diff --git a/spacy/cli/pretrain.py b/spacy/cli/pretrain.py index e949f76cf..629993d7b 100644 --- a/spacy/cli/pretrain.py +++ b/spacy/cli/pretrain.py @@ -295,7 +295,7 @@ def make_docs(nlp, batch, min_length, max_length): raise ValueError(Errors.E138.format(text=record)) if "heads" in record: heads = record["heads"] - heads = numpy.asarray(heads, dtype="uint64") + heads = numpy.asarray([numpy.array(h).astype(numpy.uint64) for h in heads], dtype="uint64") heads = heads.reshape((len(doc), 1)) doc = doc.from_array([HEAD], heads) if len(doc) >= min_length and len(doc) < max_length: diff --git a/spacy/tests/doc/test_array.py b/spacy/tests/doc/test_array.py index 09a6f9c4b..e2001824c 100644 --- a/spacy/tests/doc/test_array.py +++ b/spacy/tests/doc/test_array.py @@ -1,6 +1,7 @@ # coding: utf-8 from __future__ import unicode_literals +import numpy import pytest from spacy.tokens import Doc from spacy.attrs import ORTH, SHAPE, POS, DEP @@ -91,14 +92,14 @@ def test_doc_from_array_heads_in_bounds(en_vocab): # head before start arr = doc.to_array(["HEAD"]) - arr[0] = -1 + arr[0] = numpy.array(-1).astype(numpy.uint64) doc_from_array = Doc(en_vocab, words=words) with pytest.raises(ValueError): doc_from_array.from_array(["HEAD"], arr) # head after end arr = doc.to_array(["HEAD"]) - arr[0] = 5 + arr[0] = numpy.array(5).astype(numpy.uint64) doc_from_array = Doc(en_vocab, words=words) with pytest.raises(ValueError): doc_from_array.from_array(["HEAD"], arr) diff --git a/spacy/tests/lang/en/test_noun_chunks.py b/spacy/tests/lang/en/test_noun_chunks.py index ff67986a5..4426d50c2 100644 --- a/spacy/tests/lang/en/test_noun_chunks.py +++ b/spacy/tests/lang/en/test_noun_chunks.py @@ -37,9 +37,9 @@ def test_en_noun_chunks_not_nested(en_vocab): [0, root], [4, amod], [3, nmod], - [-1, cc], - [-2, conj], - [-5, dobj], + [numpy.array(-1).astype(numpy.uint64), cc], + [numpy.array(-2).astype(numpy.uint64), conj], + [numpy.array(-5).astype(numpy.uint64), dobj], ], dtype="uint64", ), diff --git a/spacy/tests/util.py b/spacy/tests/util.py index 4e1c50398..359767f1b 100644 --- a/spacy/tests/util.py +++ b/spacy/tests/util.py @@ -58,11 +58,12 @@ def get_doc( for annot in annotations: if annot: if annot is heads: + annot = numpy.array(heads).astype(numpy.uint64) for i in range(len(words)): if attrs.ndim == 1: - attrs[i] = heads[i] + attrs[i] = annot[i] else: - attrs[i, j] = heads[i] + attrs[i, j] = annot[i] else: for i in range(len(words)): if attrs.ndim == 1: diff --git a/spacy/tokens/doc.pyx b/spacy/tokens/doc.pyx index 07d44d01c..3b09ddd28 100644 --- a/spacy/tokens/doc.pyx +++ b/spacy/tokens/doc.pyx @@ -805,7 +805,7 @@ cdef class Doc: `(M, N)` array of attributes. attrs (list) A list of attribute ID ints. - array (numpy.ndarray[ndim=2, dtype='int32']): The attribute values. + array (numpy.ndarray[ndim=2, dtype='uint64']): The attribute values. RETURNS (Doc): Itself. DOCS: https://spacy.io/api/doc#from_array @@ -845,9 +845,9 @@ cdef class Doc: col = attrs.index(HEAD) for i in range(length): # cast index to signed int - abs_head_index = numpy.int32(array[i, col]) + i + abs_head_index = array[i, col].astype(numpy.int32) + i if abs_head_index < 0 or abs_head_index >= length: - raise ValueError(Errors.E190.format(index=i, value=array[i, col], rel_head_index=numpy.int32(array[i, col]))) + raise ValueError(Errors.E190.format(index=i, value=array[i, col], rel_head_index=abs_head_index-i)) # Do TAG first. This lets subsequent loop override stuff like POS, LEMMA if TAG in attrs: col = attrs.index(TAG) diff --git a/spacy/tokens/span.pyx b/spacy/tokens/span.pyx index 2ac8af9e4..a40347d23 100644 --- a/spacy/tokens/span.pyx +++ b/spacy/tokens/span.pyx @@ -272,7 +272,7 @@ cdef class Span: for ancestor in ancestors: ancestor_i = ancestor.i - self.start if ancestor_i in range(length): - array[i, head_col] = ancestor_i - i + array[i, head_col] = numpy.array(ancestor_i - i).astype(numpy.uint64) # if there is no appropriate ancestor, define a new artificial root value = array[i, head_col] @@ -280,7 +280,7 @@ cdef class Span: new_root = old_to_new_root.get(ancestor_i, None) if new_root is not None: # take the same artificial root as a previous token from the same sentence - array[i, head_col] = new_root - i + array[i, head_col] = numpy.array(new_root - i).astype(numpy.uint64) else: # set this token as the new artificial root array[i, head_col] = 0