Fix dependency copy for as_doc (#3969)

* failing unit test for issue 3962

* attempt to fix Issue #3962

* create artificial unit test example

* using length instead of self.length

* sp

* reformat with black

* find better ancestor within span and use generic 'dep'

* attach to span.root if there is no appropriate ancestor

* comment span text

* clean up ancestor code

* reconstruct dep tree to keep same number of sentences
This commit is contained in:
Sofie Van Landeghem 2019-07-23 18:28:55 +02:00 committed by Matthew Honnibal
parent a32b033b8c
commit ba02957c80
3 changed files with 157 additions and 5 deletions

View File

@ -0,0 +1,112 @@
# coding: utf8
from __future__ import unicode_literals
import pytest
from ..util import get_doc
@pytest.fixture
def doc(en_tokenizer):
text = "He jests at scars, that never felt a wound."
heads = [1, 6, -1, -1, 3, 2, 1, 0, 1, -2, -3]
deps = [
"nsubj",
"ccomp",
"prep",
"pobj",
"punct",
"nsubj",
"neg",
"ROOT",
"det",
"dobj",
"punct",
]
tokens = en_tokenizer(text)
return get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
def test_issue3962(doc):
""" Ensure that as_doc does not result in out-of-bound access of tokens.
This is achieved by setting the head to itself if it would lie out of the span otherwise."""
span2 = doc[1:5] # "jests at scars ,"
doc2 = span2.as_doc()
doc2_json = doc2.to_json()
assert doc2_json
assert doc2[0].head.text == "jests" # head set to itself, being the new artificial root
assert doc2[0].dep_ == "dep"
assert doc2[1].head.text == "jests"
assert doc2[1].dep_ == "prep"
assert doc2[2].head.text == "at"
assert doc2[2].dep_ == "pobj"
assert doc2[3].head.text == "jests" # head set to the new artificial root
assert doc2[3].dep_ == "dep"
# We should still have 1 sentence
assert len(list(doc2.sents)) == 1
span3 = doc[6:9] # "never felt a"
doc3 = span3.as_doc()
doc3_json = doc3.to_json()
assert doc3_json
assert doc3[0].head.text == "felt"
assert doc3[0].dep_ == "neg"
assert doc3[1].head.text == "felt"
assert doc3[1].dep_ == "ROOT"
assert doc3[2].head.text == "felt" # head set to ancestor
assert doc3[2].dep_ == "dep"
# We should still have 1 sentence as "a" can be attached to "felt" instead of "wound"
assert len(list(doc3.sents)) == 1
@pytest.fixture
def two_sent_doc(en_tokenizer):
text = "He jests at scars. They never felt a wound."
heads = [1, 0, -1, -1, -3, 2, 1, 0, 1, -2, -3]
deps = [
"nsubj",
"ROOT",
"prep",
"pobj",
"punct",
"nsubj",
"neg",
"ROOT",
"det",
"dobj",
"punct",
]
tokens = en_tokenizer(text)
return get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
def test_issue3962_long(two_sent_doc):
""" Ensure that as_doc does not result in out-of-bound access of tokens.
This is achieved by setting the head to itself if it would lie out of the span otherwise."""
span2 = two_sent_doc[1:7] # "jests at scars. They never"
doc2 = span2.as_doc()
doc2_json = doc2.to_json()
assert doc2_json
assert doc2[0].head.text == "jests" # head set to itself, being the new artificial root (in sentence 1)
assert doc2[0].dep_ == "ROOT"
assert doc2[1].head.text == "jests"
assert doc2[1].dep_ == "prep"
assert doc2[2].head.text == "at"
assert doc2[2].dep_ == "pobj"
assert doc2[3].head.text == "jests"
assert doc2[3].dep_ == "punct"
assert doc2[4].head.text == "They" # head set to itself, being the new artificial root (in sentence 2)
assert doc2[4].dep_ == "dep"
assert doc2[4].head.text == "They" # head set to the new artificial head (in sentence 2)
assert doc2[4].dep_ == "dep"
# We should still have 2 sentences
sents = list(doc2.sents)
assert len(sents) == 2
assert sents[0].text == "jests at scars ."
assert sents[1].text == "They never"

View File

@ -794,7 +794,7 @@ cdef class Doc:
if array[i, col] != 0: if array[i, col] != 0:
self.vocab.morphology.assign_tag(&tokens[i], array[i, col]) self.vocab.morphology.assign_tag(&tokens[i], array[i, col])
# Now load the data # Now load the data
for i in range(self.length): for i in range(length):
token = &self.c[i] token = &self.c[i]
for j in range(n_attrs): for j in range(n_attrs):
if attr_ids[j] != TAG: if attr_ids[j] != TAG:
@ -804,7 +804,7 @@ cdef class Doc:
self.is_tagged = bool(self.is_tagged or TAG in attrs or POS in attrs) self.is_tagged = bool(self.is_tagged or TAG in attrs or POS in attrs)
# If document is parsed, set children # If document is parsed, set children
if self.is_parsed: if self.is_parsed:
set_children_from_heads(self.c, self.length) set_children_from_heads(self.c, length)
return self return self
def get_lca_matrix(self): def get_lca_matrix(self):

View File

@ -17,6 +17,7 @@ from ..attrs cimport attr_id_t
from ..parts_of_speech cimport univ_pos_t from ..parts_of_speech cimport univ_pos_t
from ..attrs cimport * from ..attrs cimport *
from ..lexeme cimport Lexeme from ..lexeme cimport Lexeme
from ..symbols cimport dep
from ..util import normalize_slice from ..util import normalize_slice
from ..compat import is_config, basestring_ from ..compat import is_config, basestring_
@ -206,7 +207,6 @@ cdef class Span:
DOCS: https://spacy.io/api/span#as_doc DOCS: https://spacy.io/api/span#as_doc
""" """
# TODO: Fix!
words = [t.text for t in self] words = [t.text for t in self]
spaces = [bool(t.whitespace_) for t in self] spaces = [bool(t.whitespace_) for t in self]
cdef Doc doc = Doc(self.doc.vocab, words=words, spaces=spaces) cdef Doc doc = Doc(self.doc.vocab, words=words, spaces=spaces)
@ -220,7 +220,9 @@ cdef class Span:
else: else:
array_head.append(SENT_START) array_head.append(SENT_START)
array = self.doc.to_array(array_head) array = self.doc.to_array(array_head)
doc.from_array(array_head, array[self.start : self.end]) array = array[self.start : self.end]
self._fix_dep_copy(array_head, array)
doc.from_array(array_head, array)
doc.noun_chunks_iterator = self.doc.noun_chunks_iterator doc.noun_chunks_iterator = self.doc.noun_chunks_iterator
doc.user_hooks = self.doc.user_hooks doc.user_hooks = self.doc.user_hooks
doc.user_span_hooks = self.doc.user_span_hooks doc.user_span_hooks = self.doc.user_span_hooks
@ -235,6 +237,44 @@ cdef class Span:
doc.cats[cat_label] = value doc.cats[cat_label] = value
return doc return doc
def _fix_dep_copy(self, attrs, array):
""" Rewire dependency links to make sure their heads fall into the span
while still keeping the correct number of sentences. """
cdef int length = len(array)
cdef attr_t value
cdef int i, head_col, ancestor_i
old_to_new_root = dict()
if HEAD in attrs:
head_col = attrs.index(HEAD)
for i in range(length):
# if the HEAD refers to a token outside this span, find a more appropriate ancestor
token = self[i]
ancestor_i = token.head.i - self.start # span offset
if ancestor_i not in range(length):
if DEP in attrs:
array[i, attrs.index(DEP)] = dep
# try finding an ancestor within this span
ancestors = token.ancestors
for ancestor in ancestors:
ancestor_i = ancestor.i - self.start
if ancestor_i in range(length):
array[i, head_col] = ancestor_i - i
# if there is no appropriate ancestor, define a new artificial root
value = array[i, head_col]
if (i+value) not in range(length):
new_root = old_to_new_root.get(ancestor_i, None)
if new_root is not None:
# take the same artificial root as a previous token from the same sentence
array[i, head_col] = new_root - i
else:
# set this token as the new artificial root
array[i, head_col] = 0
old_to_new_root[ancestor_i] = i
return array
def merge(self, *args, **attributes): def merge(self, *args, **attributes):
"""Retokenize the document, such that the span is merged into a single """Retokenize the document, such that the span is merged into a single
token. token.
@ -500,7 +540,7 @@ cdef class Span:
if "root" in self.doc.user_span_hooks: if "root" in self.doc.user_span_hooks:
return self.doc.user_span_hooks["root"](self) return self.doc.user_span_hooks["root"](self)
# This should probably be called 'head', and the other one called # This should probably be called 'head', and the other one called
# 'gov'. But we went with 'head' elsehwhere, and now we're stuck =/ # 'gov'. But we went with 'head' elsewhere, and now we're stuck =/
cdef int i cdef int i
# First, we scan through the Span, and check whether there's a word # First, we scan through the Span, and check whether there's a word
# with head==0, i.e. a sentence root. If so, we can return it. The # with head==0, i.e. a sentence root. If so, we can return it. The