mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-26 01:46:28 +03:00
Remove neptune refs from new train example
This commit is contained in:
parent
45464d065e
commit
b9c26aae11
|
@ -32,8 +32,6 @@ from spacy.gold import GoldParse
|
||||||
from spacy.gold import _iob_to_biluo as iob_to_biluo
|
from spacy.gold import _iob_to_biluo as iob_to_biluo
|
||||||
from spacy.scorer import Scorer
|
from spacy.scorer import Scorer
|
||||||
|
|
||||||
from deepsense import neptune
|
|
||||||
|
|
||||||
try:
|
try:
|
||||||
unicode
|
unicode
|
||||||
except NameError:
|
except NameError:
|
||||||
|
@ -180,24 +178,6 @@ class Pipeline(object):
|
||||||
|
|
||||||
|
|
||||||
def train(nlp, train_examples, dev_examples, ctx, nr_epoch=5):
|
def train(nlp, train_examples, dev_examples, ctx, nr_epoch=5):
|
||||||
channels = {}
|
|
||||||
channels['loss'] = ctx.job.create_channel(
|
|
||||||
name='loss',
|
|
||||||
channel_type=neptune.ChannelType.NUMERIC)
|
|
||||||
|
|
||||||
channels['f'] = ctx.job.create_channel(
|
|
||||||
name='F-Measure',
|
|
||||||
channel_type=neptune.ChannelType.NUMERIC)
|
|
||||||
channels['p'] = ctx.job.create_channel(
|
|
||||||
name='Precision',
|
|
||||||
channel_type=neptune.ChannelType.NUMERIC)
|
|
||||||
channels['r'] = ctx.job.create_channel(
|
|
||||||
name='Recall',
|
|
||||||
channel_type=neptune.ChannelType.NUMERIC)
|
|
||||||
channels['log'] = ctx.job.create_channel(
|
|
||||||
name='logs',
|
|
||||||
channel_type=neptune.ChannelType.TEXT)
|
|
||||||
|
|
||||||
next_epoch = train_examples
|
next_epoch = train_examples
|
||||||
print("Iter", "Loss", "P", "R", "F")
|
print("Iter", "Loss", "P", "R", "F")
|
||||||
for i in range(nr_epoch):
|
for i in range(nr_epoch):
|
||||||
|
@ -210,25 +190,17 @@ def train(nlp, train_examples, dev_examples, ctx, nr_epoch=5):
|
||||||
next_epoch.append((input_, annot))
|
next_epoch.append((input_, annot))
|
||||||
random.shuffle(next_epoch)
|
random.shuffle(next_epoch)
|
||||||
scores = nlp.evaluate(dev_examples)
|
scores = nlp.evaluate(dev_examples)
|
||||||
report_scores(channels, i, loss, scores)
|
report_scores(i, loss, scores)
|
||||||
nlp.average_weights()
|
nlp.average_weights()
|
||||||
scores = nlp.evaluate(dev_examples)
|
scores = nlp.evaluate(dev_examples)
|
||||||
report_scores(channels, i+1, loss, scores)
|
report_scores(channels, i+1, loss, scores)
|
||||||
|
|
||||||
|
|
||||||
def report_scores(channels, i, loss, scores):
|
def report_scores(i, loss, scores):
|
||||||
precision = '%.2f' % scores['ents_p']
|
precision = '%.2f' % scores['ents_p']
|
||||||
recall = '%.2f' % scores['ents_r']
|
recall = '%.2f' % scores['ents_r']
|
||||||
f_measure = '%.2f' % scores['ents_f']
|
f_measure = '%.2f' % scores['ents_f']
|
||||||
print('%d %s %s %s' % (int(loss), precision, recall, f_measure))
|
print('%d %s %s %s' % (int(loss), precision, recall, f_measure))
|
||||||
channels['log'].send(x=i, y='%d %s %s %s' % (int(loss), precision, recall,
|
|
||||||
f_measure))
|
|
||||||
channels['f'].send(x=i, y=scores['ents_f'])
|
|
||||||
channels['p'].send(x=i, y=scores['ents_p'])
|
|
||||||
channels['r'].send(x=i, y=scores['ents_r'])
|
|
||||||
channels['loss'].send(x=i, y=loss)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def read_examples(path):
|
def read_examples(path):
|
||||||
|
@ -258,11 +230,6 @@ def read_examples(path):
|
||||||
)
|
)
|
||||||
def main(model_dir=Path('/home/matt/repos/spaCy/spacy/data/de-1.0.0'),
|
def main(model_dir=Path('/home/matt/repos/spaCy/spacy/data/de-1.0.0'),
|
||||||
train_loc=None, dev_loc=None, nr_epoch=30):
|
train_loc=None, dev_loc=None, nr_epoch=30):
|
||||||
ctx = neptune.Context()
|
|
||||||
|
|
||||||
train_loc = Path(ctx.params.train_loc)
|
|
||||||
dev_loc = Path(ctx.params.dev_loc)
|
|
||||||
model_dir = model_dir.resolve()
|
|
||||||
|
|
||||||
train_examples = read_examples(train_loc)
|
train_examples = read_examples(train_loc)
|
||||||
dev_examples = read_examples(dev_loc)
|
dev_examples = read_examples(dev_loc)
|
||||||
|
|
Loading…
Reference in New Issue
Block a user