* Update to use thinc 3.0

This commit is contained in:
Matthew Honnibal 2015-11-06 00:25:59 +11:00
parent 802ad3d71a
commit b9991fbd20
4 changed files with 27 additions and 53 deletions

View File

@ -10,6 +10,8 @@ import json
import cython
import numpy.random
from libc.string cimport memcpy
from thinc.features cimport Feature, count_feats
from thinc.api cimport Example
@ -52,28 +54,12 @@ cdef class Model:
cdef const weight_t* score(self, atom_t* context) except NULL:
memcpy(self._eg.c.atoms, context, self._eg.c.nr_atom * sizeof(context[0]))
self._model(self._eg)
return self._eg.scores
return self._eg.c.scores
cdef int set_scores(self, weight_t* scores, atom_t* context) nogil:
cdef int nr_feat = self._model.extractor.set_feats(self._eg.features, context)
cdef int nr_feat = self._extractor.set_feats(self._eg.c.features, context)
self._model.set_scores(
scores,
self._model.weights.c_map,
self._eg.c.features,
nr_feat
)
cdef int update(self, atom_t* context, class_t guess, class_t gold, int cost) except -1:
cdef int n_feats
if cost == 0:
self._model.update({})
else:
feats = self._extractor.get_feats(context, &n_feats)
counts = {gold: {}, guess: {}}
count_feats(counts[gold], feats, n_feats, cost)
count_feats(counts[guess], feats, n_feats, -cost)
self._model.update(counts)
self._model.set_scores(scores, self._eg.c.features, nr_feat)
def end_training(self, model_loc=None):
if model_loc is None:

View File

@ -40,7 +40,7 @@ from ._parse_features cimport CONTEXT_SIZE
from ._parse_features cimport fill_context
from .stateclass cimport StateClass
from .._ml cimport arg_max_if_true
from thinc.learner cimport arg_max_if_true
DEBUG = False

View File

@ -7,6 +7,3 @@ cdef class Tagger:
cdef readonly Vocab vocab
cdef readonly Model model
cdef public dict freqs
cdef int predict(self, int i, const TokenC* tokens) except -1
cdef int update(self, int i, const TokenC* tokens, int gold) except -1

View File

@ -3,6 +3,8 @@ from os import path
from collections import defaultdict
from thinc.typedefs cimport atom_t, weight_t
from thinc.learner cimport arg_max, arg_max_if_true, arg_max_if_zero
from thinc.api cimport Example
from .typedefs cimport attr_t
from .tokens.doc cimport Doc
@ -11,7 +13,6 @@ from .parts_of_speech cimport NO_TAG, ADJ, ADV, ADP, CONJ, DET, NOUN, NUM, PRON
from .parts_of_speech cimport VERB, X, PUNCT, EOL, SPACE
from .attrs cimport *
from ._ml cimport arg_max
cpdef enum:
@ -138,12 +139,15 @@ cdef class Tagger:
"""
if tokens.length == 0:
return 0
cdef Example eg = self.model._eg
cdef int i
cdef const weight_t* scores
for i in range(tokens.length):
if tokens.c[i].pos == 0:
guess = self.predict(i, tokens.c)
self.vocab.morphology.assign_tag(&tokens.c[i], guess)
eg.wipe()
fill_atoms(eg.c.atoms, tokens.c, i)
self.model(eg)
self.vocab.morphology.assign_tag(&tokens.c[i], eg.c.guess)
tokens.is_tagged = True
tokens._py_tokens = [None] * tokens.length
@ -169,38 +173,25 @@ cdef class Tagger:
raise ValueError(
[g for g in gold_tag_strs if g is not None and g not in self.tag_names])
correct = 0
cdef Example eg = self.model._eg
for i in range(tokens.length):
guess = self.update(i, tokens.c, golds[i])
loss = golds[i] != -1 and guess != golds[i]
eg.wipe()
fill_atoms(eg.c.atoms, tokens.c, i)
self.train(eg)
self.vocab.morphology.assign_tag(&tokens.c[i], guess)
self.vocab.morphology.assign_tag(&tokens.c[i], eg.c.guess)
correct += loss == 0
correct += eg.c.cost == 0
self.freqs[TAG][tokens.c[i].tag] += 1
return correct
cdef int predict(self, int i, const TokenC* tokens) except -1:
cdef atom_t[N_CONTEXT_FIELDS] context
_fill_from_token(&context[P2_orth], &tokens[i-2])
_fill_from_token(&context[P1_orth], &tokens[i-1])
_fill_from_token(&context[W_orth], &tokens[i])
_fill_from_token(&context[N1_orth], &tokens[i+1])
_fill_from_token(&context[N2_orth], &tokens[i+2])
scores = self.model.score(context)
return arg_max(scores, self.model.n_classes)
cdef int update(self, int i, const TokenC* tokens, int gold) except -1:
cdef atom_t[N_CONTEXT_FIELDS] context
_fill_from_token(&context[P2_orth], &tokens[i-2])
_fill_from_token(&context[P1_orth], &tokens[i-1])
_fill_from_token(&context[W_orth], &tokens[i])
_fill_from_token(&context[N1_orth], &tokens[i+1])
_fill_from_token(&context[N2_orth], &tokens[i+2])
scores = self.model.score(context)
guess = arg_max(scores, self.model.n_classes)
loss = guess != gold if gold != -1 else 0
self.model.update(context, guess, gold, loss)
return guess
cdef inline void fill_atoms(atom_t* atoms, const TokenC* tokens, int i) nogil:
_fill_from_token(&atoms[P2_orth], &tokens[i-2])
_fill_from_token(&atoms[P1_orth], &tokens[i-1])
_fill_from_token(&atoms[W_orth], &tokens[i])
_fill_from_token(&atoms[N1_orth], &tokens[i+1])
_fill_from_token(&atoms[N2_orth], &tokens[i+2])
cdef inline void _fill_from_token(atom_t* context, const TokenC* t) nogil: