mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-24 00:46:28 +03:00
Morphology
/Morphologizer
optimizations and refactoring (#11024)
* `Morphology`: Refactor to use C types, reduce allocations, remove unused code * `Morphologzier`: Avoid unnecessary sorting of morpho features * `Morphologizer`: Remove execessive reallocations of labels, improve hash lookups of labels, coerce `numpy` numeric types to native ints Update docs * Remove unused method * Replace `unique_ptr` usage with `shared_ptr` * Add type annotations to internal Python methods, rename `hash` variable, fix typos * Add comment to clarify implementation detail * Fix return type * `Morphology`: Stop early when splitting fields and values
This commit is contained in:
parent
851a7ca4fa
commit
ba18d2913d
|
@ -1,23 +1,41 @@
|
|||
from cymem.cymem cimport Pool
|
||||
from preshed.maps cimport PreshMap
|
||||
cimport numpy as np
|
||||
from libc.stdint cimport uint64_t
|
||||
from libc.stdint cimport uint32_t, uint64_t
|
||||
from libcpp.unordered_map cimport unordered_map
|
||||
from libcpp.vector cimport vector
|
||||
from libcpp.memory cimport shared_ptr
|
||||
|
||||
from .structs cimport MorphAnalysisC
|
||||
from .strings cimport StringStore
|
||||
from .typedefs cimport attr_t, hash_t
|
||||
|
||||
|
||||
cdef cppclass Feature:
|
||||
hash_t field
|
||||
hash_t value
|
||||
|
||||
__init__():
|
||||
this.field = 0
|
||||
this.value = 0
|
||||
|
||||
|
||||
cdef cppclass MorphAnalysisC:
|
||||
hash_t key
|
||||
vector[Feature] features
|
||||
|
||||
__init__():
|
||||
this.key = 0
|
||||
|
||||
cdef class Morphology:
|
||||
cdef readonly Pool mem
|
||||
cdef readonly StringStore strings
|
||||
cdef PreshMap tags # Keyed by hash, value is pointer to tag
|
||||
cdef unordered_map[hash_t, shared_ptr[MorphAnalysisC]] tags
|
||||
|
||||
cdef MorphAnalysisC create_morph_tag(self, field_feature_pairs) except *
|
||||
cdef int insert(self, MorphAnalysisC tag) except -1
|
||||
cdef shared_ptr[MorphAnalysisC] _lookup_tag(self, hash_t tag_hash)
|
||||
cdef void _intern_morph_tag(self, hash_t tag_key, feats)
|
||||
cdef hash_t _add(self, features)
|
||||
cdef str _normalize_features(self, features)
|
||||
cdef str get_morph_str(self, hash_t morph_key)
|
||||
cdef shared_ptr[MorphAnalysisC] get_morph_c(self, hash_t morph_key)
|
||||
|
||||
|
||||
cdef int check_feature(const MorphAnalysisC* morph, attr_t feature) nogil
|
||||
cdef list list_features(const MorphAnalysisC* morph)
|
||||
cdef np.ndarray get_by_field(const MorphAnalysisC* morph, attr_t field)
|
||||
cdef int get_n_by_field(attr_t* results, const MorphAnalysisC* morph, attr_t field) nogil
|
||||
cdef int check_feature(const shared_ptr[MorphAnalysisC] morph, attr_t feature) nogil
|
||||
cdef list list_features(const shared_ptr[MorphAnalysisC] morph)
|
||||
cdef np.ndarray get_by_field(const shared_ptr[MorphAnalysisC] morph, attr_t field)
|
||||
cdef int get_n_by_field(attr_t* results, const shared_ptr[MorphAnalysisC] morph, attr_t field) nogil
|
||||
|
|
|
@ -1,10 +1,10 @@
|
|||
# cython: infer_types
|
||||
import numpy
|
||||
import warnings
|
||||
from typing import Union, Tuple, List, Dict, Optional
|
||||
from cython.operator cimport dereference as deref
|
||||
from libcpp.memory cimport shared_ptr
|
||||
|
||||
from .attrs cimport POS
|
||||
|
||||
from .parts_of_speech import IDS as POS_IDS
|
||||
from .errors import Warnings
|
||||
from . import symbols
|
||||
|
||||
|
@ -24,134 +24,187 @@ cdef class Morphology:
|
|||
EMPTY_MORPH = symbols.NAMES[symbols._]
|
||||
|
||||
def __init__(self, StringStore strings):
|
||||
self.mem = Pool()
|
||||
self.strings = strings
|
||||
self.tags = PreshMap()
|
||||
|
||||
def __reduce__(self):
|
||||
tags = set([self.get(self.strings[s]) for s in self.strings])
|
||||
tags -= set([""])
|
||||
return (unpickle_morphology, (self.strings, sorted(tags)), None, None)
|
||||
|
||||
def add(self, features):
|
||||
cdef shared_ptr[MorphAnalysisC] _lookup_tag(self, hash_t tag_hash):
|
||||
match = self.tags.find(tag_hash)
|
||||
if match != self.tags.const_end():
|
||||
return deref(match).second
|
||||
else:
|
||||
return shared_ptr[MorphAnalysisC]()
|
||||
|
||||
def _normalize_attr(self, attr_key : Union[int, str], attr_value : Union[int, str]) -> Optional[Tuple[str, Union[str, List[str]]]]:
|
||||
if isinstance(attr_key, (int, str)) and isinstance(attr_value, (int, str)):
|
||||
attr_key = self.strings.as_string(attr_key)
|
||||
attr_value = self.strings.as_string(attr_value)
|
||||
|
||||
# Preserve multiple values as a list
|
||||
if self.VALUE_SEP in attr_value:
|
||||
values = attr_value.split(self.VALUE_SEP)
|
||||
values.sort()
|
||||
attr_value = values
|
||||
else:
|
||||
warnings.warn(Warnings.W100.format(feature={attr_key: attr_value}))
|
||||
return None
|
||||
|
||||
return attr_key, attr_value
|
||||
|
||||
def _str_to_normalized_feat_dict(self, feats: str) -> Dict[str, str]:
|
||||
if not feats or feats == self.EMPTY_MORPH:
|
||||
return {}
|
||||
|
||||
out = []
|
||||
for feat in feats.split(self.FEATURE_SEP):
|
||||
field, values = feat.split(self.FIELD_SEP, 1)
|
||||
normalized_attr = self._normalize_attr(field, values)
|
||||
if normalized_attr is None:
|
||||
continue
|
||||
out.append((normalized_attr[0], normalized_attr[1]))
|
||||
out.sort(key=lambda x: x[0])
|
||||
return dict(out)
|
||||
|
||||
def _dict_to_normalized_feat_dict(self, feats: Dict[Union[int, str], Union[int, str]]) -> Dict[str, str]:
|
||||
out = []
|
||||
for field, values in feats.items():
|
||||
normalized_attr = self._normalize_attr(field, values)
|
||||
if normalized_attr is None:
|
||||
continue
|
||||
out.append((normalized_attr[0], normalized_attr[1]))
|
||||
out.sort(key=lambda x: x[0])
|
||||
return dict(out)
|
||||
|
||||
|
||||
def _normalized_feat_dict_to_str(self, feats: Dict[str, str]) -> str:
|
||||
norm_feats_string = self.FEATURE_SEP.join([
|
||||
self.FIELD_SEP.join([field, self.VALUE_SEP.join(values) if isinstance(values, list) else values])
|
||||
for field, values in feats.items()
|
||||
])
|
||||
return norm_feats_string or self.EMPTY_MORPH
|
||||
|
||||
|
||||
cdef hash_t _add(self, features):
|
||||
"""Insert a morphological analysis in the morphology table, if not
|
||||
already present. The morphological analysis may be provided in the UD
|
||||
FEATS format as a string or in the tag map dict format.
|
||||
Returns the hash of the new analysis.
|
||||
"""
|
||||
cdef MorphAnalysisC* tag_ptr
|
||||
cdef hash_t tag_hash = 0
|
||||
cdef shared_ptr[MorphAnalysisC] tag
|
||||
if isinstance(features, str):
|
||||
if features == "":
|
||||
features = self.EMPTY_MORPH
|
||||
tag_ptr = <MorphAnalysisC*>self.tags.get(<hash_t>self.strings[features])
|
||||
if tag_ptr != NULL:
|
||||
return tag_ptr.key
|
||||
features = self.feats_to_dict(features)
|
||||
if not isinstance(features, dict):
|
||||
|
||||
tag_hash = self.strings[features]
|
||||
tag = self._lookup_tag(tag_hash)
|
||||
if tag:
|
||||
return deref(tag).key
|
||||
|
||||
features = self._str_to_normalized_feat_dict(features)
|
||||
elif isinstance(features, dict):
|
||||
features = self._dict_to_normalized_feat_dict(features)
|
||||
else:
|
||||
warnings.warn(Warnings.W100.format(feature=features))
|
||||
features = {}
|
||||
string_features = {self.strings.as_string(field): self.strings.as_string(values) for field, values in features.items()}
|
||||
# intified ("Field", "Field=Value") pairs
|
||||
field_feature_pairs = []
|
||||
for field in sorted(string_features):
|
||||
values = string_features[field]
|
||||
for value in values.split(self.VALUE_SEP):
|
||||
field_feature_pairs.append((
|
||||
self.strings.add(field),
|
||||
self.strings.add(field + self.FIELD_SEP + value),
|
||||
))
|
||||
cdef MorphAnalysisC tag = self.create_morph_tag(field_feature_pairs)
|
||||
|
||||
# the hash key for the tag is either the hash of the normalized UFEATS
|
||||
# string or the hash of an empty placeholder
|
||||
norm_feats_string = self.normalize_features(features)
|
||||
tag.key = self.strings.add(norm_feats_string)
|
||||
self.insert(tag)
|
||||
return tag.key
|
||||
norm_feats_string = self._normalized_feat_dict_to_str(features)
|
||||
tag_hash = self.strings.add(norm_feats_string)
|
||||
tag = self._lookup_tag(tag_hash)
|
||||
if tag:
|
||||
return deref(tag).key
|
||||
|
||||
def normalize_features(self, features):
|
||||
self._intern_morph_tag(tag_hash, features)
|
||||
return tag_hash
|
||||
|
||||
cdef void _intern_morph_tag(self, hash_t tag_key, feats):
|
||||
# intified ("Field", "Field=Value") pairs where fields with multiple values have
|
||||
# been split into individual tuples, e.g.:
|
||||
# [("Field1", "Field1=Value1"), ("Field1", "Field1=Value2"),
|
||||
# ("Field2", "Field2=Value3")]
|
||||
field_feature_pairs = []
|
||||
|
||||
# Feat dict is normalized at this point.
|
||||
for field, values in feats.items():
|
||||
field_key = self.strings.add(field)
|
||||
if isinstance(values, list):
|
||||
for value in values:
|
||||
value_key = self.strings.add(field + self.FIELD_SEP + value)
|
||||
field_feature_pairs.append((field_key, value_key))
|
||||
else:
|
||||
# We could box scalar values into a list and use a common
|
||||
# code path to generate features but that incurs a small
|
||||
# but measurable allocation/iteration overhead (as this
|
||||
# branch is taken often enough).
|
||||
value_key = self.strings.add(field + self.FIELD_SEP + values)
|
||||
field_feature_pairs.append((field_key, value_key))
|
||||
|
||||
num_features = len(field_feature_pairs)
|
||||
cdef shared_ptr[MorphAnalysisC] tag = shared_ptr[MorphAnalysisC](new MorphAnalysisC())
|
||||
deref(tag).key = tag_key
|
||||
deref(tag).features.resize(num_features)
|
||||
|
||||
for i in range(num_features):
|
||||
deref(tag).features[i].field = field_feature_pairs[i][0]
|
||||
deref(tag).features[i].value = field_feature_pairs[i][1]
|
||||
|
||||
self.tags[tag_key] = tag
|
||||
|
||||
cdef str get_morph_str(self, hash_t morph_key):
|
||||
cdef shared_ptr[MorphAnalysisC] tag = self._lookup_tag(morph_key)
|
||||
if not tag:
|
||||
return ""
|
||||
else:
|
||||
return self.strings[deref(tag).key]
|
||||
|
||||
cdef shared_ptr[MorphAnalysisC] get_morph_c(self, hash_t morph_key):
|
||||
return self._lookup_tag(morph_key)
|
||||
|
||||
cdef str _normalize_features(self, features):
|
||||
"""Create a normalized FEATS string from a features string or dict.
|
||||
|
||||
features (Union[dict, str]): Features as dict or UFEATS string.
|
||||
RETURNS (str): Features as normalized UFEATS string.
|
||||
"""
|
||||
if isinstance(features, str):
|
||||
features = self.feats_to_dict(features)
|
||||
if not isinstance(features, dict):
|
||||
features = self._str_to_normalized_feat_dict(features)
|
||||
elif isinstance(features, dict):
|
||||
features = self._dict_to_normalized_feat_dict(features)
|
||||
else:
|
||||
warnings.warn(Warnings.W100.format(feature=features))
|
||||
features = {}
|
||||
features = self.normalize_attrs(features)
|
||||
string_features = {self.strings.as_string(field): self.strings.as_string(values) for field, values in features.items()}
|
||||
# normalized UFEATS string with sorted fields and values
|
||||
norm_feats_string = self.FEATURE_SEP.join(sorted([
|
||||
self.FIELD_SEP.join([field, values])
|
||||
for field, values in string_features.items()
|
||||
]))
|
||||
return norm_feats_string or self.EMPTY_MORPH
|
||||
|
||||
def normalize_attrs(self, attrs):
|
||||
"""Convert attrs dict so that POS is always by ID, other features are
|
||||
by string. Values separated by VALUE_SEP are sorted.
|
||||
"""
|
||||
out = {}
|
||||
attrs = dict(attrs)
|
||||
for key, value in attrs.items():
|
||||
# convert POS value to ID
|
||||
if key == POS or (isinstance(key, str) and key.upper() == "POS"):
|
||||
if isinstance(value, str) and value.upper() in POS_IDS:
|
||||
value = POS_IDS[value.upper()]
|
||||
elif isinstance(value, int) and value not in POS_IDS.values():
|
||||
warnings.warn(Warnings.W100.format(feature={key: value}))
|
||||
continue
|
||||
out[POS] = value
|
||||
# accept any string or ID fields and values and convert to strings
|
||||
elif isinstance(key, (int, str)) and isinstance(value, (int, str)):
|
||||
key = self.strings.as_string(key)
|
||||
value = self.strings.as_string(value)
|
||||
# sort values
|
||||
if self.VALUE_SEP in value:
|
||||
value = self.VALUE_SEP.join(sorted(value.split(self.VALUE_SEP)))
|
||||
out[key] = value
|
||||
else:
|
||||
warnings.warn(Warnings.W100.format(feature={key: value}))
|
||||
return out
|
||||
return self._normalized_feat_dict_to_str(features)
|
||||
|
||||
cdef MorphAnalysisC create_morph_tag(self, field_feature_pairs) except *:
|
||||
"""Creates a MorphAnalysisC from a list of intified
|
||||
("Field", "Field=Value") tuples where fields with multiple values have
|
||||
been split into individual tuples, e.g.:
|
||||
[("Field1", "Field1=Value1"), ("Field1", "Field1=Value2"),
|
||||
("Field2", "Field2=Value3")]
|
||||
"""
|
||||
cdef MorphAnalysisC tag
|
||||
tag.length = len(field_feature_pairs)
|
||||
if tag.length > 0:
|
||||
tag.fields = <attr_t*>self.mem.alloc(tag.length, sizeof(attr_t))
|
||||
tag.features = <attr_t*>self.mem.alloc(tag.length, sizeof(attr_t))
|
||||
for i, (field, feature) in enumerate(field_feature_pairs):
|
||||
tag.fields[i] = field
|
||||
tag.features[i] = feature
|
||||
return tag
|
||||
def add(self, features):
|
||||
return self._add(features)
|
||||
|
||||
cdef int insert(self, MorphAnalysisC tag) except -1:
|
||||
cdef hash_t key = tag.key
|
||||
if self.tags.get(key) == NULL:
|
||||
tag_ptr = <MorphAnalysisC*>self.mem.alloc(1, sizeof(MorphAnalysisC))
|
||||
tag_ptr[0] = tag
|
||||
self.tags.set(key, <void*>tag_ptr)
|
||||
def get(self, morph_key):
|
||||
return self.get_morph_str(morph_key)
|
||||
|
||||
def get(self, hash_t morph):
|
||||
tag = <MorphAnalysisC*>self.tags.get(morph)
|
||||
if tag == NULL:
|
||||
return ""
|
||||
else:
|
||||
return self.strings[tag.key]
|
||||
def normalize_features(self, features):
|
||||
return self._normalize_features(features)
|
||||
|
||||
@staticmethod
|
||||
def feats_to_dict(feats):
|
||||
def feats_to_dict(feats, *, sort_values=True):
|
||||
if not feats or feats == Morphology.EMPTY_MORPH:
|
||||
return {}
|
||||
return {field: Morphology.VALUE_SEP.join(sorted(values.split(Morphology.VALUE_SEP))) for field, values in
|
||||
[feat.split(Morphology.FIELD_SEP) for feat in feats.split(Morphology.FEATURE_SEP)]}
|
||||
|
||||
out = {}
|
||||
for feat in feats.split(Morphology.FEATURE_SEP):
|
||||
field, values = feat.split(Morphology.FIELD_SEP, 1)
|
||||
if sort_values:
|
||||
values = values.split(Morphology.VALUE_SEP)
|
||||
values.sort()
|
||||
values = Morphology.VALUE_SEP.join(values)
|
||||
|
||||
out[field] = values
|
||||
return out
|
||||
|
||||
@staticmethod
|
||||
def dict_to_feats(feats_dict):
|
||||
|
@ -160,34 +213,34 @@ cdef class Morphology:
|
|||
return Morphology.FEATURE_SEP.join(sorted([Morphology.FIELD_SEP.join([field, Morphology.VALUE_SEP.join(sorted(values.split(Morphology.VALUE_SEP)))]) for field, values in feats_dict.items()]))
|
||||
|
||||
|
||||
cdef int check_feature(const MorphAnalysisC* morph, attr_t feature) nogil:
|
||||
cdef int check_feature(const shared_ptr[MorphAnalysisC] morph, attr_t feature) nogil:
|
||||
cdef int i
|
||||
for i in range(morph.length):
|
||||
if morph.features[i] == feature:
|
||||
for i in range(deref(morph).features.size()):
|
||||
if deref(morph).features[i].value == feature:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
cdef list list_features(const MorphAnalysisC* morph):
|
||||
cdef list list_features(const shared_ptr[MorphAnalysisC] morph):
|
||||
cdef int i
|
||||
features = []
|
||||
for i in range(morph.length):
|
||||
features.append(morph.features[i])
|
||||
for i in range(deref(morph).features.size()):
|
||||
features.append(deref(morph).features[i].value)
|
||||
return features
|
||||
|
||||
|
||||
cdef np.ndarray get_by_field(const MorphAnalysisC* morph, attr_t field):
|
||||
cdef np.ndarray results = numpy.zeros((morph.length,), dtype="uint64")
|
||||
cdef np.ndarray get_by_field(const shared_ptr[MorphAnalysisC] morph, attr_t field):
|
||||
cdef np.ndarray results = numpy.zeros((deref(morph).features.size(),), dtype="uint64")
|
||||
n = get_n_by_field(<uint64_t*>results.data, morph, field)
|
||||
return results[:n]
|
||||
|
||||
|
||||
cdef int get_n_by_field(attr_t* results, const MorphAnalysisC* morph, attr_t field) nogil:
|
||||
cdef int get_n_by_field(attr_t* results, const shared_ptr[MorphAnalysisC] morph, attr_t field) nogil:
|
||||
cdef int n_results = 0
|
||||
cdef int i
|
||||
for i in range(morph.length):
|
||||
if morph.fields[i] == field:
|
||||
results[n_results] = morph.features[i]
|
||||
for i in range(deref(morph).features.size()):
|
||||
if deref(morph).features[i].field == field:
|
||||
results[n_results] = deref(morph).features[i].value
|
||||
n_results += 1
|
||||
return n_results
|
||||
|
||||
|
|
|
@ -127,8 +127,8 @@ class Morphologizer(Tagger):
|
|||
|
||||
@property
|
||||
def labels(self):
|
||||
"""RETURNS (Tuple[str]): The labels currently added to the component."""
|
||||
return tuple(self.cfg["labels_morph"].keys())
|
||||
"""RETURNS (Iterable[str]): The labels currently added to the component."""
|
||||
return self.cfg["labels_morph"].keys()
|
||||
|
||||
@property
|
||||
def label_data(self) -> Dict[str, Dict[str, Union[str, float, int, None]]]:
|
||||
|
@ -151,7 +151,7 @@ class Morphologizer(Tagger):
|
|||
# normalize label
|
||||
norm_label = self.vocab.morphology.normalize_features(label)
|
||||
# extract separate POS and morph tags
|
||||
label_dict = Morphology.feats_to_dict(label)
|
||||
label_dict = Morphology.feats_to_dict(label, sort_values=False)
|
||||
pos = label_dict.get(self.POS_FEAT, "")
|
||||
if self.POS_FEAT in label_dict:
|
||||
label_dict.pop(self.POS_FEAT)
|
||||
|
@ -189,7 +189,7 @@ class Morphologizer(Tagger):
|
|||
continue
|
||||
morph = str(token.morph)
|
||||
# create and add the combined morph+POS label
|
||||
morph_dict = Morphology.feats_to_dict(morph)
|
||||
morph_dict = Morphology.feats_to_dict(morph, sort_values=False)
|
||||
if pos:
|
||||
morph_dict[self.POS_FEAT] = pos
|
||||
norm_label = self.vocab.strings[self.vocab.morphology.add(morph_dict)]
|
||||
|
@ -206,7 +206,7 @@ class Morphologizer(Tagger):
|
|||
for i, token in enumerate(example.reference):
|
||||
pos = token.pos_
|
||||
morph = str(token.morph)
|
||||
morph_dict = Morphology.feats_to_dict(morph)
|
||||
morph_dict = Morphology.feats_to_dict(morph, sort_values=False)
|
||||
if pos:
|
||||
morph_dict[self.POS_FEAT] = pos
|
||||
norm_label = self.vocab.strings[self.vocab.morphology.add(morph_dict)]
|
||||
|
@ -231,26 +231,29 @@ class Morphologizer(Tagger):
|
|||
cdef Vocab vocab = self.vocab
|
||||
cdef bint overwrite = self.cfg["overwrite"]
|
||||
cdef bint extend = self.cfg["extend"]
|
||||
labels = self.labels
|
||||
|
||||
# We require random access for the upcoming ops, so we need
|
||||
# to allocate a compatible container out of the iterable.
|
||||
labels = tuple(self.labels)
|
||||
for i, doc in enumerate(docs):
|
||||
doc_tag_ids = batch_tag_ids[i]
|
||||
if hasattr(doc_tag_ids, "get"):
|
||||
doc_tag_ids = doc_tag_ids.get()
|
||||
for j, tag_id in enumerate(doc_tag_ids):
|
||||
morph = labels[tag_id]
|
||||
morph = labels[int(tag_id)]
|
||||
# set morph
|
||||
if doc.c[j].morph == 0 or overwrite or extend:
|
||||
if overwrite and extend:
|
||||
# morphologizer morph overwrites any existing features
|
||||
# while extending
|
||||
extended_morph = Morphology.feats_to_dict(self.vocab.strings[doc.c[j].morph])
|
||||
extended_morph.update(Morphology.feats_to_dict(self.cfg["labels_morph"].get(morph, 0)))
|
||||
extended_morph = Morphology.feats_to_dict(self.vocab.strings[doc.c[j].morph], sort_values=False)
|
||||
extended_morph.update(Morphology.feats_to_dict(self.cfg["labels_morph"].get(morph, 0), sort_values=False))
|
||||
doc.c[j].morph = self.vocab.morphology.add(extended_morph)
|
||||
elif extend:
|
||||
# existing features are preserved and any new features
|
||||
# are added
|
||||
extended_morph = Morphology.feats_to_dict(self.cfg["labels_morph"].get(morph, 0))
|
||||
extended_morph.update(Morphology.feats_to_dict(self.vocab.strings[doc.c[j].morph]))
|
||||
extended_morph = Morphology.feats_to_dict(self.cfg["labels_morph"].get(morph, 0), sort_values=False)
|
||||
extended_morph.update(Morphology.feats_to_dict(self.vocab.strings[doc.c[j].morph], sort_values=False))
|
||||
doc.c[j].morph = self.vocab.morphology.add(extended_morph)
|
||||
else:
|
||||
# clobber
|
||||
|
@ -270,7 +273,7 @@ class Morphologizer(Tagger):
|
|||
DOCS: https://spacy.io/api/morphologizer#get_loss
|
||||
"""
|
||||
validate_examples(examples, "Morphologizer.get_loss")
|
||||
loss_func = SequenceCategoricalCrossentropy(names=self.labels, normalize=False)
|
||||
loss_func = SequenceCategoricalCrossentropy(names=tuple(self.labels), normalize=False)
|
||||
truths = []
|
||||
for eg in examples:
|
||||
eg_truths = []
|
||||
|
@ -291,7 +294,7 @@ class Morphologizer(Tagger):
|
|||
label = None
|
||||
# Otherwise, generate the combined label
|
||||
else:
|
||||
label_dict = Morphology.feats_to_dict(morph)
|
||||
label_dict = Morphology.feats_to_dict(morph, sort_values=False)
|
||||
if pos:
|
||||
label_dict[self.POS_FEAT] = pos
|
||||
label = self.vocab.strings[self.vocab.morphology.add(label_dict)]
|
||||
|
|
|
@ -58,14 +58,6 @@ cdef struct TokenC:
|
|||
hash_t ent_id
|
||||
|
||||
|
||||
cdef struct MorphAnalysisC:
|
||||
hash_t key
|
||||
int length
|
||||
|
||||
attr_t* fields
|
||||
attr_t* features
|
||||
|
||||
|
||||
# Internal struct, for storage and disambiguation of entities.
|
||||
cdef struct KBEntryC:
|
||||
|
||||
|
|
|
@ -1,9 +1,12 @@
|
|||
from ..vocab cimport Vocab
|
||||
from ..typedefs cimport hash_t
|
||||
from ..structs cimport MorphAnalysisC
|
||||
from ..morphology cimport MorphAnalysisC
|
||||
from libcpp.memory cimport shared_ptr
|
||||
|
||||
|
||||
cdef class MorphAnalysis:
|
||||
cdef readonly Vocab vocab
|
||||
cdef readonly hash_t key
|
||||
cdef MorphAnalysisC c
|
||||
cdef shared_ptr[MorphAnalysisC] c
|
||||
|
||||
cdef void _init_c(self, hash_t key)
|
||||
|
|
|
@ -5,7 +5,12 @@ from ..errors import Errors
|
|||
from ..morphology import Morphology
|
||||
from ..vocab cimport Vocab
|
||||
from ..typedefs cimport hash_t, attr_t
|
||||
from ..morphology cimport list_features, check_feature, get_by_field
|
||||
from ..morphology cimport list_features, check_feature, get_by_field, MorphAnalysisC
|
||||
from libcpp.memory cimport shared_ptr
|
||||
from cython.operator cimport dereference as deref
|
||||
|
||||
|
||||
cdef shared_ptr[MorphAnalysisC] EMPTY_MORPH_TAG = shared_ptr[MorphAnalysisC](new MorphAnalysisC())
|
||||
|
||||
|
||||
cdef class MorphAnalysis:
|
||||
|
@ -13,39 +18,38 @@ cdef class MorphAnalysis:
|
|||
def __init__(self, Vocab vocab, features=dict()):
|
||||
self.vocab = vocab
|
||||
self.key = self.vocab.morphology.add(features)
|
||||
analysis = <const MorphAnalysisC*>self.vocab.morphology.tags.get(self.key)
|
||||
if analysis is not NULL:
|
||||
self.c = analysis[0]
|
||||
self._init_c(self.key)
|
||||
|
||||
cdef void _init_c(self, hash_t key):
|
||||
cdef shared_ptr[MorphAnalysisC] analysis = self.vocab.morphology.get_morph_c(key)
|
||||
if analysis:
|
||||
self.c = analysis
|
||||
else:
|
||||
memset(&self.c, 0, sizeof(self.c))
|
||||
self.c = EMPTY_MORPH_TAG
|
||||
|
||||
@classmethod
|
||||
def from_id(cls, Vocab vocab, hash_t key):
|
||||
"""Create a morphological analysis from a given ID."""
|
||||
cdef MorphAnalysis morph = MorphAnalysis.__new__(MorphAnalysis, vocab)
|
||||
cdef MorphAnalysis morph = MorphAnalysis(vocab)
|
||||
morph.vocab = vocab
|
||||
morph.key = key
|
||||
analysis = <const MorphAnalysisC*>vocab.morphology.tags.get(key)
|
||||
if analysis is not NULL:
|
||||
morph.c = analysis[0]
|
||||
else:
|
||||
memset(&morph.c, 0, sizeof(morph.c))
|
||||
morph._init_c(key)
|
||||
return morph
|
||||
|
||||
def __contains__(self, feature):
|
||||
"""Test whether the morphological analysis contains some feature."""
|
||||
cdef attr_t feat_id = self.vocab.strings.as_int(feature)
|
||||
return check_feature(&self.c, feat_id)
|
||||
return check_feature(self.c, feat_id)
|
||||
|
||||
def __iter__(self):
|
||||
"""Iterate over the features in the analysis."""
|
||||
cdef attr_t feature
|
||||
for feature in list_features(&self.c):
|
||||
for feature in list_features(self.c):
|
||||
yield self.vocab.strings[feature]
|
||||
|
||||
def __len__(self):
|
||||
"""The number of features in the analysis."""
|
||||
return self.c.length
|
||||
return deref(self.c).features.size()
|
||||
|
||||
def __hash__(self):
|
||||
return self.key
|
||||
|
@ -61,7 +65,7 @@ cdef class MorphAnalysis:
|
|||
def get(self, field):
|
||||
"""Retrieve feature values by field."""
|
||||
cdef attr_t field_id = self.vocab.strings.as_int(field)
|
||||
cdef np.ndarray results = get_by_field(&self.c, field_id)
|
||||
cdef np.ndarray results = get_by_field(self.c, field_id)
|
||||
features = [self.vocab.strings[result] for result in results]
|
||||
return [f.split(Morphology.FIELD_SEP)[1] for f in features]
|
||||
|
||||
|
@ -69,7 +73,7 @@ cdef class MorphAnalysis:
|
|||
"""Produce a json serializable representation as a UD FEATS-style
|
||||
string.
|
||||
"""
|
||||
morph_string = self.vocab.strings[self.c.key]
|
||||
morph_string = self.vocab.strings[deref(self.c).key]
|
||||
if morph_string == self.vocab.morphology.EMPTY_MORPH:
|
||||
return ""
|
||||
return morph_string
|
||||
|
|
|
@ -22,6 +22,7 @@ from .. import parts_of_speech
|
|||
from ..errors import Errors, Warnings
|
||||
from ..attrs import IOB_STRINGS
|
||||
from .underscore import Underscore, get_ext_args
|
||||
from cython.operator cimport dereference as deref
|
||||
|
||||
|
||||
cdef class Token:
|
||||
|
@ -230,7 +231,7 @@ cdef class Token:
|
|||
# Check that the morph has the same vocab
|
||||
if self.vocab != morph.vocab:
|
||||
raise ValueError(Errors.E1013)
|
||||
self.c.morph = morph.c.key
|
||||
self.c.morph = deref(morph.c).key
|
||||
|
||||
def set_morph(self, features):
|
||||
cdef hash_t key
|
||||
|
|
|
@ -401,7 +401,7 @@ coarse-grained POS as the feature `POS`.
|
|||
|
||||
| Name | Description |
|
||||
| ----------- | ------------------------------------------------------ |
|
||||
| **RETURNS** | The labels added to the component. ~~Tuple[str, ...]~~ |
|
||||
| **RETURNS** | The labels added to the component. ~~Iterable[str, ...]~~ |
|
||||
|
||||
## Morphologizer.label_data {#label_data tag="property" new="3"}
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user