp.add_pipe("component", name="custom_name", last=True)
> >
> # Add component from source model > # Add component from source pipeline
> source_nlp = spacy.load("en_core_web_sm") > source_nlp = spacy.load("en_core_web_sm")
> nlp.add_pipe("ner", source=source_nlp) > nlp.add_pipe("ner", source=source_nlp)
> ``` > ```
| Name | Description | | Name | Description |
| ------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | ------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `factory_name` | Name of the registered component factory. ~~str~~ | | `factory_name` | Name of the registered component factory. ~~str~~ |
| `name` | Optional unique name of pipeline component instance. If not set, the factory name is used. An error is raised if the name already exists in the pipeline. ~~Optional[str]~~ | | `name` | Optional unique name of pipeline component instance. If not set, the factory name is used. An error is raised if the name already exists in the pipeline. ~~Optional[str]~~ |
| _keyword-only_ | | | _keyword-only_ | |
@ -401,7 +401,7 @@ component, adds it to the pipeline and returns it.
| `first` | Insert component first / not first in the pipeline. ~~Optional[bool]~~ | | `first` | Insert component first / not first in the pipeline. ~~Optional[bool]~~ |
| `last` | Insert component last / not last in the pipeline. ~~Optional[bool]~~ | | `last` | Insert component last / not last in the pipeline. ~~Optional[bool]~~ |
| `config` <Tag variant="new">3</Tag> | Optional config parameters to use for this component. Will be merged with the `default_config` specified by the component factory. ~~Optional[Dict[str, Any]]~~ | | `config` <Tag variant="new">3</Tag> | Optional config parameters to use for this component. Will be merged with the `default_config` specified by the component factory. ~~Optional[Dict[str, Any]]~~ |
| `source` <Tag variant="new">3</Tag> | Optional source model to copy component from. If a source is provided, the `factory_name` is interpreted as the name of the component in the source pipeline. Make sure that the vocab, vectors and settings of the source model match the target model. ~~Optional[Language]~~ | | `source` <Tag variant="new">3</Tag> | Optional source pipeline to copy component from. If a source is provided, the `factory_name` is interpreted as the name of the component in the source pipeline. Make sure that the vocab, vectors and settings of the source pipeline match the target pipeline. ~~Optional[Language]~~ |
| `validate` <Tag variant="new">3</Tag> | Whether to validate the component config and arguments against the types expected by the factory. Defaults to `True`. ~~bool~~ | | `validate` <Tag variant="new">3</Tag> | Whether to validate the component config and arguments against the types expected by the factory. Defaults to `True`. ~~bool~~ |
| **RETURNS** | The pipeline component. ~~Callable[[Doc], Doc]~~ | | **RETURNS** | The pipeline component. ~~Callable[[Doc], Doc]~~ |
@ -790,9 +790,10 @@ token.ent_iob, token.ent_type
## Language.meta {#meta tag="property"} ## Language.meta {#meta tag="property"}
Custom meta data for the Language class. If a model is loaded, contains meta Custom meta data for the Language class. If a trained pipeline is loaded, this
data of the model. The `Language.meta` is also what's serialized as the contains meta data of the pipeline. The `Language.meta` is also what's
[`meta.json`](/api/data-formats#meta) when you save an `nlp` object to disk. serialized as the [`meta.json`](/api/data-formats#meta) when you save an `nlp`
object to disk.
> #### Example > #### Example
> >
@ -827,13 +828,15 @@ subclass of the built-in `dict`. It supports the additional methods `to_disk`
## Language.to_disk {#to_disk tag="method" new="2"} ## Language.to_disk {#to_disk tag="method" new="2"}
Save the current state to a directory. If a model is loaded, this will **include Save the current state to a directory. Under the hood, this method delegates to
the model**. the `to_disk` methods of the individual pipeline components, if available. This
means that if a trained pipeline is loaded, all components and their weights
will be saved to disk.
> #### Example > #### Example
> >
> ```python > ```python
> nlp.to_disk("/path/to/models") > nlp.to_disk("/path/to/pipeline")
> ``` > ```
| Name | Description | | Name | Description |
@ -844,22 +847,28 @@ the model**.
## Language.from_disk {#from_disk tag="method" new="2"} ## Language.from_disk {#from_disk tag="method" new="2"}
Loads state from a directory. Modifies the object in place and returns it. If Loads state from a directory, including all data that was saved with the
the saved `Language` object contains a model, the model will be loaded. Note `Language` object. Modifies the object in place and returns it.
that this method is commonly used via the subclasses like `English` or `German`
to make language-specific functionality like the <Infobox variant="warning" title="Important note">
[lexical attribute getters](/usage/adding-languages#lex-attrs) available to the
loaded object. Keep in mind that this method **only loads serialized state** and doesn't set up
the `nlp` object. This means that it requires the correct language class to be
initialized and all pipeline components to be added to the pipeline. If you want
to load a serialized pipeline from a directory, you should use
[`spacy.load`](/api/top-level#spacy.load), which will set everything up for you.
</Infobox>
> #### Example > #### Example
> >
> ```python > ```python
> from spacy.language import Language > from spacy.language import Language
> nlp = Language().from_disk("/path/to/model") > nlp = Language().from_disk("/path/to/pipeline")
> >
> # using language-specific subclass > # Using language-specific subclass
> from spacy.lang.en import English > from spacy.lang.en import English
> nlp = English().from_disk("/path/to/en_model") > nlp = English().from_disk("/path/to/pipeline")
> ``` > ```
| Name | Description | | Name | Description |
@ -924,7 +933,7 @@ available to the loaded object.
| `components` <Tag variant="new">3</Tag> | List of all available `(name, component)` tuples, including components that are currently disabled. ~~List[Tuple[str, Callable[[Doc], Doc]]]~~ | | `components` <Tag variant="new">3</Tag> | List of all available `(name, component)` tuples, including components that are currently disabled. ~~List[Tuple[str, Callable[[Doc], Doc]]]~~ |
| `component_names` <Tag variant="new">3</Tag> | List of all available component names, including components that are currently disabled. ~~List[str]~~ | | `component_names` <Tag variant="new">3</Tag> | List of all available component names, including components that are currently disabled. ~~List[str]~~ |
| `disabled` <Tag variant="new">3</Tag> | Names of components that are currently disabled and don't run as part of the pipeline. ~~List[str]~~ | | `disabled` <Tag variant="new">3</Tag> | Names of components that are currently disabled and don't run as part of the pipeline. ~~List[str]~~ |
| `path` <Tag variant="new">2</Tag> | Path to the model data directory, if a model is loaded. Otherwise `None`. ~~Optional[Path]~~ | | `path` <Tag variant="new">2</Tag> | Path to the pipeline data directory, if a pipeline is loaded from a path or package. Otherwise `None`. ~~Optional[Path]~~ |
## Class attributes {#class-attributes} ## Class attributes {#class-attributes}
@ -1004,7 +1013,7 @@ serialization by passing in the string names via the `exclude` argument.
> >
> ```python > ```python
> data = nlp.to_bytes(exclude=["tokenizer", "vocab"]) > data = nlp.to_bytes(exclude=["tokenizer", "vocab"])
> nlp.from_disk("./model-data", exclude=["ner"]) > nlp.from_disk("/pipeline", exclude=["ner"])
> ``` > ```
| Name | Description | | Name | Description |

View File

@ -286,7 +286,7 @@ context, the original parameters are restored.
## Pipe.add_label {#add_label tag="method"} ## Pipe.add_label {#add_label tag="method"}
Add a new label to the pipe. It's possible to extend pretrained models with new Add a new label to the pipe. It's possible to extend trained models with new
labels, but care should be taken to avoid the "catastrophic forgetting" problem. labels, but care should be taken to avoid the "catastrophic forgetting" problem.
> #### Example > #### Example

View File

@ -12,14 +12,14 @@ menu:
## spaCy {#spacy hidden="true"} ## spaCy {#spacy hidden="true"}
### spacy.load {#spacy.load tag="function" model="any"} ### spacy.load {#spacy.load tag="function"}
Load a model using the name of an installed Load a pipeline using the name of an installed
[model package](/usage/training#models-generating), a string path or a [package](/usage/saving-loading#models), a string path or a `Path`-like object.
`Path`-like object. spaCy will try resolving the load argument in this order. If spaCy will try resolving the load argument in this order. If a pipeline is
a model is loaded from a model name, spaCy will assume it's a Python package and loaded from a string name, spaCy will assume it's a Python package and import it
import it and call the model's own `load()` method. If a model is loaded from a and call the package's own `load()` method. If a pipeline is loaded from a path,
path, spaCy will assume it's a data directory, load its spaCy will assume it's a data directory, load its
[`config.cfg`](/api/data-formats#config) and use the language and pipeline [`config.cfg`](/api/data-formats#config) and use the language and pipeline
information to construct the `Language` class. The data will be loaded in via information to construct the `Language` class. The data will be loaded in via
[`Language.from_disk`](/api/language#from_disk). [`Language.from_disk`](/api/language#from_disk).
@ -36,38 +36,38 @@ specified separately using the new `exclude` keyword argument.
> >
> ```python > ```python
> nlp = spacy.load("en_core_web_sm") # package > nlp = spacy.load("en_core_web_sm") # package
> nlp = spacy.load("/path/to/en") # string path > nlp = spacy.load("/path/to/pipeline") # string path
> nlp = spacy.load(Path("/path/to/en")) # pathlib Path > nlp = spacy.load(Path("/path/to/pipeline")) # pathlib Path
> >
> nlp = spacy.load("en_core_web_sm", exclude=["parser", "tagger"]) > nlp = spacy.load("en_core_web_sm", exclude=["parser", "tagger"])
> ``` > ```
| Name | Description | | Name | Description |
| ------------------------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | ------------------------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `name` | Model to load, i.e. package name or path. ~~Union[str, Path]~~ | | `name` | Pipeline to load, i.e. package name or path. ~~Union[str, Path]~~ |
| _keyword-only_ | | | _keyword-only_ | |
| `disable` | Names of pipeline components to [disable](/usage/processing-pipelines#disabling). Disabled pipes will be loaded but they won't be run unless you explicitly enable them by calling [nlp.enable_pipe](/api/language#enable_pipe). ~~List[str]~~ | | `disable` | Names of pipeline components to [disable](/usage/processing-pipelines#disabling). Disabled pipes will be loaded but they won't be run unless you explicitly enable them by calling [nlp.enable_pipe](/api/language#enable_pipe). ~~List[str]~~ |
| `exclude` <Tag variant="new">3</Tag> | Names of pipeline components to [exclude](/usage/processing-pipelines#disabling). Excluded components won't be loaded. ~~List[str]~~ | | `exclude` <Tag variant="new">3</Tag> | Names of pipeline components to [exclude](/usage/processing-pipelines#disabling). Excluded components won't be loaded. ~~List[str]~~ |
| `config` <Tag variant="new">3</Tag> | Optional config overrides, either as nested dict or dict keyed by section value in dot notation, e.g. `"components.name.value"`. ~~Union[Dict[str, Any], Config]~~ | | `config` <Tag variant="new">3</Tag> | Optional config overrides, either as nested dict or dict keyed by section value in dot notation, e.g. `"components.name.value"`. ~~Union[Dict[str, Any], Config]~~ |
| **RETURNS** | A `Language` object with the loaded model. ~~Language~~ | | **RETURNS** | A `Language` object with the loaded pipeline. ~~Language~~ |
Essentially, `spacy.load()` is a convenience wrapper that reads the model's Essentially, `spacy.load()` is a convenience wrapper that reads the pipeline's
[`config.cfg`](/api/data-formats#config), uses the language and pipeline [`config.cfg`](/api/data-formats#config), uses the language and pipeline
information to construct a `Language` object, loads in the model data and information to construct a `Language` object, loads in the model data and
returns it. weights, and returns it.
```python ```python
### Abstract example ### Abstract example
cls = util.get_lang_class(lang) # get language for ID, e.g. "en" cls = spacy.util.get_lang_class(lang) # 1. Get Language class, e.g. English
nlp = cls() # initialize the language nlp = cls() # 2. Initialize it
for name in pipeline: for name in pipeline:
nlp.add_pipe(name) # add component to pipeline nlp.add_pipe(name) # 3. Add the component to the pipeline
nlp.from_disk(model_data_path) # load in model data nlp.from_disk(data_path) # 4. Load in the binary data
``` ```
### spacy.blank {#spacy.blank tag="function" new="2"} ### spacy.blank {#spacy.blank tag="function" new="2"}
Create a blank model of a given language class. This function is the twin of Create a blank pipeline of a given language class. This function is the twin of
`spacy.load()`. `spacy.load()`.
> #### Example > #### Example
@ -85,9 +85,7 @@ Create a blank model of a given language class. This function is the twin of
### spacy.info {#spacy.info tag="function"} ### spacy.info {#spacy.info tag="function"}
The same as the [`info` command](/api/cli#info). Pretty-print information about The same as the [`info` command](/api/cli#info). Pretty-print information about
your installation, models and local setup from within spaCy. To get the model your installation, installed pipelines and local setup from within spaCy.
meta data as a dictionary instead, you can use the `meta` attribute on your
`nlp` object with a loaded model, e.g. `nlp.meta`.
> #### Example > #### Example
> >
@ -98,8 +96,8 @@ meta data as a dictionary instead, you can use the `meta` attribute on your
> ``` > ```
| Name | Description | | Name | Description |
| -------------- | ------------------------------------------------------------------ | | -------------- | ---------------------------------------------------------------------------- |
| `model` | A model, i.e. a package name or path (optional). ~~Optional[str]~~ | | `model` | Optional pipeline, i.e. a package name or path (optional). ~~Optional[str]~~ |
| _keyword-only_ | | | _keyword-only_ | |
| `markdown` | Print information as Markdown. ~~bool~~ | | `markdown` | Print information as Markdown. ~~bool~~ |
| `silent` | Don't print anything, just return. ~~bool~~ | | `silent` | Don't print anything, just return. ~~bool~~ |
@ -133,7 +131,7 @@ list of available terms, see
Allocate data and perform operations on [GPU](/usage/#gpu), if available. If Allocate data and perform operations on [GPU](/usage/#gpu), if available. If
data has already been allocated on CPU, it will not be moved. Ideally, this data has already been allocated on CPU, it will not be moved. Ideally, this
function should be called right after importing spaCy and _before_ loading any function should be called right after importing spaCy and _before_ loading any
models. pipelines.
> #### Example > #### Example
> >
@ -152,7 +150,7 @@ models.
Allocate data and perform operations on [GPU](/usage/#gpu). Will raise an error Allocate data and perform operations on [GPU](/usage/#gpu). Will raise an error
if no GPU is available. If data has already been allocated on CPU, it will not if no GPU is available. If data has already been allocated on CPU, it will not
be moved. Ideally, this function should be called right after importing spaCy be moved. Ideally, this function should be called right after importing spaCy
and _before_ loading any models. and _before_ loading any pipelines.
> #### Example > #### Example
> >
@ -271,9 +269,9 @@ If a setting is not present in the options, the default value will be used.
| `template` <Tag variant="new">2.2</Tag> | Optional template to overwrite the HTML used to render entity spans. Should be a format string and can use `{bg}`, `{text}` and `{label}`. See [`templates.py`](https://github.com/explosion/spaCy/blob/master/spacy/displacy/templates.py) for examples. ~~Optional[str]~~ | | `template` <Tag variant="new">2.2</Tag> | Optional template to overwrite the HTML used to render entity spans. Should be a format string and can use `{bg}`, `{text}` and `{label}`. See [`templates.py`](https://github.com/explosion/spaCy/blob/master/spacy/displacy/templates.py) for examples. ~~Optional[str]~~ |
By default, displaCy comes with colors for all entity types used by By default, displaCy comes with colors for all entity types used by
[spaCy models](/models). If you're using custom entity types, you can use the [spaCy's trained pipelines](/models). If you're using custom entity types, you
`colors` setting to add your own colors for them. Your application or model can use the `colors` setting to add your own colors for them. Your application
package can also expose a or pipeline package can also expose a
[`spacy_displacy_colors` entry point](/usage/saving-loading#entry-points-displacy) [`spacy_displacy_colors` entry point](/usage/saving-loading#entry-points-displacy)
to add custom labels and their colors automatically. to add custom labels and their colors automatically.
@ -309,7 +307,6 @@ factories.
| Registry name | Description | | Registry name | Description |
| ----------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | ----------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `architectures` | Registry for functions that create [model architectures](/api/architectures). Can be used to register custom model architectures and reference them in the `config.cfg`. | | `architectures` | Registry for functions that create [model architectures](/api/architectures). Can be used to register custom model architectures and reference them in the `config.cfg`. |
| `assets` | Registry for data assets, knowledge bases etc. |
| `batchers` | Registry for training and evaluation [data batchers](#batchers). | | `batchers` | Registry for training and evaluation [data batchers](#batchers). |
| `callbacks` | Registry for custom callbacks to [modify the `nlp` object](/usage/training#custom-code-nlp-callbacks) before training. | | `callbacks` | Registry for custom callbacks to [modify the `nlp` object](/usage/training#custom-code-nlp-callbacks) before training. |
| `displacy_colors` | Registry for custom color scheme for the [`displacy` NER visualizer](/usage/visualizers). Automatically reads from [entry points](/usage/saving-loading#entry-points). | | `displacy_colors` | Registry for custom color scheme for the [`displacy` NER visualizer](/usage/visualizers). Automatically reads from [entry points](/usage/saving-loading#entry-points). |
@ -320,6 +317,7 @@ factories.
| `loggers` | Registry for functions that log [training results](/usage/training). | | `loggers` | Registry for functions that log [training results](/usage/training). |
| `lookups` | Registry for large lookup tables available via `vocab.lookups`. | | `lookups` | Registry for large lookup tables available via `vocab.lookups`. |
| `losses` | Registry for functions that create [losses](https://thinc.ai/docs/api-loss). | | `losses` | Registry for functions that create [losses](https://thinc.ai/docs/api-loss). |
| `misc` | Registry for miscellaneous functions that return data assets, knowledge bases or anything else you may need. |
| `optimizers` | Registry for functions that create [optimizers](https://thinc.ai/docs/api-optimizers). | | `optimizers` | Registry for functions that create [optimizers](https://thinc.ai/docs/api-optimizers). |
| `readers` | Registry for training and evaluation data readers like [`Corpus`](/api/corpus). | | `readers` | Registry for training and evaluation data readers like [`Corpus`](/api/corpus). |
| `schedules` | Registry for functions that create [schedules](https://thinc.ai/docs/api-schedules). | | `schedules` | Registry for functions that create [schedules](https://thinc.ai/docs/api-schedules). |
@ -366,7 +364,7 @@ results to a [Weights & Biases](https://www.wandb.com/) dashboard. Instead of
using one of the built-in loggers listed here, you can also using one of the built-in loggers listed here, you can also
[implement your own](/usage/training#custom-logging). [implement your own](/usage/training#custom-logging).
#### spacy.ConsoleLogger.v1 {#ConsoleLogger tag="registered function"} #### spacy.ConsoleLogger {#ConsoleLogger tag="registered function"}
> #### Example config > #### Example config
> >
@ -412,7 +410,7 @@ start decreasing across epochs.
</Accordion> </Accordion>
#### spacy.WandbLogger.v1 {#WandbLogger tag="registered function"} #### spacy.WandbLogger {#WandbLogger tag="registered function"}
> #### Installation > #### Installation
> >
@ -468,7 +466,7 @@ Instead of using one of the built-in batchers listed here, you can also
[implement your own](/usage/training#custom-code-readers-batchers), which may or [implement your own](/usage/training#custom-code-readers-batchers), which may or
may not use a custom schedule. may not use a custom schedule.
#### batch_by_words.v1 {#batch_by_words tag="registered function"} #### batch_by_words {#batch_by_words tag="registered function"}
Create minibatches of roughly a given number of words. If any examples are Create minibatches of roughly a given number of words. If any examples are
longer than the specified batch length, they will appear in a batch by longer than the specified batch length, they will appear in a batch by
@ -480,7 +478,7 @@ themselves, or be discarded if `discard_oversize` is set to `True`. The argument
> >
> ```ini > ```ini
> [training.batcher] > [training.batcher]
> @batchers = "batch_by_words.v1" > @batchers = "spacy.batch_by_words.v1"
> size = 100 > size = 100
> tolerance = 0.2 > tolerance = 0.2
> discard_oversize = false > discard_oversize = false
@ -495,13 +493,13 @@ themselves, or be discarded if `discard_oversize` is set to `True`. The argument
| `discard_oversize` | Whether to discard sequences that by themselves exceed the tolerated size. ~~bool~~ | | `discard_oversize` | Whether to discard sequences that by themselves exceed the tolerated size. ~~bool~~ |
| `get_length` | Optional function that receives a sequence item and returns its length. Defaults to the built-in `len()` if not set. ~~Optional[Callable[[Any], int]]~~ | | `get_length` | Optional function that receives a sequence item and returns its length. Defaults to the built-in `len()` if not set. ~~Optional[Callable[[Any], int]]~~ |
#### batch_by_sequence.v1 {#batch_by_sequence tag="registered function"} #### batch_by_sequence {#batch_by_sequence tag="registered function"}
> #### Example config > #### Example config
> >
> ```ini > ```ini
> [training.batcher] > [training.batcher]
> @batchers = "batch_by_sequence.v1" > @batchers = "spacy.batch_by_sequence.v1"
> size = 32 > size = 32
> get_length = null > get_length = null
> ``` > ```
@ -513,13 +511,13 @@ Create a batcher that creates batches of the specified size.
| `size` | The target number of items per batch. Can also be a block referencing a schedule, e.g. [`compounding`](https://thinc.ai/docs/api-schedules/#compounding). ~~Union[int, Sequence[int]]~~ | | `size` | The target number of items per batch. Can also be a block referencing a schedule, e.g. [`compounding`](https://thinc.ai/docs/api-schedules/#compounding). ~~Union[int, Sequence[int]]~~ |
| `get_length` | Optional function that receives a sequence item and returns its length. Defaults to the built-in `len()` if not set. ~~Optional[Callable[[Any], int]]~~ | | `get_length` | Optional function that receives a sequence item and returns its length. Defaults to the built-in `len()` if not set. ~~Optional[Callable[[Any], int]]~~ |
#### batch_by_padded.v1 {#batch_by_padded tag="registered function"} #### batch_by_padded {#batch_by_padded tag="registered function"}
> #### Example config > #### Example config
> >
> ```ini > ```ini
> [training.batcher] > [training.batcher]
> @batchers = "batch_by_padded.v1" > @batchers = "spacy.batch_by_padded.v1"
> size = 100 > size = 100
> buffer = 256 > buffer = 256
> discard_oversize = false > discard_oversize = false
@ -666,8 +664,8 @@ loaded lazily, to avoid expensive setup code associated with the language data.
### util.load_model {#util.load_model tag="function" new="2"} ### util.load_model {#util.load_model tag="function" new="2"}
Load a model from a package or data path. If called with a package name, spaCy Load a pipeline from a package or data path. If called with a string name, spaCy
will assume the model is a Python package and import and call its `load()` will assume the pipeline is a Python package and import and call its `load()`
method. If called with a path, spaCy will assume it's a data directory, read the method. If called with a path, spaCy will assume it's a data directory, read the
language and pipeline settings from the [`config.cfg`](/api/data-formats#config) language and pipeline settings from the [`config.cfg`](/api/data-formats#config)
and create a `Language` object. The model data will then be loaded in via and create a `Language` object. The model data will then be loaded in via
@ -683,16 +681,16 @@ and create a `Language` object. The model data will then be loaded in via
| Name | Description | | Name | Description |
| ------------------------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | ------------------------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `name` | Package name or model path. ~~str~~ | | `name` | Package name or path. ~~str~~ |
| `vocab` <Tag variant="new">3</Tag> | Optional shared vocab to pass in on initialization. If `True` (default), a new `Vocab` object will be created. ~~Union[Vocab, bool]~~. | | `vocab` <Tag variant="new">3</Tag> | Optional shared vocab to pass in on initialization. If `True` (default), a new `Vocab` object will be created. ~~Union[Vocab, bool]~~. |
| `disable` | Names of pipeline components to [disable](/usage/processing-pipelines#disabling). Disabled pipes will be loaded but they won't be run unless you explicitly enable them by calling [nlp.enable_pipe](/api/language#enable_pipe). ~~List[str]~~ | | `disable` | Names of pipeline components to [disable](/usage/processing-pipelines#disabling). Disabled pipes will be loaded but they won't be run unless you explicitly enable them by calling [nlp.enable_pipe](/api/language#enable_pipe). ~~List[str]~~ |
| `exclude` <Tag variant="new">3</Tag> | Names of pipeline components to [exclude](/usage/processing-pipelines#disabling). Excluded components won't be loaded. ~~List[str]~~ | | `exclude` <Tag variant="new">3</Tag> | Names of pipeline components to [exclude](/usage/processing-pipelines#disabling). Excluded components won't be loaded. ~~List[str]~~ |
| `config` <Tag variant="new">3</Tag> | Config overrides as nested dict or flat dict keyed by section values in dot notation, e.g. `"nlp.pipeline"`. ~~Union[Dict[str, Any], Config]~~ | | `config` <Tag variant="new">3</Tag> | Config overrides as nested dict or flat dict keyed by section values in dot notation, e.g. `"nlp.pipeline"`. ~~Union[Dict[str, Any], Config]~~ |
| **RETURNS** | `Language` class with the loaded model. ~~Language~~ | | **RETURNS** | `Language` class with the loaded pipeline. ~~Language~~ |
### util.load_model_from_init_py {#util.load_model_from_init_py tag="function" new="2"} ### util.load_model_from_init_py {#util.load_model_from_init_py tag="function" new="2"}
A helper function to use in the `load()` method of a model package's A helper function to use in the `load()` method of a pipeline package's
[`__init__.py`](https://github.com/explosion/spacy-models/tree/master/template/model/xx_model_name/__init__.py). [`__init__.py`](https://github.com/explosion/spacy-models/tree/master/template/model/xx_model_name/__init__.py).
> #### Example > #### Example
@ -706,70 +704,72 @@ A helper function to use in the `load()` method of a model package's
| Name | Description | | Name | Description |
| ------------------------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | ------------------------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `init_file` | Path to model's `__init__.py`, i.e. `__file__`. ~~Union[str, Path]~~ | | `init_file` | Path to package's `__init__.py`, i.e. `__file__`. ~~Union[str, Path]~~ |
| `vocab` <Tag variant="new">3</Tag> | Optional shared vocab to pass in on initialization. If `True` (default), a new `Vocab` object will be created. ~~Union[Vocab, bool]~~. | | `vocab` <Tag variant="new">3</Tag> | Optional shared vocab to pass in on initialization. If `True` (default), a new `Vocab` object will be created. ~~Union[Vocab, bool]~~. |
| `disable` | Names of pipeline components to [disable](/usage/processing-pipelines#disabling). Disabled pipes will be loaded but they won't be run unless you explicitly enable them by calling [nlp.enable_pipe](/api/language#enable_pipe). ~~List[str]~~ | | `disable` | Names of pipeline components to [disable](/usage/processing-pipelines#disabling). Disabled pipes will be loaded but they won't be run unless you explicitly enable them by calling [nlp.enable_pipe](/api/language#enable_pipe). ~~List[str]~~ |
| `exclude` <Tag variant="new">3</Tag> | Names of pipeline components to [exclude](/usage/processing-pipelines#disabling). Excluded components won't be loaded. ~~List[str]~~ | | `exclude` <Tag variant="new">3</Tag> | Names of pipeline components to [exclude](/usage/processing-pipelines#disabling). Excluded components won't be loaded. ~~List[str]~~ |
| `config` <Tag variant="new">3</Tag> | Config overrides as nested dict or flat dict keyed by section values in dot notation, e.g. `"nlp.pipeline"`. ~~Union[Dict[str, Any], Config]~~ | | `config` <Tag variant="new">3</Tag> | Config overrides as nested dict or flat dict keyed by section values in dot notation, e.g. `"nlp.pipeline"`. ~~Union[Dict[str, Any], Config]~~ |
| **RETURNS** | `Language` class with the loaded model. ~~Language~~ | | **RETURNS** | `Language` class with the loaded pipeline. ~~Language~~ |
### util.load_config {#util.load_config tag="function" new="3"} ### util.load_config {#util.load_config tag="function" new="3"}
Load a model's [`config.cfg`](/api/data-formats#config) from a file path. The Load a pipeline's [`config.cfg`](/api/data-formats#config) from a file path. The
config typically includes details about the model pipeline and how its config typically includes details about the components and how they're created,
components are created, as well as all training settings and hyperparameters. as well as all training settings and hyperparameters.
> #### Example > #### Example
> >
> ```python > ```python
> config = util.load_config("/path/to/model/config.cfg") > config = util.load_config("/path/to/config.cfg")
> print(config.to_str()) > print(config.to_str())
> ``` > ```
| Name | Description | | Name | Description |
| ------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | ------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `path` | Path to the model's `config.cfg`. ~~Union[str, Path]~~ | | `path` | Path to the pipeline's `config.cfg`. ~~Union[str, Path]~~ |
| `overrides` | Optional config overrides to replace in loaded config. Can be provided as nested dict, or as flat dict with keys in dot notation, e.g. `"nlp.pipeline"`. ~~Dict[str, Any]~~ | | `overrides` | Optional config overrides to replace in loaded config. Can be provided as nested dict, or as flat dict with keys in dot notation, e.g. `"nlp.pipeline"`. ~~Dict[str, Any]~~ |
| `interpolate` | Whether to interpolate the config and replace variables like `${paths.train}` with their values. Defaults to `False`. ~~bool~~ | | `interpolate` | Whether to interpolate the config and replace variables like `${paths.train}` with their values. Defaults to `False`. ~~bool~~ |
| **RETURNS** | The model's config. ~~Config~~ | | **RETURNS** | The pipeline's config. ~~Config~~ |
### util.load_meta {#util.load_meta tag="function" new="3"} ### util.load_meta {#util.load_meta tag="function" new="3"}
Get a model's [`meta.json`](/api/data-formats#meta) from a file path and Get a pipeline's [`meta.json`](/api/data-formats#meta) from a file path and
validate its contents. validate its contents. The meta typically includes details about author,
licensing, data sources and version.
> #### Example > #### Example
> >
> ```python > ```python
> meta = util.load_meta("/path/to/model/meta.json") > meta = util.load_meta("/path/to/meta.json")
> ``` > ```
| Name | Description | | Name | Description |
| ----------- | ----------------------------------------------------- | | ----------- | -------------------------------------------------------- |
| `path` | Path to the model's `meta.json`. ~~Union[str, Path]~~ | | `path` | Path to the pipeline's `meta.json`. ~~Union[str, Path]~~ |
| **RETURNS** | The model's meta data. ~~Dict[str, Any]~~ | | **RETURNS** | The pipeline's meta data. ~~Dict[str, Any]~~ |
### util.get_installed_models {#util.get_installed_models tag="function" new="3"} ### util.get_installed_models {#util.get_installed_models tag="function" new="3"}
List all model packages installed in the current environment. This will include List all pipeline packages installed in the current environment. This will
any spaCy model that was packaged with [`spacy package`](/api/cli#package). include any spaCy pipeline that was packaged with
Under the hood, model packages expose a Python entry point that spaCy can check, [`spacy package`](/api/cli#package). Under the hood, pipeline packages expose a
without having to load the model. Python entry point that spaCy can check, without having to load the `nlp`
object.
> #### Example > #### Example
> >
> ```python > ```python
> model_names = util.get_installed_models() > names = util.get_installed_models()
> ``` > ```
| Name | Description | | Name | Description |
| ----------- | ---------------------------------------------------------------------------------- | | ----------- | ------------------------------------------------------------------------------------- |
| **RETURNS** | The string names of the models installed in the current environment. ~~List[str]~~ | | **RETURNS** | The string names of the pipelines installed in the current environment. ~~List[str]~~ |
### util.is_package {#util.is_package tag="function"} ### util.is_package {#util.is_package tag="function"}
Check if string maps to a package installed via pip. Mainly used to validate Check if string maps to a package installed via pip. Mainly used to validate
[model packages](/usage/models). [pipeline packages](/usage/models).
> #### Example > #### Example
> >
@ -786,7 +786,8 @@ Check if string maps to a package installed via pip. Mainly used to validate
### util.get_package_path {#util.get_package_path tag="function" new="2"} ### util.get_package_path {#util.get_package_path tag="function" new="2"}
Get path to an installed package. Mainly used to resolve the location of Get path to an installed package. Mainly used to resolve the location of
[model packages](/usage/models). Currently imports the package to find its path. [pipeline packages](/usage/models). Currently imports the package to find its
path.
> #### Example > #### Example
> >
@ -796,9 +797,9 @@ Get path to an installed package. Mainly used to resolve the location of
> ``` > ```
| Name | Description | | Name | Description |
| -------------- | ----------------------------------------- | | -------------- | -------------------------------------------- |
| `package_name` | Name of installed package. ~~str~~ | | `package_name` | Name of installed package. ~~str~~ |
| **RETURNS** | Path to model package directory. ~~Path~~ | | **RETURNS** | Path to pipeline package directory. ~~Path~~ |
### util.is_in_jupyter {#util.is_in_jupyter tag="function" new="2"} ### util.is_in_jupyter {#util.is_in_jupyter tag="function" new="2"}

View File

@ -453,7 +453,7 @@ using the `@spacy.registry.span_getters` decorator.
> #### Example > #### Example
> >
> ```python > ```python
> @spacy.registry.span_getters("sent_spans.v1") > @spacy.registry.span_getters("custom_sent_spans")
> def configure_get_sent_spans() -> Callable: > def configure_get_sent_spans() -> Callable:
> def get_sent_spans(docs: Iterable[Doc]) -> List[List[Span]]: > def get_sent_spans(docs: Iterable[Doc]) -> List[List[Span]]:
> return [list(doc.sents) for doc in docs] > return [list(doc.sents) for doc in docs]
@ -472,7 +472,7 @@ using the `@spacy.registry.span_getters` decorator.
> >
> ```ini > ```ini
> [transformer.model.get_spans] > [transformer.model.get_spans]
> @span_getters = "doc_spans.v1" > @span_getters = "spacy-transformers.doc_spans.v1"
> ``` > ```
Create a span getter that uses the whole document as its spans. This is the best Create a span getter that uses the whole document as its spans. This is the best
@ -485,7 +485,7 @@ texts.
> >
> ```ini > ```ini
> [transformer.model.get_spans] > [transformer.model.get_spans]
> @span_getters = "sent_spans.v1" > @span_getters = "spacy-transformers.sent_spans.v1"
> ``` > ```
Create a span getter that uses sentence boundary markers to extract the spans. Create a span getter that uses sentence boundary markers to extract the spans.
@ -500,7 +500,7 @@ more meaningful windows to attend over.
> >
> ```ini > ```ini
> [transformer.model.get_spans] > [transformer.model.get_spans]
> @span_getters = "strided_spans.v1" > @span_getters = "spacy-transformers.strided_spans.v1"
> window = 128 > window = 128
> stride = 96 > stride = 96
> ``` > ```

View File

@ -1,6 +1,6 @@
--- ---
title: Models title: Trained Models & Pipelines
teaser: Downloadable pretrained models for spaCy teaser: Downloadable trained pipelines and weights for spaCy
menu: menu:
- ['Quickstart', 'quickstart'] - ['Quickstart', 'quickstart']
- ['Conventions', 'conventions'] - ['Conventions', 'conventions']
@ -8,15 +8,15 @@ menu:
<!-- Update page, refer to new /api/architectures and training docs --> <!-- Update page, refer to new /api/architectures and training docs -->
The models directory includes two types of pretrained models: This directory includes two types of packages:
1. **Core models:** General-purpose pretrained models to predict named entities, 1. **Trained pipelines:** General-purpose spaCy pipelines to predict named
part-of-speech tags and syntactic dependencies. Can be used out-of-the-box entities, part-of-speech tags and syntactic dependencies. Can be used
and fine-tuned on more specific data. out-of-the-box and fine-tuned on more specific data.
2. **Starter models:** Transfer learning starter packs with pretrained weights 2. **Starters:** Transfer learning starter packs with pretrained weights you can
you can initialize your models with to achieve better accuracy. They can initialize your pipeline models with to achieve better accuracy. They can
include word vectors (which will be used as features during training) or include word vectors (which will be used as features during training) or
other pretrained representations like BERT. These models don't include other pretrained representations like BERT. These packages don't include
components for specific tasks like NER or text classification and are components for specific tasks like NER or text classification and are
intended to be used as base models when training your own models. intended to be used as base models when training your own models.
@ -28,43 +28,42 @@ import QuickstartModels from 'widgets/quickstart-models.js'
<Infobox title="Installation and usage" emoji="📖"> <Infobox title="Installation and usage" emoji="📖">
For more details on how to use models with spaCy, see the For more details on how to use trained pipelines with spaCy, see the
[usage guide on models](/usage/models). [usage guide](/usage/models).
</Infobox> </Infobox>
## Model naming conventions {#conventions} ## Package naming conventions {#conventions}
In general, spaCy expects all model packages to follow the naming convention of In general, spaCy expects all pipeline packages to follow the naming convention
`[lang`\_[name]]. For spaCy's models, we also chose to divide the name into of `[lang`\_[name]]. For spaCy's pipelines, we also chose to divide the name
three components: into three components:
1. **Type:** Model capabilities (e.g. `core` for general-purpose model with 1. **Type:** Capabilities (e.g. `core` for general-purpose pipeline with
vocabulary, syntax, entities and word vectors, or `depent` for only vocab, vocabulary, syntax, entities and word vectors, or `depent` for only vocab,
syntax and entities). syntax and entities).
2. **Genre:** Type of text the model is trained on, e.g. `web` or `news`. 2. **Genre:** Type of text the pipeline is trained on, e.g. `web` or `news`.
3. **Size:** Model size indicator, `sm`, `md` or `lg`. 3. **Size:** Package size indicator, `sm`, `md` or `lg`.
For example, [`en_core_web_sm`](/models/en#en_core_web_sm) is a small English For example, [`en_core_web_sm`](/models/en#en_core_web_sm) is a small English
model trained on written web text (blogs, news, comments), that includes pipeline trained on written web text (blogs, news, comments), that includes
vocabulary, vectors, syntax and entities. vocabulary, vectors, syntax and entities.
### Model versioning {#model-versioning} ### Package versioning {#model-versioning}
Additionally, the model versioning reflects both the compatibility with spaCy, Additionally, the pipeline package versioning reflects both the compatibility
as well as the major and minor model version. A model version `a.b.c` translates with spaCy, as well as the major and minor version. A package version `a.b.c`
to: translates to:
- `a`: **spaCy major version**. For example, `2` for spaCy v2.x. - `a`: **spaCy major version**. For example, `2` for spaCy v2.x.
- `b`: **Model major version**. Models with a different major version can't be - `b`: **Package major version**. Pipelines with a different major version can't
loaded by the same code. For example, changing the width of the model, adding be loaded by the same code. For example, changing the width of the model,
hidden layers or changing the activation changes the model major version. adding hidden layers or changing the activation changes the major version.
- `c`: **Model minor version**. Same model structure, but different parameter - `c`: **Package minor version**. Same pipeline structure, but different
values, e.g. from being trained on different data, for different numbers of parameter values, e.g. from being trained on different data, for different
iterations, etc. numbers of iterations, etc.
For a detailed compatibility overview, see the For a detailed compatibility overview, see the
[`compatibility.json`](https://github.com/explosion/spacy-models/tree/master/compatibility.json) [`compatibility.json`](https://github.com/explosion/spacy-models/tree/master/compatibility.json).
in the models repository. This is also the source of spaCy's internal This is also the source of spaCy's internal compatibility check, performed when
compatibility check, performed when you run the [`download`](/api/cli#download) you run the [`download`](/api/cli#download) command.
command.

View File

@ -1,9 +1,9 @@
When you call `nlp` on a text, spaCy first tokenizes the text to produce a `Doc` When you call `nlp` on a text, spaCy first tokenizes the text to produce a `Doc`
object. The `Doc` is then processed in several different steps this is also object. The `Doc` is then processed in several different steps this is also
referred to as the **processing pipeline**. The pipeline used by the referred to as the **processing pipeline**. The pipeline used by the
[default models](/models) typically include a tagger, a lemmatizer, a parser and [trained pipelines](/models) typically include a tagger, a lemmatizer, a parser
an entity recognizer. Each pipeline component returns the processed `Doc`, which and an entity recognizer. Each pipeline component returns the processed `Doc`,
is then passed on to the next component. which is then passed on to the next component.
![The processing pipeline](../../images/pipeline.svg) ![The processing pipeline](../../images/pipeline.svg)
@ -23,14 +23,15 @@ is then passed on to the next component.
| **textcat** | [`TextCategorizer`](/api/textcategorizer) | `Doc.cats` | Assign document labels. | | **textcat** | [`TextCategorizer`](/api/textcategorizer) | `Doc.cats` | Assign document labels. |
| **custom** | [custom components](/usage/processing-pipelines#custom-components) | `Doc._.xxx`, `Token._.xxx`, `Span._.xxx` | Assign custom attributes, methods or properties. | | **custom** | [custom components](/usage/processing-pipelines#custom-components) | `Doc._.xxx`, `Token._.xxx`, `Span._.xxx` | Assign custom attributes, methods or properties. |
The processing pipeline always **depends on the statistical model** and its The capabilities of a processing pipeline always depend on the components, their
capabilities. For example, a pipeline can only include an entity recognizer models and how they were trained. For example, a pipeline for named entity
component if the model includes data to make predictions of entity labels. This recognition needs to include a trained named entity recognizer component with a
is why each model will specify the pipeline to use in its meta data and statistical model and weights that enable it to **make predictions** of entity
[config](/usage/training#config), as a simple list containing the component labels. This is why each pipeline specifies its components and their settings in
names: the [config](/usage/training#config):
```ini ```ini
[nlp]
pipeline = ["tagger", "parser", "ner"] pipeline = ["tagger", "parser", "ner"]
``` ```

View File

@ -1,9 +1,9 @@
After tokenization, spaCy can **parse** and **tag** a given `Doc`. This is where After tokenization, spaCy can **parse** and **tag** a given `Doc`. This is where
the statistical model comes in, which enables spaCy to **make a prediction** of the trained pipeline and its statistical models come in, which enable spaCy to
which tag or label most likely applies in this context. A model consists of **make predictions** of which tag or label most likely applies in this context.
binary data and is produced by showing a system enough examples for it to make A trained component includes binary data that is produced by showing a system
predictions that generalize across the language for example, a word following enough examples for it to make predictions that generalize across the language
"the" in English is most likely a noun. for example, a word following "the" in English is most likely a noun.
Linguistic annotations are available as Linguistic annotations are available as
[`Token` attributes](/api/token#attributes). Like many NLP libraries, spaCy [`Token` attributes](/api/token#attributes). Like many NLP libraries, spaCy
@ -25,7 +25,8 @@ for token in doc:
> - **Text:** The original word text. > - **Text:** The original word text.
> - **Lemma:** The base form of the word. > - **Lemma:** The base form of the word.
> - **POS:** The simple [UPOS](https://universaldependencies.org/docs/u/pos/) part-of-speech tag. > - **POS:** The simple [UPOS](https://universaldependencies.org/docs/u/pos/)
> part-of-speech tag.
> - **Tag:** The detailed part-of-speech tag. > - **Tag:** The detailed part-of-speech tag.
> - **Dep:** Syntactic dependency, i.e. the relation between tokens. > - **Dep:** Syntactic dependency, i.e. the relation between tokens.
> - **Shape:** The word shape capitalization, punctuation, digits. > - **Shape:** The word shape capitalization, punctuation, digits.

View File

@ -1,9 +1,9 @@
If you've been modifying the pipeline, vocabulary, vectors and entities, or made If you've been modifying the pipeline, vocabulary, vectors and entities, or made
updates to the model, you'll eventually want to **save your progress** for updates to the component models, you'll eventually want to **save your
example, everything that's in your `nlp` object. This means you'll have to progress** for example, everything that's in your `nlp` object. This means
translate its contents and structure into a format that can be saved, like a you'll have to translate its contents and structure into a format that can be
file or a byte string. This process is called serialization. spaCy comes with saved, like a file or a byte string. This process is called serialization. spaCy
**built-in serialization methods** and supports the comes with **built-in serialization methods** and supports the
[Pickle protocol](https://www.diveinto.org/python3/serializing.html#dump). [Pickle protocol](https://www.diveinto.org/python3/serializing.html#dump).
> #### What's pickle? > #### What's pickle?

View File

@ -1,25 +1,25 @@
spaCy's tagger, parser, text categorizer and many other components are powered spaCy's tagger, parser, text categorizer and many other components are powered
by **statistical models**. Every "decision" these components make for example, by **statistical models**. Every "decision" these components make for example,
which part-of-speech tag to assign, or whether a word is a named entity is a which part-of-speech tag to assign, or whether a word is a named entity is a
**prediction** based on the model's current **weight values**. The weight **prediction** based on the model's current **weight values**. The weight values
values are estimated based on examples the model has seen are estimated based on examples the model has seen during **training**. To train
during **training**. To train a model, you first need training data examples a model, you first need training data examples of text, and the labels you
of text, and the labels you want the model to predict. This could be a want the model to predict. This could be a part-of-speech tag, a named entity or
part-of-speech tag, a named entity or any other information. any other information.
Training is an iterative process in which the model's predictions are compared Training is an iterative process in which the model's predictions are compared
against the reference annotations in order to estimate the **gradient of the against the reference annotations in order to estimate the **gradient of the
loss**. The gradient of the loss is then used to calculate the gradient of the loss**. The gradient of the loss is then used to calculate the gradient of the
weights through [backpropagation](https://thinc.ai/backprop101). The gradients weights through [backpropagation](https://thinc.ai/backprop101). The gradients
indicate how the weight values should be changed so that the model's indicate how the weight values should be changed so that the model's predictions
predictions become more similar to the reference labels over time. become more similar to the reference labels over time.
> - **Training data:** Examples and their annotations. > - **Training data:** Examples and their annotations.
> - **Text:** The input text the model should predict a label for. > - **Text:** The input text the model should predict a label for.
> - **Label:** The label the model should predict. > - **Label:** The label the model should predict.
> - **Gradient:** The direction and rate of change for a numeric value. > - **Gradient:** The direction and rate of change for a numeric value.
> Minimising the gradient of the weights should result in predictions that > Minimising the gradient of the weights should result in predictions that are
> are closer to the reference labels on the training data. > closer to the reference labels on the training data.
![The training process](../../images/training.svg) ![The training process](../../images/training.svg)

View File

@ -24,12 +24,12 @@ array([2.02280000e-01, -7.66180009e-02, 3.70319992e-01,
<Infobox title="Important note" variant="warning"> <Infobox title="Important note" variant="warning">
To make them compact and fast, spaCy's small [models](/models) (all packages To make them compact and fast, spaCy's small [pipeline packages](/models) (all
that end in `sm`) **don't ship with word vectors**, and only include packages that end in `sm`) **don't ship with word vectors**, and only include
context-sensitive **tensors**. This means you can still use the `similarity()` context-sensitive **tensors**. This means you can still use the `similarity()`
methods to compare documents, spans and tokens but the result won't be as methods to compare documents, spans and tokens but the result won't be as
good, and individual tokens won't have any vectors assigned. So in order to use good, and individual tokens won't have any vectors assigned. So in order to use
_real_ word vectors, you need to download a larger model: _real_ word vectors, you need to download a larger pipeline package:
```diff ```diff
- python -m spacy download en_core_web_sm - python -m spacy download en_core_web_sm
@ -38,11 +38,11 @@ _real_ word vectors, you need to download a larger model:
</Infobox> </Infobox>
Models that come with built-in word vectors make them available as the Pipeline packages that come with built-in word vectors make them available as
[`Token.vector`](/api/token#vector) attribute. [`Doc.vector`](/api/doc#vector) the [`Token.vector`](/api/token#vector) attribute.
and [`Span.vector`](/api/span#vector) will default to an average of their token [`Doc.vector`](/api/doc#vector) and [`Span.vector`](/api/span#vector) will
vectors. You can also check if a token has a vector assigned, and get the L2 default to an average of their token vectors. You can also check if a token has
norm, which can be used to normalize vectors. a vector assigned, and get the L2 norm, which can be used to normalize vectors.
```python ```python
### {executable="true"} ### {executable="true"}
@ -62,12 +62,12 @@ for token in tokens:
> - **OOV**: Out-of-vocabulary > - **OOV**: Out-of-vocabulary
The words "dog", "cat" and "banana" are all pretty common in English, so they're The words "dog", "cat" and "banana" are all pretty common in English, so they're
part of the model's vocabulary, and come with a vector. The word "afskfsd" on part of the pipeline's vocabulary, and come with a vector. The word "afskfsd" on
the other hand is a lot less common and out-of-vocabulary so its vector the other hand is a lot less common and out-of-vocabulary so its vector
representation consists of 300 dimensions of `0`, which means it's practically representation consists of 300 dimensions of `0`, which means it's practically
nonexistent. If your application will benefit from a **large vocabulary** with nonexistent. If your application will benefit from a **large vocabulary** with
more vectors, you should consider using one of the larger models or loading in a more vectors, you should consider using one of the larger pipeline packages or
full vector package, for example, loading in a full vector package, for example,
[`en_vectors_web_lg`](/models/en-starters#en_vectors_web_lg), which includes [`en_vectors_web_lg`](/models/en-starters#en_vectors_web_lg), which includes
over **1 million unique vectors**. over **1 million unique vectors**.
@ -82,7 +82,7 @@ Each [`Doc`](/api/doc), [`Span`](/api/span), [`Token`](/api/token) and
method that lets you compare it with another object, and determine the method that lets you compare it with another object, and determine the
similarity. Of course similarity is always subjective whether two words, spans similarity. Of course similarity is always subjective whether two words, spans
or documents are similar really depends on how you're looking at it. spaCy's or documents are similar really depends on how you're looking at it. spaCy's
similarity model usually assumes a pretty general-purpose definition of similarity implementation usually assumes a pretty general-purpose definition of
similarity. similarity.
> #### 📝 Things to try > #### 📝 Things to try
@ -99,7 +99,7 @@ similarity.
### {executable="true"} ### {executable="true"}
import spacy import spacy
nlp = spacy.load("en_core_web_md") # make sure to use larger model! nlp = spacy.load("en_core_web_md") # make sure to use larger package!
doc1 = nlp("I like salty fries and hamburgers.") doc1 = nlp("I like salty fries and hamburgers.")
doc2 = nlp("Fast food tastes very good.") doc2 = nlp("Fast food tastes very good.")
@ -143,10 +143,9 @@ us that builds on top of spaCy and lets you train and query more interesting and
detailed word vectors. It combines noun phrases like "fast food" or "fair game" detailed word vectors. It combines noun phrases like "fast food" or "fair game"
and includes the part-of-speech tags and entity labels. The library also and includes the part-of-speech tags and entity labels. The library also
includes annotation recipes for our annotation tool [Prodigy](https://prodi.gy) includes annotation recipes for our annotation tool [Prodigy](https://prodi.gy)
that let you evaluate vector models and create terminology lists. For more that let you evaluate vectors and create terminology lists. For more details,
details, check out check out [our blog post](https://explosion.ai/blog/sense2vec-reloaded). To
[our blog post](https://explosion.ai/blog/sense2vec-reloaded). To explore the explore the semantic similarities across all Reddit comments of 2015 and 2019,
semantic similarities across all Reddit comments of 2015 and 2019, see the see the [interactive demo](https://explosion.ai/demos/sense2vec).
[interactive demo](https://explosion.ai/demos/sense2vec).
</Infobox> </Infobox>

View File

@ -331,7 +331,7 @@ name = "bert-base-cased"
tokenizer_config = {"use_fast": true} tokenizer_config = {"use_fast": true}
[components.transformer.model.get_spans] [components.transformer.model.get_spans]
@span_getters = "doc_spans.v1" @span_getters = "spacy-transformers.doc_spans.v1"
[components.transformer.annotation_setter] [components.transformer.annotation_setter]
@annotation_setters = "spacy-transformers.null_annotation_setter.v1" @annotation_setters = "spacy-transformers.null_annotation_setter.v1"
@ -369,8 +369,9 @@ all defaults.
To change any of the settings, you can edit the `config.cfg` and re-run the To change any of the settings, you can edit the `config.cfg` and re-run the
training. To change any of the functions, like the span getter, you can replace training. To change any of the functions, like the span getter, you can replace
the name of the referenced function e.g. `@span_getters = "sent_spans.v1"` to the name of the referenced function e.g.
process sentences. You can also register your own functions using the `@span_getters = "spacy-transformers.sent_spans.v1"` to process sentences. You
can also register your own functions using the
[`span_getters` registry](/api/top-level#registry). For instance, the following [`span_getters` registry](/api/top-level#registry). For instance, the following
custom function returns [`Span`](/api/span) objects following sentence custom function returns [`Span`](/api/span) objects following sentence
boundaries, unless a sentence succeeds a certain amount of tokens, in which case boundaries, unless a sentence succeeds a certain amount of tokens, in which case

View File

@ -35,10 +35,10 @@ Using pip, spaCy releases are available as source packages and binary wheels.
$ pip install -U spacy $ pip install -U spacy
``` ```
> #### Download models > #### Download pipelines
> >
> After installation you need to download a language model. For more info and > After installation you typically want to download a trained pipeline. For more
> available models, see the [docs on models](/models). > info and available packages, see the [models directory](/models).
> >
> ```cli > ```cli
> $ python -m spacy download en_core_web_sm > $ python -m spacy download en_core_web_sm
@ -54,7 +54,7 @@ To install additional data tables for lemmatization you can run
[`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data) [`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data)
separately. The lookups package is needed to provide normalization and separately. The lookups package is needed to provide normalization and
lemmatization data for new models and to lemmatize in languages that don't yet lemmatization data for new models and to lemmatize in languages that don't yet
come with pretrained models and aren't powered by third-party libraries. come with trained pipelines and aren't powered by third-party libraries.
</Infobox> </Infobox>
@ -88,23 +88,21 @@ and pull requests to the recipe and setup are always appreciated.
> spaCy v2.x to v3.x may still require some changes to your code base. For > spaCy v2.x to v3.x may still require some changes to your code base. For
> details see the sections on [backwards incompatibilities](/usage/v3#incompat) > details see the sections on [backwards incompatibilities](/usage/v3#incompat)
> and [migrating](/usage/v3#migrating). Also remember to download the new > and [migrating](/usage/v3#migrating). Also remember to download the new
> models, and retrain your own models. > trained pipelines, and retrain your own pipelines.
When updating to a newer version of spaCy, it's generally recommended to start When updating to a newer version of spaCy, it's generally recommended to start
with a clean virtual environment. If you're upgrading to a new major version, with a clean virtual environment. If you're upgrading to a new major version,
make sure you have the latest **compatible models** installed, and that there make sure you have the latest **compatible trained pipelines** installed, and
are no old and incompatible model packages left over in your environment, as that there are no old and incompatible packages left over in your environment,
this can often lead to unexpected results and errors. If you've trained your own as this can often lead to unexpected results and errors. If you've trained your
models, keep in mind that your train and runtime inputs must match. This means own models, keep in mind that your train and runtime inputs must match. This
you'll have to **retrain your models** with the new version. means you'll have to **retrain your pipelines** with the new version.
spaCy also provides a [`validate`](/api/cli#validate) command, which lets you spaCy also provides a [`validate`](/api/cli#validate) command, which lets you
verify that all installed models are compatible with your spaCy version. If verify that all installed pipeline packages are compatible with your spaCy
incompatible models are found, tips and installation instructions are printed. version. If incompatible packages are found, tips and installation instructions
The command is also useful to detect out-of-sync model links resulting from are printed. It's recommended to run the command with `python -m` to make sure
links created in different virtual environments. It's recommended to run the you're executing the correct version of spaCy.
command with `python -m` to make sure you're executing the correct version of
spaCy.
```cli ```cli
$ pip install -U spacy $ pip install -U spacy
@ -132,8 +130,8 @@ $ pip install -U spacy[cuda92]
Once you have a GPU-enabled installation, the best way to activate it is to call Once you have a GPU-enabled installation, the best way to activate it is to call
[`spacy.prefer_gpu`](/api/top-level#spacy.prefer_gpu) or [`spacy.prefer_gpu`](/api/top-level#spacy.prefer_gpu) or
[`spacy.require_gpu()`](/api/top-level#spacy.require_gpu) somewhere in your [`spacy.require_gpu()`](/api/top-level#spacy.require_gpu) somewhere in your
script before any models have been loaded. `require_gpu` will raise an error if script before any pipelines have been loaded. `require_gpu` will raise an error
no GPU is available. if no GPU is available.
```python ```python
import spacy import spacy
@ -238,16 +236,16 @@ installing, loading and using spaCy, as well as their solutions.
<Accordion title="No compatible model found" id="compatible-model"> <Accordion title="No compatible model found" id="compatible-model">
``` ```
No compatible model found for [lang] (spaCy vX.X.X). No compatible package found for [lang] (spaCy vX.X.X).
``` ```
This usually means that the model you're trying to download does not exist, or This usually means that the trained pipeline you're trying to download does not
isn't available for your version of spaCy. Check the exist, or isn't available for your version of spaCy. Check the
[compatibility table](https://github.com/explosion/spacy-models/tree/master/compatibility.json) [compatibility table](https://github.com/explosion/spacy-models/tree/master/compatibility.json)
to see which models are available for your spaCy version. If you're using an old to see which packages are available for your spaCy version. If you're using an
version, consider upgrading to the latest release. Note that while spaCy old version, consider upgrading to the latest release. Note that while spaCy
supports tokenization for [a variety of languages](/usage/models#languages), not supports tokenization for [a variety of languages](/usage/models#languages), not
all of them come with statistical models. To only use the tokenizer, import the all of them come with trained pipelines. To only use the tokenizer, import the
language's `Language` class instead, for example language's `Language` class instead, for example
`from spacy.lang.fr import French`. `from spacy.lang.fr import French`.
@ -259,7 +257,7 @@ language's `Language` class instead, for example
no such option: --no-cache-dir no such option: --no-cache-dir
``` ```
The `download` command uses pip to install the models and sets the The `download` command uses pip to install the pipeline packages and sets the
`--no-cache-dir` flag to prevent it from requiring too much memory. `--no-cache-dir` flag to prevent it from requiring too much memory.
[This setting](https://pip.pypa.io/en/stable/reference/pip_install/#caching) [This setting](https://pip.pypa.io/en/stable/reference/pip_install/#caching)
requires pip v6.0 or newer. Run `pip install -U pip` to upgrade to the latest requires pip v6.0 or newer. Run `pip install -U pip` to upgrade to the latest
@ -323,19 +321,19 @@ also run `which python` to find out where your Python executable is located.
</Accordion> </Accordion>
<Accordion title="Import error: No module named [model]" id="import-error-models"> <Accordion title="Import error: No module named [name]" id="import-error-models">
``` ```
ImportError: No module named 'en_core_web_sm' ImportError: No module named 'en_core_web_sm'
``` ```
As of spaCy v1.7, all models can be installed as Python packages. This means As of spaCy v1.7, all trained pipelines can be installed as Python packages.
that they'll become importable modules of your application. If this fails, it's This means that they'll become importable modules of your application. If this
usually a sign that the package is not installed in the current environment. Run fails, it's usually a sign that the package is not installed in the current
`pip list` or `pip freeze` to check which model packages you have installed, and environment. Run `pip list` or `pip freeze` to check which pipeline packages you
install the [correct models](/models) if necessary. If you're importing a model have installed, and install the [correct package](/models) if necessary. If
manually at the top of a file, make sure to use the name of the package, not the you're importing a package manually at the top of a file, make sure to use the
shortcut link you've created. full name of the package.
</Accordion> </Accordion>

View File

@ -3,57 +3,79 @@ title: Layers and Model Architectures
teaser: Power spaCy components with custom neural networks teaser: Power spaCy components with custom neural networks
menu: menu:
- ['Type Signatures', 'type-sigs'] - ['Type Signatures', 'type-sigs']
- ['Defining Sublayers', 'sublayers'] - ['Swapping Architectures', 'swap-architectures']
- ['PyTorch & TensorFlow', 'frameworks'] - ['PyTorch & TensorFlow', 'frameworks']
- ['Thinc Models', 'thinc']
- ['Trainable Components', 'components'] - ['Trainable Components', 'components']
next: /usage/projects next: /usage/projects
--- ---
A **model architecture** is a function that wires up a > #### Example
[Thinc `Model`](https://thinc.ai/docs/api-model) instance, which you can then >
use in a component or as a layer of a larger network. You can use Thinc as a > ```python
thin wrapper around frameworks such as PyTorch, TensorFlow or MXNet, or you can > from thinc.api import Model, chain
implement your logic in Thinc directly. spaCy's built-in components will never >
construct their `Model` instances themselves, so you won't have to subclass the > @spacy.registry.architectures.register("model.v1")
component to change its model architecture. You can just **update the config** > def build_model(width: int, classes: int) -> Model:
so that it refers to a different registered function. Once the component has > tok2vec = build_tok2vec(width)
been created, its model instance has already been assigned, so you cannot change > output_layer = build_output_layer(width, classes)
its model architecture. The architecture is like a recipe for the network, and > model = chain(tok2vec, output_layer)
you can't change the recipe once the dish has already been prepared. You have to > return model
make a new one. > ```
![Diagram of a pipeline component with its model](../images/layers-architectures.svg) A **model architecture** is a function that wires up a
[Thinc `Model`](https://thinc.ai/docs/api-model) instance. It describes the
neural network that is run internally as part of a component in a spaCy
pipeline. To define the actual architecture, you can implement your logic in
Thinc directly, or you can use Thinc as a thin wrapper around frameworks such as
PyTorch, TensorFlow and MXNet. Each Model can also be used as a sublayer of a
larger network, allowing you to freely combine implementations from different
frameworks into one `Thinc` Model.
spaCy's built-in components require a `Model` instance to be passed to them via
the config system. To change the model architecture of an existing component,
you just need to [**update the config**](#swap-architectures) so that it refers
to a different registered function. Once the component has been created from
this config, you won't be able to change it anymore. The architecture is like a
recipe for the network, and you can't change the recipe once the dish has
already been prepared. You have to make a new one.
```ini
### config.cfg (excerpt)
[components.tagger]
factory = "tagger"
[components.tagger.model]
@architectures = "model.v1"
width = 512
classes = 16
```
## Type signatures {#type-sigs} ## Type signatures {#type-sigs}
<!-- TODO: update example, maybe simplify definition? -->
> #### Example > #### Example
> >
> ```python > ```python
> @spacy.registry.architectures.register("spacy.Tagger.v1") > from typing import List
> def build_tagger_model( > from thinc.api import Model, chain
> tok2vec: Model[List[Doc], List[Floats2d]], nO: Optional[int] = None > from thinc.types import Floats2d
> ) -> Model[List[Doc], List[Floats2d]]: > def chain_model(
> t2v_width = tok2vec.get_dim("nO") if tok2vec.has_dim("nO") else None > tok2vec: Model[List[Doc], List[Floats2d]],
> output_layer = Softmax(nO, t2v_width, init_W=zero_init) > layer1: Model[List[Floats2d], Floats2d],
> softmax = with_array(output_layer) > layer2: Model[Floats2d, Floats2d]
> model = chain(tok2vec, softmax) > ) -> Model[List[Doc], Floats2d]:
> model.set_ref("tok2vec", tok2vec) > model = chain(tok2vec, layer1, layer2)
> model.set_ref("softmax", output_layer)
> model.set_ref("output_layer", output_layer)
> return model > return model
> ``` > ```
The Thinc `Model` class is a **generic type** that can specify its input and The Thinc `Model` class is a **generic type** that can specify its input and
output types. Python uses a square-bracket notation for this, so the type output types. Python uses a square-bracket notation for this, so the type
~~Model[List, Dict]~~ says that each batch of inputs to the model will be a ~~Model[List, Dict]~~ says that each batch of inputs to the model will be a
list, and the outputs will be a dictionary. Both `typing.List` and `typing.Dict` list, and the outputs will be a dictionary. You can be even more specific and
are also generics, allowing you to be more specific about the data. For write for instance~~Model[List[Doc], Dict[str, float]]~~ to specify that the
instance, you can write ~~Model[List[Doc], Dict[str, float]]~~ to specify that model expects a list of [`Doc`](/api/doc) objects as input, and returns a
the model expects a list of [`Doc`](/api/doc) objects as input, and returns a dictionary mapping of strings to floats. Some of the most common types you'll
dictionary mapping strings to floats. Some of the most common types you'll see see are:
are:
| Type | Description | | Type | Description |
| ------------------ | ---------------------------------------------------------------------------------------------------- | | ------------------ | ---------------------------------------------------------------------------------------------------- |
@ -62,7 +84,7 @@ are:
| ~~Ints2d~~ | A two-dimensional `numpy` or `cupy` array of integers. Common dtypes include uint64, int32 and int8. | | ~~Ints2d~~ | A two-dimensional `numpy` or `cupy` array of integers. Common dtypes include uint64, int32 and int8. |
| ~~List[Floats2d]~~ | A list of two-dimensional arrays, generally with one array per `Doc` and one row per token. | | ~~List[Floats2d]~~ | A list of two-dimensional arrays, generally with one array per `Doc` and one row per token. |
| ~~Ragged~~ | A container to handle variable-length sequence data in an unpadded contiguous array. | | ~~Ragged~~ | A container to handle variable-length sequence data in an unpadded contiguous array. |
| ~~Padded~~ | A container to handle variable-length sequence data in a passed contiguous array. | | ~~Padded~~ | A container to handle variable-length sequence data in a padded contiguous array. |
The model type signatures help you figure out which model architectures and The model type signatures help you figure out which model architectures and
components can **fit together**. For instance, the components can **fit together**. For instance, the
@ -78,10 +100,10 @@ interchangeably. There are many other ways they could be incompatible. However,
if the types don't match, they almost surely _won't_ be compatible. This little if the types don't match, they almost surely _won't_ be compatible. This little
bit of validation goes a long way, especially if you bit of validation goes a long way, especially if you
[configure your editor](https://thinc.ai/docs/usage-type-checking) or other [configure your editor](https://thinc.ai/docs/usage-type-checking) or other
tools to highlight these errors early. Thinc will also verify that your types tools to highlight these errors early. The config file is also validated at the
match correctly when your config file is processed at the beginning of training. beginning of training, to verify that all the types match correctly.
<Infobox title="Tip: Static type checking in your editor" emoji="💡"> <Accordion title="Tip: Static type checking in your editor">
If you're using a modern editor like Visual Studio Code, you can If you're using a modern editor like Visual Studio Code, you can
[set up `mypy`](https://thinc.ai/docs/usage-type-checking#install) with the [set up `mypy`](https://thinc.ai/docs/usage-type-checking#install) with the
@ -90,86 +112,144 @@ code.
[![](../images/thinc_mypy.jpg)](https://thinc.ai/docs/usage-type-checking#linting) [![](../images/thinc_mypy.jpg)](https://thinc.ai/docs/usage-type-checking#linting)
</Infobox> </Accordion>
## Defining sublayers {#sublayers} ## Swapping model architectures {#swap-architectures}
Model architecture functions often accept **sublayers as arguments**, so that If no model is specified for the [`TextCategorizer`](/api/textcategorizer), the
[TextCatEnsemble](/api/architectures#TextCatEnsemble) architecture is used by
default. This architecture combines a simpel bag-of-words model with a neural
network, usually resulting in the most accurate results, but at the cost of
speed. The config file for this model would look something like this:
```ini
### config.cfg (excerpt)
[components.textcat]
factory = "textcat"
labels = []
[components.textcat.model]
@architectures = "spacy.TextCatEnsemble.v1"
exclusive_classes = false
pretrained_vectors = null
width = 64
conv_depth = 2
embed_size = 2000
window_size = 1
ngram_size = 1
dropout = 0
nO = null
```
spaCy has two additional built-in `textcat` architectures, and you can easily
use those by swapping out the definition of the textcat's model. For instance,
to use the simple and fast bag-of-words model
[TextCatBOW](/api/architectures#TextCatBOW), you can change the config to:
```ini
### config.cfg (excerpt) {highlight="6-10"}
[components.textcat]
factory = "textcat"
labels = []
[components.textcat.model]
@architectures = "spacy.TextCatBOW.v1"
exclusive_classes = false
ngram_size = 1
no_output_layer = false
nO = null
```
For details on all pre-defined architectures shipped with spaCy and how to
configure them, check out the [model architectures](/api/architectures)
documentation.
### Defining sublayers {#sublayers}
Model architecture functions often accept **sublayers as arguments**, so that
you can try **substituting a different layer** into the network. Depending on you can try **substituting a different layer** into the network. Depending on
how the architecture function is structured, you might be able to define your how the architecture function is structured, you might be able to define your
network structure entirely through the [config system](/usage/training#config), network structure entirely through the [config system](/usage/training#config),
using layers that have already been defined. The using layers that have already been defined.
[transformers documentation](/usage/embeddings-transformers#transformers)
section shows a common example of swapping in a different sublayer.
In most neural network models for NLP, the most important parts of the network In most neural network models for NLP, the most important parts of the network
are what we refer to as the are what we refer to as the
[embed and encode](https://explosion.ai/blog/embed-encode-attend-predict) steps. [embed and encode](https://explosion.ai/blog/deep-learning-formula-nlp) steps.
These steps together compute dense, context-sensitive representations of the These steps together compute dense, context-sensitive representations of the
tokens. Most of spaCy's default architectures accept a tokens, and their combination forms a typical
[`tok2vec` embedding layer](/api/architectures#tok2vec-arch) as an argument, so [`Tok2Vec`](/api/architectures#Tok2Vec) layer:
you can control this important part of the network separately. This makes it
easy to **switch between** transformer, CNN, BiLSTM or other feature extraction
approaches. And if you want to define your own solution, all you need to do is
register a ~~Model[List[Doc], List[Floats2d]]~~ architecture function, and
you'll be able to try it out in any of spaCy components.
<!-- TODO: example of switching sublayers --> ```ini
### config.cfg (excerpt)
[components.tok2vec]
factory = "tok2vec"
### Registering new architectures [components.tok2vec.model]
@architectures = "spacy.Tok2Vec.v1"
- Recap concept, link to config docs. [components.tok2vec.model.embed]
@architectures = "spacy.MultiHashEmbed.v1"
# ...
[components.tok2vec.model.encode]
@architectures = "spacy.MaxoutWindowEncoder.v1"
# ...
```
By defining these sublayers specifically, it becomes straightforward to swap out
a sublayer for another one, for instance changing the first sublayer to a
character embedding with the [CharacterEmbed](/api/architectures#CharacterEmbed)
architecture:
```ini
### config.cfg (excerpt)
[components.tok2vec.model.embed]
@architectures = "spacy.CharacterEmbed.v1"
# ...
[components.tok2vec.model.encode]
@architectures = "spacy.MaxoutWindowEncoder.v1"
# ...
```
Most of spaCy's default architectures accept a `tok2vec` layer as a sublayer
within the larger task-specific neural network. This makes it easy to **switch
between** transformer, CNN, BiLSTM or other feature extraction approaches. The
[transformers documentation](/usage/embeddings-transformers#training-custom-model)
section shows an example of swapping out a model's standard `tok2vec` layer with
a transformer. And if you want to define your own solution, all you need to do
is register a ~~Model[List[Doc], List[Floats2d]]~~ architecture function, and
you'll be able to try it out in any of the spaCy components.
## Wrapping PyTorch, TensorFlow and other frameworks {#frameworks} ## Wrapping PyTorch, TensorFlow and other frameworks {#frameworks}
<!-- TODO: this is copied over from the Thinc docs and we probably want to shorten it and make it more spaCy-specific --> Thinc allows you to [wrap models](https://thinc.ai/docs/usage-frameworks)
written in other machine learning frameworks like PyTorch, TensorFlow and MXNet
using a unified [`Model`](https://thinc.ai/docs/api-model) API. As well as
**wrapping whole models**, Thinc lets you call into an external framework for
just **part of your model**: you can have a model where you use PyTorch just for
the transformer layers, using "native" Thinc layers to do fiddly input and
output transformations and add on task-specific "heads", as efficiency is less
of a consideration for those parts of the network.
Thinc allows you to wrap models written in other machine learning frameworks <!-- TODO: custom tagger implemented in PyTorch, wrapped as Thinc model, link off to project (with notebook?) -->
like PyTorch, TensorFlow and MXNet using a unified
[`Model`](https://thinc.ai/docs/api-model) API. As well as **wrapping whole
models**, Thinc lets you call into an external framework for just **part of your
model**: you can have a model where you use PyTorch just for the transformer
layers, using "native" Thinc layers to do fiddly input and output
transformations and add on task-specific "heads", as efficiency is less of a
consideration for those parts of the network.
Thinc uses a special class, [`Shim`](https://thinc.ai/docs/api-model#shim), to ## Implementing models in Thinc {#thinc}
hold references to external objects. This allows each wrapper space to define a
custom type, with whatever attributes and methods are helpful, to assist in
managing the communication between Thinc and the external library. The
[`Model`](https://thinc.ai/docs/api-model#model) class holds `shim` instances in
a separate list, and communicates with the shims about updates, serialization,
changes of device, etc.
The wrapper will receive each batch of inputs, convert them into a suitable form <!-- TODO: use same example as above, custom tagger, but implemented in Thinc, link off to Thinc docs where appropriate -->
for the underlying model instance, and pass them over to the shim, which will
**manage the actual communication** with the model. The output is then passed
back into the wrapper, and converted for use in the rest of the network. The
equivalent procedure happens during backpropagation. Array conversion is handled
via the [DLPack](https://github.com/dmlc/dlpack) standard wherever possible, so
that data can be passed between the frameworks **without copying the data back**
to the host device unnecessarily.
| Framework | Wrapper layer | Shim | DLPack |
| -------------- | ------------------------------------------------------------------------- | --------------------------------------------------------- | --------------- |
| **PyTorch** | [`PyTorchWrapper`](https://thinc.ai/docs/api-layers#pytorchwrapper) | [`PyTorchShim`](https://thinc.ai/docs/api-model#shims) | ✅ |
| **TensorFlow** | [`TensorFlowWrapper`](https://thinc.ai/docs/api-layers#tensorflowwrapper) | [`TensorFlowShim`](https://thinc.ai/docs/api-model#shims) | ❌ <sup>1</sup> |
| **MXNet** | [`MXNetWrapper`](https://thinc.ai/docs/api-layers#mxnetwrapper) | [`MXNetShim`](https://thinc.ai/docs/api-model#shims) | ✅ |
1. DLPack support in TensorFlow is now
[available](<(https://github.com/tensorflow/tensorflow/issues/24453)>) but
still experimental.
<!-- TODO:
- Explain concept
- Link off to notebook
-->
## Models for trainable components {#components} ## Models for trainable components {#components}
<!-- TODO:
- Interaction with `predict`, `get_loss` and `set_annotations` - Interaction with `predict`, `get_loss` and `set_annotations`
- Initialization life-cycle with `begin_training`. - Initialization life-cycle with `begin_training`.
- Link to relation extraction notebook.
Example: relation extraction component (implemented as project template)
-->
![Diagram of a pipeline component with its model](../images/layers-architectures.svg)
```python ```python
def update(self, examples): def update(self, examples):

View File

@ -132,7 +132,7 @@ language can extend the `Lemmatizer` as part of its
### {executable="true"} ### {executable="true"}
import spacy import spacy
# English models include a rule-based lemmatizer # English pipelines include a rule-based lemmatizer
nlp = spacy.load("en_core_web_sm") nlp = spacy.load("en_core_web_sm")
lemmatizer = nlp.get_pipe("lemmatizer") lemmatizer = nlp.get_pipe("lemmatizer")
print(lemmatizer.mode) # 'rule' print(lemmatizer.mode) # 'rule'
@ -156,14 +156,14 @@ component.
The data for spaCy's lemmatizers is distributed in the package The data for spaCy's lemmatizers is distributed in the package
[`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data). The [`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data). The
provided models already include all the required tables, but if you are creating provided trained pipelines already include all the required tables, but if you
new models, you'll probably want to install `spacy-lookups-data` to provide the are creating new pipelines, you'll probably want to install `spacy-lookups-data`
data when the lemmatizer is initialized. to provide the data when the lemmatizer is initialized.
### Lookup lemmatizer {#lemmatizer-lookup} ### Lookup lemmatizer {#lemmatizer-lookup}
For models without a tagger or morphologizer, a lookup lemmatizer can be added For pipelines without a tagger or morphologizer, a lookup lemmatizer can be
to the pipeline as long as a lookup table is provided, typically through added to the pipeline as long as a lookup table is provided, typically through
[`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data). The [`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data). The
lookup lemmatizer looks up the token surface form in the lookup table without lookup lemmatizer looks up the token surface form in the lookup table without
reference to the token's part-of-speech or context. reference to the token's part-of-speech or context.
@ -178,9 +178,9 @@ nlp.add_pipe("lemmatizer", config={"mode": "lookup"})
### Rule-based lemmatizer {#lemmatizer-rule} ### Rule-based lemmatizer {#lemmatizer-rule}
When training models that include a component that assigns POS (a morphologizer When training pipelines that include a component that assigns part-of-speech
or a tagger with a [POS mapping](#mappings-exceptions)), a rule-based lemmatizer tags (a morphologizer or a tagger with a [POS mapping](#mappings-exceptions)), a
can be added using rule tables from rule-based lemmatizer can be added using rule tables from
[`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data): [`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data):
```python ```python
@ -366,10 +366,10 @@ sequence of tokens. You can walk up the tree with the
> #### Projective vs. non-projective > #### Projective vs. non-projective
> >
> For the [default English model](/models/en), the parse tree is **projective**, > For the [default English pipelines](/models/en), the parse tree is
> which means that there are no crossing brackets. The tokens returned by > **projective**, which means that there are no crossing brackets. The tokens
> `.subtree` are therefore guaranteed to be contiguous. This is not true for the > returned by `.subtree` are therefore guaranteed to be contiguous. This is not
> German model, which has many > true for the German pipelines, which have many
> [non-projective dependencies](https://explosion.ai/blog/german-model#word-order). > [non-projective dependencies](https://explosion.ai/blog/german-model#word-order).
```python ```python
@ -497,26 +497,27 @@ displaCy in our [online demo](https://explosion.ai/demos/displacy)..
### Disabling the parser {#disabling} ### Disabling the parser {#disabling}
In the [default models](/models), the parser is loaded and enabled as part of In the [trained pipelines](/models) provided by spaCy, the parser is loaded and
the [standard processing pipeline](/usage/processing-pipelines). If you don't enabled by default as part of the
need any of the syntactic information, you should disable the parser. Disabling [standard processing pipeline](/usage/processing-pipelines). If you don't need
the parser will make spaCy load and run much faster. If you want to load the any of the syntactic information, you should disable the parser. Disabling the
parser, but need to disable it for specific documents, you can also control its parser will make spaCy load and run much faster. If you want to load the parser,
use on the `nlp` object. but need to disable it for specific documents, you can also control its use on
the `nlp` object. For more details, see the usage guide on
[disabling pipeline components](/usage/processing-pipelines/#disabling).
```python ```python
nlp = spacy.load("en_core_web_sm", disable=["parser"]) nlp = spacy.load("en_core_web_sm", disable=["parser"])
nlp = English().from_disk("/model", disable=["parser"])
doc = nlp("I don't want parsed", disable=["parser"])
``` ```
## Named Entity Recognition {#named-entities} ## Named Entity Recognition {#named-entities}
spaCy features an extremely fast statistical entity recognition system, that spaCy features an extremely fast statistical entity recognition system, that
assigns labels to contiguous spans of tokens. The default model identifies a assigns labels to contiguous spans of tokens. The default
variety of named and numeric entities, including companies, locations, [trained pipelines](/models) can indentify a variety of named and numeric
organizations and products. You can add arbitrary classes to the entity entities, including companies, locations, organizations and products. You can
recognition system, and update the model with new examples. add arbitrary classes to the entity recognition system, and update the model
with new examples.
### Named Entity Recognition 101 {#named-entities-101} ### Named Entity Recognition 101 {#named-entities-101}
@ -669,7 +670,7 @@ responsibility for ensuring that the data is left in a consistent state.
<Infobox title="Annotation scheme"> <Infobox title="Annotation scheme">
For details on the entity types available in spaCy's pretrained models, see the For details on the entity types available in spaCy's trained pipelines, see the
"label scheme" sections of the individual models in the "label scheme" sections of the individual models in the
[models directory](/models). [models directory](/models).
@ -710,9 +711,8 @@ import DisplacyEntHtml from 'images/displacy-ent2.html'
To ground the named entities into the "real world", spaCy provides functionality To ground the named entities into the "real world", spaCy provides functionality
to perform entity linking, which resolves a textual entity to a unique to perform entity linking, which resolves a textual entity to a unique
identifier from a knowledge base (KB). You can create your own identifier from a knowledge base (KB). You can create your own
[`KnowledgeBase`](/api/kb) and [`KnowledgeBase`](/api/kb) and [train](/usage/training) a new
[train a new Entity Linking model](/usage/training#entity-linker) using that [`EntityLinker`](/api/entitylinker) using that custom knowledge base.
custom-made KB.
### Accessing entity identifiers {#entity-linking-accessing model="entity linking"} ### Accessing entity identifiers {#entity-linking-accessing model="entity linking"}
@ -724,7 +724,7 @@ object, or the `ent_kb_id` and `ent_kb_id_` attributes of a
```python ```python
import spacy import spacy
nlp = spacy.load("my_custom_el_model") nlp = spacy.load("my_custom_el_pipeline")
doc = nlp("Ada Lovelace was born in London") doc = nlp("Ada Lovelace was born in London")
# Document level # Document level
@ -1042,13 +1042,15 @@ function that behaves the same way.
<Infobox title="Important note" variant="warning"> <Infobox title="Important note" variant="warning">
If you're using a statistical model, writing to the If you've loaded a trained pipeline, writing to the
[`nlp.Defaults`](/api/language#defaults) or `English.Defaults` directly won't [`nlp.Defaults`](/api/language#defaults) or `English.Defaults` directly won't
work, since the regular expressions are read from the model and will be compiled work, since the regular expressions are read from the pipeline data and will be
when you load it. If you modify `nlp.Defaults`, you'll only see the effect if compiled when you load it. If you modify `nlp.Defaults`, you'll only see the
you call [`spacy.blank`](/api/top-level#spacy.blank). If you want to modify the effect if you call [`spacy.blank`](/api/top-level#spacy.blank). If you want to
tokenizer loaded from a statistical model, you should modify `nlp.tokenizer` modify the tokenizer loaded from a trained pipeline, you should modify
directly. `nlp.tokenizer` directly. If you're training your own pipeline, you can register
[callbacks](/usage/training/#custom-code-nlp-callbacks) to modify the `nlp`
object before training.
</Infobox> </Infobox>
@ -1218,11 +1220,11 @@ print(doc.text, [token.text for token in doc])
<Infobox title="Important note on tokenization and models" variant="warning"> <Infobox title="Important note on tokenization and models" variant="warning">
Keep in mind that your model's result may be less accurate if the tokenization Keep in mind that your models' results may be less accurate if the tokenization
during training differs from the tokenization at runtime. So if you modify a during training differs from the tokenization at runtime. So if you modify a
pretrained model's tokenization afterwards, it may produce very different trained pipeline's tokenization afterwards, it may produce very different
predictions. You should therefore train your model with the **same tokenizer** predictions. You should therefore train your pipeline with the **same
it will be using at runtime. See the docs on tokenizer** it will be using at runtime. See the docs on
[training with custom tokenization](#custom-tokenizer-training) for details. [training with custom tokenization](#custom-tokenizer-training) for details.
</Infobox> </Infobox>
@ -1231,7 +1233,7 @@ it will be using at runtime. See the docs on
spaCy's [training config](/usage/training#config) describe the settings, spaCy's [training config](/usage/training#config) describe the settings,
hyperparameters, pipeline and tokenizer used for constructing and training the hyperparameters, pipeline and tokenizer used for constructing and training the
model. The `[nlp.tokenizer]` block refers to a **registered function** that pipeline. The `[nlp.tokenizer]` block refers to a **registered function** that
takes the `nlp` object and returns a tokenizer. Here, we're registering a takes the `nlp` object and returns a tokenizer. Here, we're registering a
function called `whitespace_tokenizer` in the function called `whitespace_tokenizer` in the
[`@tokenizers` registry](/api/registry). To make sure spaCy knows how to [`@tokenizers` registry](/api/registry). To make sure spaCy knows how to
@ -1626,11 +1628,11 @@ spaCy provides four alternatives for sentence segmentation:
Unlike other libraries, spaCy uses the dependency parse to determine sentence Unlike other libraries, spaCy uses the dependency parse to determine sentence
boundaries. This is usually the most accurate approach, but it requires a boundaries. This is usually the most accurate approach, but it requires a
**statistical model** that provides accurate predictions. If your texts are **trained pipeline** that provides accurate predictions. If your texts are
closer to general-purpose news or web text, this should work well out-of-the-box closer to general-purpose news or web text, this should work well out-of-the-box
with spaCy's provided models. For social media or conversational text that with spaCy's provided trained pipelines. For social media or conversational text
doesn't follow the same rules, your application may benefit from a custom model that doesn't follow the same rules, your application may benefit from a custom
or rule-based component. trained or rule-based component.
```python ```python
### {executable="true"} ### {executable="true"}
@ -1652,8 +1654,8 @@ parses consistent with the sentence boundaries.
The [`SentenceRecognizer`](/api/sentencerecognizer) is a simple statistical The [`SentenceRecognizer`](/api/sentencerecognizer) is a simple statistical
component that only provides sentence boundaries. Along with being faster and component that only provides sentence boundaries. Along with being faster and
smaller than the parser, its primary advantage is that it's easier to train smaller than the parser, its primary advantage is that it's easier to train
custom models because it only requires annotated sentence boundaries rather than because it only requires annotated sentence boundaries rather than full
full dependency parses. dependency parses.
<!-- TODO: update/confirm usage once we have final models trained --> <!-- TODO: update/confirm usage once we have final models trained -->
@ -1685,7 +1687,7 @@ need sentence boundaries without dependency parses.
import spacy import spacy
from spacy.lang.en import English from spacy.lang.en import English
nlp = English() # just the language with no model nlp = English() # just the language with no pipeline
nlp.add_pipe("sentencizer") nlp.add_pipe("sentencizer")
doc = nlp("This is a sentence. This is another sentence.") doc = nlp("This is a sentence. This is another sentence.")
for sent in doc.sents: for sent in doc.sents:
@ -1827,11 +1829,11 @@ or Tomas Mikolov's original
[Word2vec implementation](https://code.google.com/archive/p/word2vec/). Most [Word2vec implementation](https://code.google.com/archive/p/word2vec/). Most
word vector libraries output an easy-to-read text-based format, where each line word vector libraries output an easy-to-read text-based format, where each line
consists of the word followed by its vector. For everyday use, we want to consists of the word followed by its vector. For everyday use, we want to
convert the vectors model into a binary format that loads faster and takes up convert the vectors into a binary format that loads faster and takes up less
less space on disk. The easiest way to do this is the space on disk. The easiest way to do this is the
[`init model`](/api/cli#init-model) command-line utility. This will output a [`init vocab`](/api/cli#init-vocab) command-line utility. This will output a
spaCy model in the directory `/tmp/la_vectors_wiki_lg`, giving you access to blank spaCy pipeline in the directory `/tmp/la_vectors_wiki_lg`, giving you
some nice Latin vectors. You can then pass the directory path to access to some nice Latin vectors. You can then pass the directory path to
[`spacy.load`](/api/top-level#spacy.load). [`spacy.load`](/api/top-level#spacy.load).
> #### Usage example > #### Usage example
@ -1845,7 +1847,7 @@ some nice Latin vectors. You can then pass the directory path to
```cli ```cli
$ wget https://s3-us-west-1.amazonaws.com/fasttext-vectors/word-vectors-v2/cc.la.300.vec.gz $ wget https://s3-us-west-1.amazonaws.com/fasttext-vectors/word-vectors-v2/cc.la.300.vec.gz
$ python -m spacy init model en /tmp/la_vectors_wiki_lg --vectors-loc cc.la.300.vec.gz $ python -m spacy init vocab en /tmp/la_vectors_wiki_lg --vectors-loc cc.la.300.vec.gz
``` ```
<Accordion title="How to optimize vector coverage" id="custom-vectors-coverage" spaced> <Accordion title="How to optimize vector coverage" id="custom-vectors-coverage" spaced>
@ -1853,13 +1855,13 @@ $ python -m spacy init model en /tmp/la_vectors_wiki_lg --vectors-loc cc.la.300.
To help you strike a good balance between coverage and memory usage, spaCy's To help you strike a good balance between coverage and memory usage, spaCy's
[`Vectors`](/api/vectors) class lets you map **multiple keys** to the **same [`Vectors`](/api/vectors) class lets you map **multiple keys** to the **same
row** of the table. If you're using the row** of the table. If you're using the
[`spacy init model`](/api/cli#init-model) command to create a vocabulary, [`spacy init vocab`](/api/cli#init-vocab) command to create a vocabulary,
pruning the vectors will be taken care of automatically if you set the pruning the vectors will be taken care of automatically if you set the
`--prune-vectors` flag. You can also do it manually in the following steps: `--prune-vectors` flag. You can also do it manually in the following steps:
1. Start with a **word vectors model** that covers a huge vocabulary. For 1. Start with a **word vectors package** that covers a huge vocabulary. For
instance, the [`en_vectors_web_lg`](/models/en-starters#en_vectors_web_lg) instance, the [`en_vectors_web_lg`](/models/en-starters#en_vectors_web_lg)
model provides 300-dimensional GloVe vectors for over 1 million terms of starter provides 300-dimensional GloVe vectors for over 1 million terms of
English. English.
2. If your vocabulary has values set for the `Lexeme.prob` attribute, the 2. If your vocabulary has values set for the `Lexeme.prob` attribute, the
lexemes will be sorted by descending probability to determine which vectors lexemes will be sorted by descending probability to determine which vectors
@ -1900,17 +1902,17 @@ the two words.
In the example above, the vector for "Shore" was removed and remapped to the In the example above, the vector for "Shore" was removed and remapped to the
vector of "coast", which is deemed about 73% similar. "Leaving" was remapped to vector of "coast", which is deemed about 73% similar. "Leaving" was remapped to
the vector of "leaving", which is identical. If you're using the the vector of "leaving", which is identical. If you're using the
[`init model`](/api/cli#init-model) command, you can set the `--prune-vectors` [`init vocab`](/api/cli#init-vocab) command, you can set the `--prune-vectors`
option to easily reduce the size of the vectors as you add them to a spaCy option to easily reduce the size of the vectors as you add them to a spaCy
model: pipeline:
```cli ```cli
$ python -m spacy init model en /tmp/la_vectors_web_md --vectors-loc la.300d.vec.tgz --prune-vectors 10000 $ python -m spacy init vocab en /tmp/la_vectors_web_md --vectors-loc la.300d.vec.tgz --prune-vectors 10000
``` ```
This will create a spaCy model with vectors for the first 10,000 words in the This will create a blank spaCy pipeline with vectors for the first 10,000 words
vectors model. All other words in the vectors model are mapped to the closest in the vectors. All other words in the vectors are mapped to the closest vector
vector among those retained. among those retained.
</Accordion> </Accordion>
@ -1925,8 +1927,8 @@ possible. You can modify the vectors via the [`Vocab`](/api/vocab) or
if you have vectors in an arbitrary format, as you can read in the vectors with if you have vectors in an arbitrary format, as you can read in the vectors with
your own logic, and just set them with a simple loop. This method is likely to your own logic, and just set them with a simple loop. This method is likely to
be slower than approaches that work with the whole vectors table at once, but be slower than approaches that work with the whole vectors table at once, but
it's a great approach for once-off conversions before you save out your model to it's a great approach for once-off conversions before you save out your `nlp`
disk. object to disk.
```python ```python
### Adding vectors ### Adding vectors
@ -1978,14 +1980,14 @@ print(nlp2.lang, [token.is_stop for token in nlp2("custom stop")])
The [`@spacy.registry.languages`](/api/top-level#registry) decorator lets you The [`@spacy.registry.languages`](/api/top-level#registry) decorator lets you
register a custom language class and assign it a string name. This means that register a custom language class and assign it a string name. This means that
you can call [`spacy.blank`](/api/top-level#spacy.blank) with your custom you can call [`spacy.blank`](/api/top-level#spacy.blank) with your custom
language name, and even train models with it and refer to it in your language name, and even train pipelines with it and refer to it in your
[training config](/usage/training#config). [training config](/usage/training#config).
> #### Config usage > #### Config usage
> >
> After registering your custom language class using the `languages` registry, > After registering your custom language class using the `languages` registry,
> you can refer to it in your [training config](/usage/training#config). This > you can refer to it in your [training config](/usage/training#config). This
> means spaCy will train your model using the custom subclass. > means spaCy will train your pipeline using the custom subclass.
> >
> ```ini > ```ini
> [nlp] > [nlp]

View File

@ -8,25 +8,24 @@ menu:
- ['Production Use', 'production'] - ['Production Use', 'production']
--- ---
spaCy's models can be installed as **Python packages**. This means that they're spaCy's trained pipelines can be installed as **Python packages**. This means
a component of your application, just like any other module. They're versioned that they're a component of your application, just like any other module.
and can be defined as a dependency in your `requirements.txt`. Models can be They're versioned and can be defined as a dependency in your `requirements.txt`.
installed from a download URL or a local directory, manually or via Trained pipelines can be installed from a download URL or a local directory,
[pip](https://pypi.python.org/pypi/pip). Their data can be located anywhere on manually or via [pip](https://pypi.python.org/pypi/pip). Their data can be
your file system. located anywhere on your file system.
> #### Important note > #### Important note
> >
> If you're upgrading to spaCy v3.x, you need to **download the new models**. If > If you're upgrading to spaCy v3.x, you need to **download the new pipeline
> you've trained statistical models that use spaCy's annotations, you should > packages**. If you've trained your own pipelines, you need to **retrain** them
> **retrain your models** after updating spaCy. If you don't retrain, you may > after updating spaCy.
> suffer train/test skew, which might decrease your accuracy.
## Quickstart {hidden="true"} ## Quickstart {hidden="true"}
import QuickstartModels from 'widgets/quickstart-models.js' import QuickstartModels from 'widgets/quickstart-models.js'
<QuickstartModels title="Quickstart" id="quickstart" description="Install a default model, get the code to load it from within spaCy and an example to test it. For more options, see the section on available models below." /> <QuickstartModels title="Quickstart" id="quickstart" description="Install a default trained pipeline package, get the code to load it from within spaCy and an example to test it. For more options, see the section on available packages below." />
## Language support {#languages} ## Language support {#languages}
@ -34,14 +33,14 @@ spaCy currently provides support for the following languages. You can help by
[improving the existing language data](/usage/adding-languages#language-data) [improving the existing language data](/usage/adding-languages#language-data)
and extending the tokenization patterns. and extending the tokenization patterns.
[See here](https://github.com/explosion/spaCy/issues/3056) for details on how to [See here](https://github.com/explosion/spaCy/issues/3056) for details on how to
contribute to model development. contribute to development.
> #### Usage note > #### Usage note
> >
> If a model is available for a language, you can download it using the > If a trained pipeline is available for a language, you can download it using
> [`spacy download`](/api/cli#download) command. In order to use languages that > the [`spacy download`](/api/cli#download) command. In order to use languages
> don't yet come with a model, you have to import them directly, or use > that don't yet come with a trained pipeline, you have to import them directly,
> [`spacy.blank`](/api/top-level#spacy.blank): > or use [`spacy.blank`](/api/top-level#spacy.blank):
> >
> ```python > ```python
> from spacy.lang.fi import Finnish > from spacy.lang.fi import Finnish
@ -73,13 +72,13 @@ import Languages from 'widgets/languages.js'
> nlp = spacy.blank("xx") > nlp = spacy.blank("xx")
> ``` > ```
spaCy also supports models trained on more than one language. This is especially spaCy also supports pipelines trained on more than one language. This is
useful for named entity recognition. The language ID used for multi-language or especially useful for named entity recognition. The language ID used for
language-neutral models is `xx`. The language class, a generic subclass multi-language or language-neutral pipelines is `xx`. The language class, a
containing only the base language data, can be found in generic subclass containing only the base language data, can be found in
[`lang/xx`](https://github.com/explosion/spaCy/tree/master/spacy/lang/xx). [`lang/xx`](https://github.com/explosion/spaCy/tree/master/spacy/lang/xx).
To train a model using the neutral multi-language class, you can set To train a pipeline using the neutral multi-language class, you can set
`lang = "xx"` in your [training config](/usage/training#config). You can also `lang = "xx"` in your [training config](/usage/training#config). You can also
import the `MultiLanguage` class directly, or call import the `MultiLanguage` class directly, or call
[`spacy.blank("xx")`](/api/top-level#spacy.blank) for lazy-loading. [`spacy.blank("xx")`](/api/top-level#spacy.blank) for lazy-loading.
@ -111,7 +110,7 @@ The Chinese language class supports three word segmentation options:
3. **PKUSeg**: As of spaCy v2.3.0, support for 3. **PKUSeg**: As of spaCy v2.3.0, support for
[PKUSeg](https://github.com/lancopku/PKUSeg-python) has been added to support [PKUSeg](https://github.com/lancopku/PKUSeg-python) has been added to support
better segmentation for Chinese OntoNotes and the provided better segmentation for Chinese OntoNotes and the provided
[Chinese models](/models/zh). Enable PKUSeg with the tokenizer option [Chinese pipelines](/models/zh). Enable PKUSeg with the tokenizer option
`{"segmenter": "pkuseg"}`. `{"segmenter": "pkuseg"}`.
<Infobox variant="warning"> <Infobox variant="warning">
@ -169,9 +168,9 @@ nlp.tokenizer.pkuseg_update_user_dict([], reset=True)
</Accordion> </Accordion>
<Accordion title="Details on pretrained and custom Chinese models" spaced> <Accordion title="Details on trained and custom Chinese pipelines" spaced>
The [Chinese models](/models/zh) provided by spaCy include a custom `pkuseg` The [Chinese pipelines](/models/zh) provided by spaCy include a custom `pkuseg`
model trained only on model trained only on
[Chinese OntoNotes 5.0](https://catalog.ldc.upenn.edu/LDC2013T19), since the [Chinese OntoNotes 5.0](https://catalog.ldc.upenn.edu/LDC2013T19), since the
models provided by `pkuseg` include data restricted to research use. For models provided by `pkuseg` include data restricted to research use. For
@ -208,29 +207,29 @@ nlp = Chinese(meta={"tokenizer": {"config": {"pkuseg_model": "/path/to/pkuseg_mo
The Japanese language class uses The Japanese language class uses
[SudachiPy](https://github.com/WorksApplications/SudachiPy) for word [SudachiPy](https://github.com/WorksApplications/SudachiPy) for word
segmentation and part-of-speech tagging. The default Japanese language class and segmentation and part-of-speech tagging. The default Japanese language class and
the provided Japanese models use SudachiPy split mode `A`. The `meta` argument the provided Japanese pipelines use SudachiPy split mode `A`. The `meta`
of the `Japanese` language class can be used to configure the split mode to `A`, argument of the `Japanese` language class can be used to configure the split
`B` or `C`. mode to `A`, `B` or `C`.
<Infobox variant="warning"> <Infobox variant="warning">
If you run into errors related to `sudachipy`, which is currently under active If you run into errors related to `sudachipy`, which is currently under active
development, we suggest downgrading to `sudachipy==0.4.5`, which is the version development, we suggest downgrading to `sudachipy==0.4.5`, which is the version
used for training the current [Japanese models](/models/ja). used for training the current [Japanese pipelines](/models/ja).
</Infobox> </Infobox>
## Installing and using models {#download} ## Installing and using trained pipelines {#download}
The easiest way to download a model is via spaCy's The easiest way to download a trained pipeline is via spaCy's
[`download`](/api/cli#download) command. It takes care of finding the [`download`](/api/cli#download) command. It takes care of finding the
best-matching model compatible with your spaCy installation. best-matching package compatible with your spaCy installation.
> #### Important note for v3.0 > #### Important note for v3.0
> >
> Note that as of spaCy v3.0, model shortcut links that create (potentially > Note that as of spaCy v3.0, shortcut links like `en` that create (potentially
> brittle) symlinks in your spaCy installation are **deprecated**. To download > brittle) symlinks in your spaCy installation are **deprecated**. To download
> and load an installed model, use its full name: > and load an installed pipeline package, use its full name:
> >
> ```diff > ```diff
> - python -m spacy download en > - python -m spacy download en
@ -243,14 +242,14 @@ best-matching model compatible with your spaCy installation.
> ``` > ```
```cli ```cli
# Download best-matching version of a model for your spaCy installation # Download best-matching version of a package for your spaCy installation
$ python -m spacy download en_core_web_sm $ python -m spacy download en_core_web_sm
# Download exact model version # Download exact package version
$ python -m spacy download en_core_web_sm-3.0.0 --direct $ python -m spacy download en_core_web_sm-3.0.0 --direct
``` ```
The download command will [install the model](/usage/models#download-pip) via The download command will [install the package](/usage/models#download-pip) via
pip and place the package in your `site-packages` directory. pip and place the package in your `site-packages` directory.
```cli ```cli
@ -266,11 +265,11 @@ doc = nlp("This is a sentence.")
### Installation via pip {#download-pip} ### Installation via pip {#download-pip}
To download a model directly using [pip](https://pypi.python.org/pypi/pip), To download a trained pipeline directly using
point `pip install` to the URL or local path of the archive file. To find the [pip](https://pypi.python.org/pypi/pip), point `pip install` to the URL or local
direct link to a model, head over to the path of the archive file. To find the direct link to a package, head over to the
[model releases](https://github.com/explosion/spacy-models/releases), right [releases](https://github.com/explosion/spacy-models/releases), right click on
click on the archive link and copy it to your clipboard. the archive link and copy it to your clipboard.
```bash ```bash
# With external URL # With external URL
@ -280,60 +279,61 @@ $ pip install https://github.com/explosion/spacy-models/releases/download/en_cor
$ pip install /Users/you/en_core_web_sm-3.0.0.tar.gz $ pip install /Users/you/en_core_web_sm-3.0.0.tar.gz
``` ```
By default, this will install the model into your `site-packages` directory. You By default, this will install the pipeline package into your `site-packages`
can then use `spacy.load()` to load it via its package name or directory. You can then use `spacy.load` to load it via its package name or
[import it](#usage-import) explicitly as a module. If you need to download [import it](#usage-import) explicitly as a module. If you need to download
models as part of an automated process, we recommend using pip with a direct pipeline packages as part of an automated process, we recommend using pip with a
link, instead of relying on spaCy's [`download`](/api/cli#download) command. direct link, instead of relying on spaCy's [`download`](/api/cli#download)
command.
You can also add the direct download link to your application's You can also add the direct download link to your application's
`requirements.txt`. For more details, see the section on `requirements.txt`. For more details, see the section on
[working with models in production](#production). [working with pipeline packages in production](#production).
### Manual download and installation {#download-manual} ### Manual download and installation {#download-manual}
In some cases, you might prefer downloading the data manually, for example to In some cases, you might prefer downloading the data manually, for example to
place it into a custom directory. You can download the model via your browser place it into a custom directory. You can download the package via your browser
from the [latest releases](https://github.com/explosion/spacy-models/releases), from the [latest releases](https://github.com/explosion/spacy-models/releases),
or configure your own download script using the URL of the archive file. The or configure your own download script using the URL of the archive file. The
archive consists of a model directory that contains another directory with the archive consists of a package directory that contains another directory with the
model data. pipeline data.
```yaml ```yaml
### Directory structure {highlight="6"} ### Directory structure {highlight="6"}
└── en_core_web_md-3.0.0.tar.gz # downloaded archive └── en_core_web_md-3.0.0.tar.gz # downloaded archive
├── setup.py # setup file for pip installation ├── setup.py # setup file for pip installation
├── meta.json # copy of model meta ├── meta.json # copy of pipeline meta
└── en_core_web_md # 📦 model package └── en_core_web_md # 📦 pipeline package
├── __init__.py # init for pip installation ├── __init__.py # init for pip installation
└── en_core_web_md-3.0.0 # model data └── en_core_web_md-3.0.0 # pipeline data
├── config.cfg # model config ├── config.cfg # pipeline config
├── meta.json # model meta ├── meta.json # pipeline meta
└── ... # directories with component data └── ... # directories with component data
``` ```
You can place the **model package directory** anywhere on your local file You can place the **pipeline package directory** anywhere on your local file
system. system.
### Using models with spaCy {#usage} ### Using trained pipelines with spaCy {#usage}
To load a model, use [`spacy.load`](/api/top-level#spacy.load) with the model's To load a pipeline package, use [`spacy.load`](/api/top-level#spacy.load) with
package name or a path to the data directory: the package name or a path to the data directory:
> #### Important note for v3.0 > #### Important note for v3.0
> >
> Note that as of spaCy v3.0, model shortcut links that create (potentially > Note that as of spaCy v3.0, shortcut links like `en` that create (potentially
> brittle) symlinks in your spaCy installation are **deprecated**. To load an > brittle) symlinks in your spaCy installation are **deprecated**. To download
> installed model, use its full name: > and load an installed pipeline package, use its full name:
> >
> ```diff > ```diff
> - nlp = spacy.load("en") > - python -m spacy download en
> + nlp = spacy.load("en_core_web_sm") > + python -m spacy dowmload en_core_web_sm
> ``` > ```
```python ```python
import spacy import spacy
nlp = spacy.load("en_core_web_sm") # load model package "en_core_web_sm" nlp = spacy.load("en_core_web_sm") # load package "en_core_web_sm"
nlp = spacy.load("/path/to/en_core_web_sm") # load package from a directory nlp = spacy.load("/path/to/en_core_web_sm") # load package from a directory
doc = nlp("This is a sentence.") doc = nlp("This is a sentence.")
@ -342,17 +342,18 @@ doc = nlp("This is a sentence.")
<Infobox title="Tip: Preview model info" emoji="💡"> <Infobox title="Tip: Preview model info" emoji="💡">
You can use the [`info`](/api/cli#info) command or You can use the [`info`](/api/cli#info) command or
[`spacy.info()`](/api/top-level#spacy.info) method to print a model's meta data [`spacy.info()`](/api/top-level#spacy.info) method to print a pipeline
before loading it. Each `Language` object with a loaded model also exposes the packages's meta data before loading it. Each `Language` object with a loaded
model's meta data as the attribute `meta`. For example, `nlp.meta['version']` pipeline also exposes the pipeline's meta data as the attribute `meta`. For
will return the model's version. example, `nlp.meta['version']` will return the package version.
</Infobox> </Infobox>
### Importing models as modules {#usage-import} ### Importing pipeline packages as modules {#usage-import}
If you've installed a model via spaCy's downloader, or directly via pip, you can If you've installed a trained pipeline via [`spacy download`](/api/cli#download)
also `import` it and then call its `load()` method with no arguments: or directly via pip, you can also `import` it and then call its `load()` method
with no arguments:
```python ```python
### {executable="true"} ### {executable="true"}
@ -362,51 +363,38 @@ nlp = en_core_web_sm.load()
doc = nlp("This is a sentence.") doc = nlp("This is a sentence.")
``` ```
How you choose to load your models ultimately depends on personal preference. How you choose to load your trained pipelines ultimately depends on personal
However, **for larger code bases**, we usually recommend native imports, as this preference. However, **for larger code bases**, we usually recommend native
will make it easier to integrate models with your existing build process, imports, as this will make it easier to integrate pipeline packages with your
continuous integration workflow and testing framework. It'll also prevent you existing build process, continuous integration workflow and testing framework.
from ever trying to load a model that is not installed, as your code will raise It'll also prevent you from ever trying to load a package that is not installed,
an `ImportError` immediately, instead of failing somewhere down the line when as your code will raise an `ImportError` immediately, instead of failing
calling `spacy.load()`. somewhere down the line when calling `spacy.load()`. For more details, see the
section on [working with pipeline packages in production](#production).
For more details, see the section on ## Using trained pipelines in production {#production}
[working with models in production](#production).
### Using your own models {#own-models} If your application depends on one or more trained pipeline packages, you'll
usually want to integrate them into your continuous integration workflow and
If you've trained your own model, for example for build process. While spaCy provides a range of useful helpers for downloading
[additional languages](/usage/adding-languages) or and loading pipeline packages, the underlying functionality is entirely based on
[custom named entities](/usage/training#ner), you can save its state using the native Python packaging. This allows your application to handle a spaCy pipeline
[`Language.to_disk()`](/api/language#to_disk) method. To make the model more like any other package dependency.
convenient to deploy, we recommend wrapping it as a Python package.
For more information and a detailed guide on how to package your model, see the
documentation on [saving and loading models](/usage/saving-loading#models).
## Using models in production {#production}
If your application depends on one or more models, you'll usually want to
integrate them into your continuous integration workflow and build process.
While spaCy provides a range of useful helpers for downloading, linking and
loading models, the underlying functionality is entirely based on native Python
packages. This allows your application to handle a model like any other package
dependency.
<!-- TODO: reference relevant spaCy project --> <!-- TODO: reference relevant spaCy project -->
### Downloading and requiring model dependencies {#models-download} ### Downloading and requiring package dependencies {#models-download}
spaCy's built-in [`download`](/api/cli#download) command is mostly intended as a spaCy's built-in [`download`](/api/cli#download) command is mostly intended as a
convenient, interactive wrapper. It performs compatibility checks and prints convenient, interactive wrapper. It performs compatibility checks and prints
detailed error messages and warnings. However, if you're downloading models as detailed error messages and warnings. However, if you're downloading pipeline
part of an automated build process, this only adds an unnecessary layer of packages as part of an automated build process, this only adds an unnecessary
complexity. If you know which models your application needs, you should be layer of complexity. If you know which packages your application needs, you
specifying them directly. should be specifying them directly.
Because all models are valid Python packages, you can add them to your Because pipeline packages are valid Python packages, you can add them to your
application's `requirements.txt`. If you're running your own internal PyPi application's `requirements.txt`. If you're running your own internal PyPi
installation, you can upload the models there. pip's installation, you can upload the pipeline packages there. pip's
[requirements file format](https://pip.pypa.io/en/latest/reference/pip_install/#requirements-file-format) [requirements file format](https://pip.pypa.io/en/latest/reference/pip_install/#requirements-file-format)
supports both package names to download via a PyPi server, as well as direct supports both package names to download via a PyPi server, as well as direct
URLs. URLs.
@ -422,17 +410,17 @@ the download URL. This way, the package won't be re-downloaded and overwritten
if it's already installed - just like when you're downloading a package from if it's already installed - just like when you're downloading a package from
PyPi. PyPi.
All models are versioned and specify their spaCy dependency. This ensures All pipeline packages are versioned and specify their spaCy dependency. This
cross-compatibility and lets you specify exact version requirements for each ensures cross-compatibility and lets you specify exact version requirements for
model. If you've trained your own model, you can use the each pipeline. If you've [trained](/usage/training) your own pipeline, you can
[`package`](/api/cli#package) command to generate the required meta data and use the [`spacy package`](/api/cli#package) command to generate the required
turn it into a loadable package. meta data and turn it into a loadable package.
### Loading and testing models {#models-loading} ### Loading and testing pipeline packages {#models-loading}
Models are regular Python packages, so you can also import them as a package Pipeline packages are regular Python packages, so you can also import them as a
using Python's native `import` syntax, and then call the `load` method to load package using Python's native `import` syntax, and then call the `load` method
the model data and return an `nlp` object: to load the data and return an `nlp` object:
```python ```python
import en_core_web_sm import en_core_web_sm
@ -440,16 +428,17 @@ nlp = en_core_web_sm.load()
``` ```
In general, this approach is recommended for larger code bases, as it's more In general, this approach is recommended for larger code bases, as it's more
"native", and doesn't depend on symlinks or rely on spaCy's loader to resolve "native", and doesn't rely on spaCy's loader to resolve string names to
string names to model packages. If a model can't be imported, Python will raise packages. If a package can't be imported, Python will raise an `ImportError`
an `ImportError` immediately. And if a model is imported but not used, any immediately. And if a package is imported but not used, any linter will catch
linter will catch that. that.
Similarly, it'll give you more flexibility when writing tests that require Similarly, it'll give you more flexibility when writing tests that require
loading models. For example, instead of writing your own `try` and `except` loading pipelines. For example, instead of writing your own `try` and `except`
logic around spaCy's loader, you can use logic around spaCy's loader, you can use
[pytest](http://pytest.readthedocs.io/en/latest/)'s [pytest](http://pytest.readthedocs.io/en/latest/)'s
[`importorskip()`](https://docs.pytest.org/en/latest/builtin.html#_pytest.outcomes.importorskip) [`importorskip()`](https://docs.pytest.org/en/latest/builtin.html#_pytest.outcomes.importorskip)
method to only run a test if a specific model or model version is installed. method to only run a test if a specific pipeline package or version is
Each model package exposes a `__version__` attribute which you can also use to installed. Each pipeline package package exposes a `__version__` attribute which
perform your own version compatibility checks before loading a model. you can also use to perform your own version compatibility checks before loading
it.

Some files were not shown because too many files have changed in this diff Show More