mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-25 17:36:30 +03:00
* Repurporse the Tagger class as a generic Model, wrapping thinc's interface
This commit is contained in:
parent
fe2a5e0370
commit
bb0b00f819
34
spacy/_ml.pxd
Normal file
34
spacy/_ml.pxd
Normal file
|
@ -0,0 +1,34 @@
|
|||
from libc.stdint cimport uint8_t
|
||||
|
||||
from cymem.cymem cimport Pool
|
||||
|
||||
from thinc.learner cimport LinearModel
|
||||
from thinc.features cimport Extractor
|
||||
from thinc.typedefs cimport atom_t, feat_t, weight_t, class_t
|
||||
|
||||
from preshed.maps cimport PreshMapArray
|
||||
|
||||
from .typedefs cimport hash_t, id_t
|
||||
from .tokens cimport Tokens
|
||||
|
||||
|
||||
cdef class Model:
|
||||
cdef class_t predict(self, atom_t* context) except *
|
||||
cdef class_t predict_among(self, atom_t* context, bint* valid) except *
|
||||
cdef class_t predict_and_update(self, atom_t* context, const bint* valid,
|
||||
const int* costs) except *
|
||||
|
||||
cdef object model_loc
|
||||
cdef Extractor _extractor
|
||||
cdef LinearModel _model
|
||||
|
||||
|
||||
"""
|
||||
cdef class HastyModel:
|
||||
cdef class_t predict(self, const atom_t* context, object golds=*) except *
|
||||
|
||||
cdef Model _model1
|
||||
cdef Model _model2
|
||||
|
||||
c
|
||||
"""
|
138
spacy/_ml.pyx
Normal file
138
spacy/_ml.pyx
Normal file
|
@ -0,0 +1,138 @@
|
|||
# cython: profile=True
|
||||
from __future__ import unicode_literals
|
||||
from __future__ import division
|
||||
|
||||
from os import path
|
||||
import os
|
||||
from collections import defaultdict
|
||||
import shutil
|
||||
import random
|
||||
import json
|
||||
import cython
|
||||
|
||||
from thinc.features cimport Feature, count_feats
|
||||
|
||||
|
||||
def setup_model_dir(tag_names, tag_map, templates, model_dir):
|
||||
if path.exists(model_dir):
|
||||
shutil.rmtree(model_dir)
|
||||
os.mkdir(model_dir)
|
||||
config = {
|
||||
'templates': templates,
|
||||
'tag_names': tag_names,
|
||||
'tag_map': tag_map
|
||||
}
|
||||
with open(path.join(model_dir, 'config.json'), 'w') as file_:
|
||||
json.dump(config, file_)
|
||||
|
||||
|
||||
cdef class Model:
|
||||
def __init__(self, n_classes, templates, model_dir=None):
|
||||
self._extractor = Extractor(templates)
|
||||
self._model = LinearModel(n_classes, self._extractor.n_templ)
|
||||
self.model_loc = path.join(model_dir, 'model') if model_dir else None
|
||||
if self.model_loc and path.exists(self.model_loc):
|
||||
self._model.load(self.model_loc, freq_thresh=0)
|
||||
|
||||
cdef class_t predict(self, atom_t* context) except *:
|
||||
cdef int n_feats
|
||||
cdef const Feature* feats = self._extractor.get_feats(context, &n_feats)
|
||||
cdef const weight_t* scores = self._model.get_scores(feats, n_feats)
|
||||
guess = _arg_max(scores, self._model.nr_class)
|
||||
return guess
|
||||
|
||||
cdef class_t predict_among(self, atom_t* context, const bint* valid) except *:
|
||||
cdef int n_feats
|
||||
cdef const Feature* feats = self._extractor.get_feats(context, &n_feats)
|
||||
cdef const weight_t* scores = self._model.get_scores(feats, n_feats)
|
||||
return _arg_max_among(scores, valid, self._model.nr_class)
|
||||
|
||||
cdef class_t predict_and_update(self, atom_t* context, const bint* valid,
|
||||
const int* costs) except *:
|
||||
cdef:
|
||||
int n_feats
|
||||
const Feature* feats
|
||||
const weight_t* scores
|
||||
|
||||
int guess
|
||||
int best
|
||||
int cost
|
||||
int i
|
||||
weight_t score
|
||||
|
||||
feats = self._extractor.get_feats(context, &n_feats)
|
||||
scores = self._model.get_scores(feats, n_feats)
|
||||
guess = _arg_max_among(scores, valid, self._model.nr_class)
|
||||
cost = costs[guess]
|
||||
if cost == 0:
|
||||
self._model.update({})
|
||||
return guess
|
||||
|
||||
guess_counts = defaultdict(int)
|
||||
best_counts = defaultdict(int)
|
||||
for i in range(n_feats):
|
||||
feat = (feats[i].i, feats[i].key)
|
||||
upd = feats[i].value * cost
|
||||
best_counts[feat] += upd
|
||||
guess_counts[feat] -= upd
|
||||
best = -1
|
||||
score = 0
|
||||
for i in range(self._model.nr_class):
|
||||
if valid[i] and costs[i] == 0 and (best == -1 or scores[i] > score):
|
||||
best = i
|
||||
score = scores[i]
|
||||
self._model.update({guess: guess_counts, best: best_counts})
|
||||
return guess
|
||||
|
||||
def end_training(self):
|
||||
self._model.end_training()
|
||||
self._model.dump(self.model_loc, freq_thresh=0)
|
||||
|
||||
|
||||
"""
|
||||
cdef class HastyModel:
|
||||
def __init__(self, model_dir):
|
||||
cfg = json.load(open(path.join(model_dir, 'config.json')))
|
||||
templates = cfg['templates']
|
||||
univ_counts = {}
|
||||
cdef unicode tag
|
||||
cdef unicode univ_tag
|
||||
tag_names = cfg['tag_names']
|
||||
self.extractor = Extractor(templates)
|
||||
self.model = LinearModel(len(tag_names) + 1, self.extractor.n_templ+2) # TODO
|
||||
if path.exists(path.join(model_dir, 'model')):
|
||||
self.model.load(path.join(model_dir, 'model'))
|
||||
|
||||
cdef class_t predict(self, atom_t* context) except *:
|
||||
pass
|
||||
|
||||
cdef class_t predict_among(self, atom_t* context, bint* valid) except *:
|
||||
pass
|
||||
|
||||
cdef class_t predict_and_update(self, atom_t* context, int* costs) except *:
|
||||
pass
|
||||
|
||||
def dump(self, model_dir):
|
||||
pass
|
||||
"""
|
||||
|
||||
cdef int _arg_max(const weight_t* scores, int n_classes) except -1:
|
||||
cdef int best = 0
|
||||
cdef weight_t score = scores[best]
|
||||
cdef int i
|
||||
for i in range(1, n_classes):
|
||||
if scores[i] >= score:
|
||||
score = scores[i]
|
||||
best = i
|
||||
return best
|
||||
|
||||
|
||||
cdef int _arg_max_among(const weight_t* scores, const bint* valid, int n_classes) except -1:
|
||||
cdef int clas
|
||||
cdef weight_t score = 0
|
||||
cdef int best = -1
|
||||
for clas in range(n_classes):
|
||||
if valid[clas] and (best == -1 or scores[clas] > score):
|
||||
score = scores[clas]
|
||||
best = clas
|
||||
return best
|
|
@ -1,20 +1,24 @@
|
|||
from preshed.maps cimport PreshMapArray
|
||||
from cymem.cymem cimport Pool
|
||||
|
||||
from ..tagger cimport Tagger
|
||||
from .._ml cimport Model
|
||||
from ..strings cimport StringStore
|
||||
from ..structs cimport TokenC, Lexeme, Morphology, PosTag
|
||||
from ..typedefs cimport univ_tag_t
|
||||
from .lemmatizer import Lemmatizer
|
||||
|
||||
|
||||
cdef class EnPosTagger(Tagger):
|
||||
cdef class EnPosTagger:
|
||||
cdef readonly Pool mem
|
||||
cdef readonly StringStore strings
|
||||
cdef readonly Model model
|
||||
cdef public object lemmatizer
|
||||
cdef PreshMapArray _morph_cache
|
||||
|
||||
cdef PosTag* tags
|
||||
cdef readonly object tag_names
|
||||
cdef readonly object tag_map
|
||||
cdef readonly int n_tags
|
||||
|
||||
cdef int set_morph(self, const int i, TokenC* tokens) except -1
|
||||
cdef int lemmatize(self, const univ_tag_t pos, const Lexeme* lex) except -1
|
||||
|
|
|
@ -2,6 +2,9 @@
|
|||
from os import path
|
||||
import json
|
||||
|
||||
from libc.string cimport memset
|
||||
|
||||
from cymem.cymem cimport Address
|
||||
from thinc.typedefs cimport atom_t
|
||||
|
||||
from ..typedefs cimport univ_tag_t
|
||||
|
@ -203,16 +206,20 @@ cdef struct _CachedMorph:
|
|||
int lemma
|
||||
|
||||
|
||||
cdef class EnPosTagger(Tagger):
|
||||
cdef class EnPosTagger:
|
||||
"""A part-of-speech tagger for English"""
|
||||
def __init__(self, StringStore strings, data_dir):
|
||||
self.mem = Pool()
|
||||
model_dir = path.join(data_dir, 'pos')
|
||||
Tagger.__init__(self, path.join(model_dir))
|
||||
self.strings = strings
|
||||
cfg = json.load(open(path.join(data_dir, 'pos', 'config.json')))
|
||||
self.tag_names = sorted(cfg['tag_names'])
|
||||
self.n_tags = len(self.tag_names)
|
||||
self.tag_map = cfg['tag_map']
|
||||
cdef int n_tags = len(self.tag_names) + 1
|
||||
|
||||
self.model = Model(n_tags, cfg['templates'], model_dir=model_dir)
|
||||
|
||||
self._morph_cache = PreshMapArray(n_tags)
|
||||
self.tags = <PosTag*>self.mem.alloc(n_tags, sizeof(PosTag))
|
||||
for i, tag in enumerate(sorted(self.tag_names)):
|
||||
|
@ -235,20 +242,27 @@ cdef class EnPosTagger(Tagger):
|
|||
cdef TokenC* t = tokens.data
|
||||
for i in range(tokens.length):
|
||||
fill_context(context, i, t)
|
||||
t[i].fine_pos = self.predict(context)
|
||||
t[i].fine_pos = self.model.predict(context)
|
||||
self.set_morph(i, t)
|
||||
|
||||
def train(self, Tokens tokens, golds):
|
||||
def train(self, Tokens tokens, py_golds):
|
||||
cdef int i
|
||||
cdef atom_t[N_CONTEXT_FIELDS] context
|
||||
c = 0
|
||||
cdef Address costs_mem = Address(self.n_tags, sizeof(int))
|
||||
cdef Address valid_mem = Address(self.n_tags, sizeof(bint))
|
||||
cdef int* costs = <int*>costs_mem.ptr
|
||||
cdef bint* valid = <bint*>valid_mem.ptr
|
||||
memset(valid, 1, sizeof(int) * self.n_tags)
|
||||
correct = 0
|
||||
cdef TokenC* t = tokens.data
|
||||
for i in range(tokens.length):
|
||||
fill_context(context, i, t)
|
||||
t[i].fine_pos = self.predict(context, [golds[i]])
|
||||
memset(costs, 1, sizeof(int) * self.n_tags)
|
||||
costs[py_golds[i]] = 0
|
||||
t[i].fine_pos = self.model.predict_and_update(context, valid, costs)
|
||||
self.set_morph(i, t)
|
||||
c += t[i].fine_pos == golds[i]
|
||||
return c
|
||||
correct += costs[t[i].fine_pos] == 0
|
||||
return correct
|
||||
|
||||
cdef int set_morph(self, const int i, TokenC* tokens) except -1:
|
||||
cdef const PosTag* tag = &self.tags[tokens[i].fine_pos]
|
||||
|
|
Loading…
Reference in New Issue
Block a user