mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-27 17:54:39 +03:00
Merge pull request #13250 from danieldk/maintenance/v4-merge-master-20240119
Merge `master` into `v4`
This commit is contained in:
commit
bbf38d4d0f
1
.github/FUNDING.yml
vendored
Normal file
1
.github/FUNDING.yml
vendored
Normal file
|
@ -0,0 +1 @@
|
|||
custom: [https://explosion.ai/merch, https://explosion.ai/tailored-solutions]
|
4
.github/workflows/tests.yml
vendored
4
.github/workflows/tests.yml
vendored
|
@ -58,7 +58,7 @@ jobs:
|
|||
fail-fast: true
|
||||
matrix:
|
||||
os: [ubuntu-latest, windows-latest, macos-latest]
|
||||
python_version: ["3.11"]
|
||||
python_version: ["3.12"]
|
||||
include:
|
||||
- os: macos-latest
|
||||
python_version: "3.8"
|
||||
|
@ -66,6 +66,8 @@ jobs:
|
|||
python_version: "3.9"
|
||||
- os: windows-latest
|
||||
python_version: "3.10"
|
||||
- os: macos-latest
|
||||
python_version: "3.11"
|
||||
|
||||
runs-on: ${{ matrix.os }}
|
||||
|
||||
|
|
2
LICENSE
2
LICENSE
|
@ -1,6 +1,6 @@
|
|||
The MIT License (MIT)
|
||||
|
||||
Copyright (C) 2016-2022 ExplosionAI GmbH, 2016 spaCy GmbH, 2015 Matthew Honnibal
|
||||
Copyright (C) 2016-2023 ExplosionAI GmbH, 2016 spaCy GmbH, 2015 Matthew Honnibal
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
|
|
79
README.md
79
README.md
|
@ -6,23 +6,20 @@ spaCy is a library for **advanced Natural Language Processing** in Python and
|
|||
Cython. It's built on the very latest research, and was designed from day one to
|
||||
be used in real products.
|
||||
|
||||
spaCy comes with
|
||||
[pretrained pipelines](https://spacy.io/models) and
|
||||
currently supports tokenization and training for **70+ languages**. It features
|
||||
state-of-the-art speed and **neural network models** for tagging,
|
||||
parsing, **named entity recognition**, **text classification** and more,
|
||||
multi-task learning with pretrained **transformers** like BERT, as well as a
|
||||
spaCy comes with [pretrained pipelines](https://spacy.io/models) and currently
|
||||
supports tokenization and training for **70+ languages**. It features
|
||||
state-of-the-art speed and **neural network models** for tagging, parsing,
|
||||
**named entity recognition**, **text classification** and more, multi-task
|
||||
learning with pretrained **transformers** like BERT, as well as a
|
||||
production-ready [**training system**](https://spacy.io/usage/training) and easy
|
||||
model packaging, deployment and workflow management. spaCy is commercial
|
||||
open-source software, released under the [MIT license](https://github.com/explosion/spaCy/blob/master/LICENSE).
|
||||
open-source software, released under the
|
||||
[MIT license](https://github.com/explosion/spaCy/blob/master/LICENSE).
|
||||
|
||||
💥 **We'd love to hear more about your experience with spaCy!**
|
||||
[Fill out our survey here.](https://form.typeform.com/to/aMel9q9f)
|
||||
|
||||
💫 **Version 3.5 out now!**
|
||||
💫 **Version 3.7 out now!**
|
||||
[Check out the release notes here.](https://github.com/explosion/spaCy/releases)
|
||||
|
||||
[![Azure Pipelines](https://img.shields.io/azure-devops/build/explosion-ai/public/8/master.svg?logo=azure-pipelines&style=flat-square&label=build)](https://dev.azure.com/explosion-ai/public/_build?definitionId=8)
|
||||
[![tests](https://github.com/explosion/spaCy/actions/workflows/tests.yml/badge.svg)](https://github.com/explosion/spaCy/actions/workflows/tests.yml)
|
||||
[![Current Release Version](https://img.shields.io/github/release/explosion/spacy.svg?style=flat-square&logo=github)](https://github.com/explosion/spaCy/releases)
|
||||
[![pypi Version](https://img.shields.io/pypi/v/spacy.svg?style=flat-square&logo=pypi&logoColor=white)](https://pypi.org/project/spacy/)
|
||||
[![conda Version](https://img.shields.io/conda/vn/conda-forge/spacy.svg?style=flat-square&logo=conda-forge&logoColor=white)](https://anaconda.org/conda-forge/spacy)
|
||||
|
@ -35,35 +32,42 @@ open-source software, released under the [MIT license](https://github.com/explos
|
|||
|
||||
## 📖 Documentation
|
||||
|
||||
| Documentation | |
|
||||
| ----------------------------- | ---------------------------------------------------------------------- |
|
||||
| ⭐️ **[spaCy 101]** | New to spaCy? Here's everything you need to know! |
|
||||
| 📚 **[Usage Guides]** | How to use spaCy and its features. |
|
||||
| 🚀 **[New in v3.0]** | New features, backwards incompatibilities and migration guide. |
|
||||
| 🪐 **[Project Templates]** | End-to-end workflows you can clone, modify and run. |
|
||||
| 🎛 **[API Reference]** | The detailed reference for spaCy's API. |
|
||||
| 📦 **[Models]** | Download trained pipelines for spaCy. |
|
||||
| 🌌 **[Universe]** | Plugins, extensions, demos and books from the spaCy ecosystem. |
|
||||
| ⚙️ **[spaCy VS Code Extension]** | Additional tooling and features for working with spaCy's config files. |
|
||||
| 👩🏫 **[Online Course]** | Learn spaCy in this free and interactive online course. |
|
||||
| 📺 **[Videos]** | Our YouTube channel with video tutorials, talks and more. |
|
||||
| 🛠 **[Changelog]** | Changes and version history. |
|
||||
| 💝 **[Contribute]** | How to contribute to the spaCy project and code base. |
|
||||
| <a href="https://explosion.ai/spacy-tailored-pipelines"><img src="https://user-images.githubusercontent.com/13643239/152853098-1c761611-ccb0-4ec6-9066-b234552831fe.png" width="125" alt="spaCy Tailored Pipelines"/></a> | Get a custom spaCy pipeline, tailor-made for your NLP problem by spaCy's core developers. Streamlined, production-ready, predictable and maintainable. Start by completing our 5-minute questionnaire to tell us what you need and we'll be in touch! **[Learn more →](https://explosion.ai/spacy-tailored-pipelines)** |
|
||||
| <a href="https://explosion.ai/spacy-tailored-analysis"><img src="https://user-images.githubusercontent.com/1019791/206151300-b00cd189-e503-4797-aa1e-1bb6344062c5.png" width="125" alt="spaCy Tailored Pipelines"/></a> | Bespoke advice for problem solving, strategy and analysis for applied NLP projects. Services include data strategy, code reviews, pipeline design and annotation coaching. Curious? Fill in our 5-minute questionnaire to tell us what you need and we'll be in touch! **[Learn more →](https://explosion.ai/spacy-tailored-analysis)** |
|
||||
| Documentation | |
|
||||
| ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| ⭐️ **[spaCy 101]** | New to spaCy? Here's everything you need to know! |
|
||||
| 📚 **[Usage Guides]** | How to use spaCy and its features. |
|
||||
| 🚀 **[New in v3.0]** | New features, backwards incompatibilities and migration guide. |
|
||||
| 🪐 **[Project Templates]** | End-to-end workflows you can clone, modify and run. |
|
||||
| 🎛 **[API Reference]** | The detailed reference for spaCy's API. |
|
||||
| ⏩ **[GPU Processing]** | Use spaCy with CUDA-compatible GPU processing. |
|
||||
| 📦 **[Models]** | Download trained pipelines for spaCy. |
|
||||
| 🦙 **[Large Language Models]** | Integrate LLMs into spaCy pipelines. |
|
||||
| 🌌 **[Universe]** | Plugins, extensions, demos and books from the spaCy ecosystem. |
|
||||
| ⚙️ **[spaCy VS Code Extension]** | Additional tooling and features for working with spaCy's config files. |
|
||||
| 👩🏫 **[Online Course]** | Learn spaCy in this free and interactive online course. |
|
||||
| 📰 **[Blog]** | Read about current spaCy and Prodigy development, releases, talks and more from Explosion. |
|
||||
| 📺 **[Videos]** | Our YouTube channel with video tutorials, talks and more. |
|
||||
| 🛠 **[Changelog]** | Changes and version history. |
|
||||
| 💝 **[Contribute]** | How to contribute to the spaCy project and code base. |
|
||||
| 👕 **[Swag]** | Support us and our work with unique, custom-designed swag! |
|
||||
| <a href="https://explosion.ai/tailored-solutions"><img src="https://github.com/explosion/spaCy/assets/13643239/36d2a42e-98c0-4599-90e1-788ef75181be" width="150" alt="Tailored Solutions"/></a> | Custom NLP consulting, implementation and strategic advice by spaCy’s core development team. Streamlined, production-ready, predictable and maintainable. Send us an email or take our 5-minute questionnaire, and well'be in touch! **[Learn more →](https://explosion.ai/tailored-solutions)** |
|
||||
|
||||
[spacy 101]: https://spacy.io/usage/spacy-101
|
||||
[new in v3.0]: https://spacy.io/usage/v3
|
||||
[usage guides]: https://spacy.io/usage/
|
||||
[api reference]: https://spacy.io/api/
|
||||
[gpu processing]: https://spacy.io/usage#gpu
|
||||
[models]: https://spacy.io/models
|
||||
[large language models]: https://spacy.io/usage/large-language-models
|
||||
[universe]: https://spacy.io/universe
|
||||
[spaCy VS Code Extension]: https://github.com/explosion/spacy-vscode
|
||||
[spacy vs code extension]: https://github.com/explosion/spacy-vscode
|
||||
[videos]: https://www.youtube.com/c/ExplosionAI
|
||||
[online course]: https://course.spacy.io
|
||||
[blog]: https://explosion.ai
|
||||
[project templates]: https://github.com/explosion/projects
|
||||
[changelog]: https://spacy.io/usage#changelog
|
||||
[contribute]: https://github.com/explosion/spaCy/blob/master/CONTRIBUTING.md
|
||||
[swag]: https://explosion.ai/merch
|
||||
|
||||
## 💬 Where to ask questions
|
||||
|
||||
|
@ -92,7 +96,9 @@ more people can benefit from it.
|
|||
- State-of-the-art speed
|
||||
- Production-ready **training system**
|
||||
- Linguistically-motivated **tokenization**
|
||||
- Components for named **entity recognition**, part-of-speech-tagging, dependency parsing, sentence segmentation, **text classification**, lemmatization, morphological analysis, entity linking and more
|
||||
- Components for named **entity recognition**, part-of-speech-tagging,
|
||||
dependency parsing, sentence segmentation, **text classification**,
|
||||
lemmatization, morphological analysis, entity linking and more
|
||||
- Easily extensible with **custom components** and attributes
|
||||
- Support for custom models in **PyTorch**, **TensorFlow** and other frameworks
|
||||
- Built in **visualizers** for syntax and NER
|
||||
|
@ -118,8 +124,8 @@ For detailed installation instructions, see the
|
|||
### pip
|
||||
|
||||
Using pip, spaCy releases are available as source packages and binary wheels.
|
||||
Before you install spaCy and its dependencies, make sure that
|
||||
your `pip`, `setuptools` and `wheel` are up to date.
|
||||
Before you install spaCy and its dependencies, make sure that your `pip`,
|
||||
`setuptools` and `wheel` are up to date.
|
||||
|
||||
```bash
|
||||
pip install -U pip setuptools wheel
|
||||
|
@ -174,9 +180,9 @@ with the new version.
|
|||
|
||||
## 📦 Download model packages
|
||||
|
||||
Trained pipelines for spaCy can be installed as **Python packages**. This
|
||||
means that they're a component of your application, just like any other module.
|
||||
Models can be installed using spaCy's [`download`](https://spacy.io/api/cli#download)
|
||||
Trained pipelines for spaCy can be installed as **Python packages**. This means
|
||||
that they're a component of your application, just like any other module. Models
|
||||
can be installed using spaCy's [`download`](https://spacy.io/api/cli#download)
|
||||
command, or manually by pointing pip to a path or URL.
|
||||
|
||||
| Documentation | |
|
||||
|
@ -242,8 +248,7 @@ do that depends on your system.
|
|||
| **Mac** | Install a recent version of [XCode](https://developer.apple.com/xcode/), including the so-called "Command Line Tools". macOS and OS X ship with Python and git preinstalled. |
|
||||
| **Windows** | Install a version of the [Visual C++ Build Tools](https://visualstudio.microsoft.com/visual-cpp-build-tools/) or [Visual Studio Express](https://visualstudio.microsoft.com/vs/express/) that matches the version that was used to compile your Python interpreter. |
|
||||
|
||||
For more details
|
||||
and instructions, see the documentation on
|
||||
For more details and instructions, see the documentation on
|
||||
[compiling spaCy from source](https://spacy.io/usage#source) and the
|
||||
[quickstart widget](https://spacy.io/usage#section-quickstart) to get the right
|
||||
commands for your platform and Python version.
|
||||
|
|
|
@ -1,7 +1,4 @@
|
|||
# build version constraints for use with wheelwright + multibuild
|
||||
# build version constraints for use with wheelwright
|
||||
numpy==1.17.3; python_version=='3.8' and platform_machine!='aarch64'
|
||||
numpy==1.19.2; python_version=='3.8' and platform_machine=='aarch64'
|
||||
numpy==1.19.3; python_version=='3.9'
|
||||
numpy==1.21.3; python_version=='3.10'
|
||||
numpy==1.23.2; python_version=='3.11'
|
||||
numpy; python_version>='3.12'
|
||||
numpy>=1.25.0; python_version>='3.9'
|
||||
|
|
|
@ -1,14 +1,17 @@
|
|||
# Listeners
|
||||
|
||||
1. [Overview](#1-overview)
|
||||
2. [Initialization](#2-initialization)
|
||||
- [A. Linking listeners to the embedding component](#2a-linking-listeners-to-the-embedding-component)
|
||||
- [B. Shape inference](#2b-shape-inference)
|
||||
3. [Internal communication](#3-internal-communication)
|
||||
- [A. During prediction](#3a-during-prediction)
|
||||
- [B. During training](#3b-during-training)
|
||||
- [C. Frozen components](#3c-frozen-components)
|
||||
4. [Replacing listener with standalone](#4-replacing-listener-with-standalone)
|
||||
- [1. Overview](#1-overview)
|
||||
- [2. Initialization](#2-initialization)
|
||||
- [2A. Linking listeners to the embedding component](#2a-linking-listeners-to-the-embedding-component)
|
||||
- [2B. Shape inference](#2b-shape-inference)
|
||||
- [3. Internal communication](#3-internal-communication)
|
||||
- [3A. During prediction](#3a-during-prediction)
|
||||
- [3B. During training](#3b-during-training)
|
||||
- [Training with multiple listeners](#training-with-multiple-listeners)
|
||||
- [3C. Frozen components](#3c-frozen-components)
|
||||
- [The Tok2Vec or Transformer is frozen](#the-tok2vec-or-transformer-is-frozen)
|
||||
- [The upstream component is frozen](#the-upstream-component-is-frozen)
|
||||
- [4. Replacing listener with standalone](#4-replacing-listener-with-standalone)
|
||||
|
||||
## 1. Overview
|
||||
|
||||
|
@ -62,7 +65,7 @@ of this `find_listener()` method will specifically identify sublayers of a model
|
|||
|
||||
If it's a Transformer-based pipeline, a
|
||||
[`transformer` component](https://github.com/explosion/spacy-transformers/blob/master/spacy_transformers/pipeline_component.py)
|
||||
has a similar implementation but its `find_listener()` function will specifically look for `TransformerListener`
|
||||
has a similar implementation but its `find_listener()` function will specifically look for `TransformerListener`
|
||||
sublayers of downstream components.
|
||||
|
||||
### 2B. Shape inference
|
||||
|
@ -154,7 +157,7 @@ as a tagger or a parser. This used to be impossible before 3.1, but has become s
|
|||
embedding component in the [`annotating_components`](https://spacy.io/usage/training#annotating-components)
|
||||
list of the config. This works like any other "annotating component" because it relies on the `Doc` attributes.
|
||||
|
||||
However, if the `Tok2Vec` or `Transformer` is frozen, and not present in `annotating_components`, and a related
|
||||
However, if the `Tok2Vec` or `Transformer` is frozen, and not present in `annotating_components`, and a related
|
||||
listener isn't frozen, then a `W086` warning is shown and further training of the pipeline will likely end with `E954`.
|
||||
|
||||
#### The upstream component is frozen
|
||||
|
@ -216,5 +219,17 @@ new_model = tok2vec_model.attrs["replace_listener"](new_model)
|
|||
```
|
||||
|
||||
The new config and model are then properly stored on the `nlp` object.
|
||||
Note that this functionality (running the replacement for a transformer listener) was broken prior to
|
||||
Note that this functionality (running the replacement for a transformer listener) was broken prior to
|
||||
`spacy-transformers` 1.0.5.
|
||||
|
||||
In spaCy 3.7, `Language.replace_listeners` was updated to pass the following additional arguments to the `replace_listener` callback:
|
||||
the listener to be replaced and the `tok2vec`/`transformer` pipe from which the new model was copied. To maintain backwards-compatiblity,
|
||||
the method only passes these extra arguments for callbacks that support them:
|
||||
|
||||
```
|
||||
def replace_listener_pre_37(copied_tok2vec_model):
|
||||
...
|
||||
|
||||
def replace_listener_post_37(copied_tok2vec_model, replaced_listener, tok2vec_pipe):
|
||||
...
|
||||
```
|
||||
|
|
|
@ -158,3 +158,45 @@ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
||||
|
||||
|
||||
SciPy
|
||||
-----
|
||||
|
||||
* Files: scorer.py
|
||||
|
||||
The implementation of trapezoid() is adapted from SciPy, which is distributed
|
||||
under the following license:
|
||||
|
||||
New BSD License
|
||||
|
||||
Copyright (c) 2001-2002 Enthought, Inc. 2003-2023, SciPy Developers.
|
||||
All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions
|
||||
are met:
|
||||
|
||||
1. Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
|
||||
2. Redistributions in binary form must reproduce the above
|
||||
copyright notice, this list of conditions and the following
|
||||
disclaimer in the documentation and/or other materials provided
|
||||
with the distribution.
|
||||
|
||||
3. Neither the name of the copyright holder nor the names of its
|
||||
contributors may be used to endorse or promote products derived
|
||||
from this software without specific prior written permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
|
|
@ -6,7 +6,8 @@ requires = [
|
|||
"preshed>=3.0.2,<3.1.0",
|
||||
"murmurhash>=0.28.0,<1.1.0",
|
||||
"thinc>=9.0.0.dev4,<9.1.0",
|
||||
"numpy>=1.15.0",
|
||||
"numpy>=1.15.0; python_version < '3.9'",
|
||||
"numpy>=1.25.0; python_version >= '3.9'",
|
||||
]
|
||||
build-backend = "setuptools.build_meta"
|
||||
|
||||
|
|
|
@ -10,13 +10,14 @@ wasabi>=0.9.1,<1.2.0
|
|||
srsly>=2.4.3,<3.0.0
|
||||
catalogue>=2.0.6,<2.1.0
|
||||
typer>=0.3.0,<0.10.0
|
||||
pathy>=0.10.0
|
||||
smart-open>=5.2.1,<7.0.0
|
||||
weasel>=0.1.0,<0.4.0
|
||||
# Third party dependencies
|
||||
numpy>=1.15.0
|
||||
numpy>=1.15.0; python_version < "3.9"
|
||||
numpy>=1.19.0; python_version >= "3.9"
|
||||
requests>=2.13.0,<3.0.0
|
||||
tqdm>=4.38.0,<5.0.0
|
||||
pydantic>=1.7.4,!=1.8,!=1.8.1,<1.11.0
|
||||
pydantic>=1.7.4,!=1.8,!=1.8.1,<3.0.0
|
||||
jinja2
|
||||
langcodes>=3.2.0,<4.0.0
|
||||
# Official Python utilities
|
||||
|
@ -30,11 +31,11 @@ pytest-timeout>=1.3.0,<2.0.0
|
|||
mock>=2.0.0,<3.0.0
|
||||
flake8>=3.8.0,<6.0.0
|
||||
hypothesis>=3.27.0,<7.0.0
|
||||
mypy>=0.990,<1.1.0; platform_machine != "aarch64"
|
||||
mypy>=1.5.0,<1.6.0; platform_machine != "aarch64" and python_version >= "3.8"
|
||||
types-mock>=0.1.1
|
||||
types-setuptools>=57.0.0
|
||||
types-requests
|
||||
types-setuptools>=57.0.0
|
||||
black==22.3.0
|
||||
cython-lint>=0.15.0; python_version >= "3.7"
|
||||
cython-lint>=0.15.0
|
||||
isort>=5.0,<6.0
|
||||
|
|
21
setup.cfg
21
setup.cfg
|
@ -30,14 +30,6 @@ project_urls =
|
|||
zip_safe = false
|
||||
include_package_data = true
|
||||
python_requires = >=3.8
|
||||
setup_requires =
|
||||
cython>=0.25,<3.0
|
||||
numpy>=1.15.0
|
||||
# We also need our Cython packages here to compile against
|
||||
cymem>=2.0.2,<2.1.0
|
||||
preshed>=3.0.2,<3.1.0
|
||||
murmurhash>=0.28.0,<1.1.0
|
||||
thinc>=9.0.0.dev4,<9.1.0
|
||||
install_requires =
|
||||
# Our libraries
|
||||
spacy-legacy>=4.0.0.dev0,<4.1.0
|
||||
|
@ -49,14 +41,15 @@ install_requires =
|
|||
wasabi>=0.9.1,<1.2.0
|
||||
srsly>=2.4.3,<3.0.0
|
||||
catalogue>=2.0.6,<2.1.0
|
||||
weasel>=0.1.0,<0.4.0
|
||||
# Third-party dependencies
|
||||
typer>=0.3.0,<0.10.0
|
||||
pathy>=0.10.0
|
||||
smart-open>=5.2.1,<7.0.0
|
||||
tqdm>=4.38.0,<5.0.0
|
||||
numpy>=1.15.0
|
||||
numpy>=1.15.0; python_version < "3.9"
|
||||
numpy>=1.19.0; python_version >= "3.9"
|
||||
requests>=2.13.0,<3.0.0
|
||||
pydantic>=1.7.4,!=1.8,!=1.8.1,<1.11.0
|
||||
pydantic>=1.7.4,!=1.8,!=1.8.1,<3.0.0
|
||||
jinja2
|
||||
# Official Python utilities
|
||||
setuptools
|
||||
|
@ -71,9 +64,7 @@ console_scripts =
|
|||
lookups =
|
||||
spacy_lookups_data>=1.0.3,<1.1.0
|
||||
transformers =
|
||||
spacy_transformers>=1.1.2,<1.3.0
|
||||
ray =
|
||||
spacy_ray>=0.1.0,<1.0.0
|
||||
spacy_transformers>=1.1.2,<1.4.0
|
||||
cuda =
|
||||
cupy>=5.0.0b4,<13.0.0
|
||||
cuda80 =
|
||||
|
@ -108,6 +99,8 @@ cuda117 =
|
|||
cupy-cuda117>=5.0.0b4,<13.0.0
|
||||
cuda11x =
|
||||
cupy-cuda11x>=11.0.0,<13.0.0
|
||||
cuda12x =
|
||||
cupy-cuda12x>=11.5.0,<13.0.0
|
||||
cuda-autodetect =
|
||||
cupy-wheel>=11.0.0,<13.0.0
|
||||
apple =
|
||||
|
|
32
setup.py
32
setup.py
|
@ -1,10 +1,9 @@
|
|||
#!/usr/bin/env python
|
||||
from setuptools import Extension, setup, find_packages
|
||||
import sys
|
||||
import platform
|
||||
import numpy
|
||||
from distutils.command.build_ext import build_ext
|
||||
from distutils.sysconfig import get_python_inc
|
||||
from setuptools.command.build_ext import build_ext
|
||||
from sysconfig import get_path
|
||||
from pathlib import Path
|
||||
import shutil
|
||||
from Cython.Build import cythonize
|
||||
|
@ -80,6 +79,7 @@ COMPILER_DIRECTIVES = {
|
|||
"language_level": -3,
|
||||
"embedsignature": True,
|
||||
"annotation_typing": False,
|
||||
"profile": sys.version_info < (3, 12),
|
||||
}
|
||||
# Files to copy into the package that are otherwise not included
|
||||
COPY_FILES = {
|
||||
|
@ -89,30 +89,6 @@ COPY_FILES = {
|
|||
}
|
||||
|
||||
|
||||
def is_new_osx():
|
||||
"""Check whether we're on OSX >= 10.7"""
|
||||
if sys.platform != "darwin":
|
||||
return False
|
||||
mac_ver = platform.mac_ver()[0]
|
||||
if mac_ver.startswith("10"):
|
||||
minor_version = int(mac_ver.split(".")[1])
|
||||
if minor_version >= 7:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
return False
|
||||
|
||||
|
||||
if is_new_osx():
|
||||
# On Mac, use libc++ because Apple deprecated use of
|
||||
# libstdc
|
||||
COMPILE_OPTIONS["other"].append("-stdlib=libc++")
|
||||
LINK_OPTIONS["other"].append("-lc++")
|
||||
# g++ (used by unix compiler on mac) links to libstdc++ as a default lib.
|
||||
# See: https://stackoverflow.com/questions/1653047/avoid-linking-to-libstdc
|
||||
LINK_OPTIONS["other"].append("-nodefaultlibs")
|
||||
|
||||
|
||||
# By subclassing build_extensions we have the actual compiler that will be used which is really known only after finalize_options
|
||||
# http://stackoverflow.com/questions/724664/python-distutils-how-to-get-a-compiler-that-is-going-to-be-used
|
||||
class build_ext_options:
|
||||
|
@ -205,7 +181,7 @@ def setup_package():
|
|||
|
||||
include_dirs = [
|
||||
numpy.get_include(),
|
||||
get_python_inc(plat_specific=True),
|
||||
get_path("include"),
|
||||
]
|
||||
ext_modules = []
|
||||
ext_modules.append(
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
# cython: profile=False
|
||||
from .errors import Errors
|
||||
|
||||
IOB_STRINGS = ("", "I", "O", "B")
|
||||
|
|
|
@ -14,6 +14,7 @@ from .debug_diff import debug_diff # noqa: F401
|
|||
from .debug_model import debug_model # noqa: F401
|
||||
from .download import download # noqa: F401
|
||||
from .evaluate import evaluate # noqa: F401
|
||||
from .find_function import find_function # noqa: F401
|
||||
from .find_threshold import find_threshold # noqa: F401
|
||||
from .info import info # noqa: F401
|
||||
from .init_config import fill_config, init_config # noqa: F401
|
||||
|
@ -21,15 +22,17 @@ from .init_pipeline import init_pipeline_cli # noqa: F401
|
|||
from .package import package # noqa: F401
|
||||
from .pretrain import pretrain # noqa: F401
|
||||
from .profile import profile # noqa: F401
|
||||
from .project.assets import project_assets # noqa: F401
|
||||
from .project.clone import project_clone # noqa: F401
|
||||
from .project.document import project_document # noqa: F401
|
||||
from .project.dvc import project_update_dvc # noqa: F401
|
||||
from .project.pull import project_pull # noqa: F401
|
||||
from .project.push import project_push # noqa: F401
|
||||
from .project.run import project_run # noqa: F401
|
||||
from .train import train_cli # noqa: F401
|
||||
from .validate import validate # noqa: F401
|
||||
from .project.assets import project_assets # type: ignore[attr-defined] # noqa: F401
|
||||
from .project.clone import project_clone # type: ignore[attr-defined] # noqa: F401
|
||||
from .project.document import ( # type: ignore[attr-defined] # noqa: F401
|
||||
project_document,
|
||||
)
|
||||
from .project.dvc import project_update_dvc # type: ignore[attr-defined] # noqa: F401
|
||||
from .project.pull import project_pull # type: ignore[attr-defined] # noqa: F401
|
||||
from .project.push import project_push # type: ignore[attr-defined] # noqa: F401
|
||||
from .project.run import project_run # type: ignore[attr-defined] # noqa: F401
|
||||
from .train import train_cli # type: ignore[attr-defined] # noqa: F401
|
||||
from .validate import validate # type: ignore[attr-defined] # noqa: F401
|
||||
|
||||
|
||||
@app.command("link", no_args_is_help=True, deprecated=True, hidden=True)
|
||||
|
|
|
@ -26,10 +26,11 @@ from thinc.api import Config, ConfigValidationError, require_gpu
|
|||
from thinc.util import gpu_is_available
|
||||
from typer.main import get_command
|
||||
from wasabi import Printer, msg
|
||||
from weasel import app as project_cli
|
||||
|
||||
from .. import about
|
||||
from ..errors import RENAMED_LANGUAGE_CODES
|
||||
from ..schemas import ProjectConfigSchema, validate
|
||||
from ..schemas import validate
|
||||
from ..util import (
|
||||
ENV_VARS,
|
||||
SimpleFrozenDict,
|
||||
|
@ -41,15 +42,10 @@ from ..util import (
|
|||
run_command,
|
||||
)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from pathy import FluidPath # noqa: F401
|
||||
|
||||
|
||||
SDIST_SUFFIX = ".tar.gz"
|
||||
WHEEL_SUFFIX = "-py3-none-any.whl"
|
||||
|
||||
PROJECT_FILE = "project.yml"
|
||||
PROJECT_LOCK = "project.lock"
|
||||
COMMAND = "python -m spacy"
|
||||
NAME = "spacy"
|
||||
HELP = """spaCy Command-line Interface
|
||||
|
@ -75,11 +71,10 @@ Opt = typer.Option
|
|||
|
||||
app = typer.Typer(name=NAME, help=HELP)
|
||||
benchmark_cli = typer.Typer(name="benchmark", help=BENCHMARK_HELP, no_args_is_help=True)
|
||||
project_cli = typer.Typer(name="project", help=PROJECT_HELP, no_args_is_help=True)
|
||||
debug_cli = typer.Typer(name="debug", help=DEBUG_HELP, no_args_is_help=True)
|
||||
init_cli = typer.Typer(name="init", help=INIT_HELP, no_args_is_help=True)
|
||||
|
||||
app.add_typer(project_cli)
|
||||
app.add_typer(project_cli, name="project", help=PROJECT_HELP, no_args_is_help=True)
|
||||
app.add_typer(debug_cli)
|
||||
app.add_typer(benchmark_cli)
|
||||
app.add_typer(init_cli)
|
||||
|
@ -164,148 +159,6 @@ def _handle_renamed_language_codes(lang: Optional[str]) -> None:
|
|||
)
|
||||
|
||||
|
||||
def load_project_config(
|
||||
path: Path, interpolate: bool = True, overrides: Dict[str, Any] = SimpleFrozenDict()
|
||||
) -> Dict[str, Any]:
|
||||
"""Load the project.yml file from a directory and validate it. Also make
|
||||
sure that all directories defined in the config exist.
|
||||
|
||||
path (Path): The path to the project directory.
|
||||
interpolate (bool): Whether to substitute project variables.
|
||||
overrides (Dict[str, Any]): Optional config overrides.
|
||||
RETURNS (Dict[str, Any]): The loaded project.yml.
|
||||
"""
|
||||
config_path = path / PROJECT_FILE
|
||||
if not config_path.exists():
|
||||
msg.fail(f"Can't find {PROJECT_FILE}", config_path, exits=1)
|
||||
invalid_err = f"Invalid {PROJECT_FILE}. Double-check that the YAML is correct."
|
||||
try:
|
||||
config = srsly.read_yaml(config_path)
|
||||
except ValueError as e:
|
||||
msg.fail(invalid_err, e, exits=1)
|
||||
errors = validate(ProjectConfigSchema, config)
|
||||
if errors:
|
||||
msg.fail(invalid_err)
|
||||
print("\n".join(errors))
|
||||
sys.exit(1)
|
||||
validate_project_version(config)
|
||||
validate_project_commands(config)
|
||||
if interpolate:
|
||||
err = f"{PROJECT_FILE} validation error"
|
||||
with show_validation_error(title=err, hint_fill=False):
|
||||
config = substitute_project_variables(config, overrides)
|
||||
# Make sure directories defined in config exist
|
||||
for subdir in config.get("directories", []):
|
||||
dir_path = path / subdir
|
||||
if not dir_path.exists():
|
||||
dir_path.mkdir(parents=True)
|
||||
return config
|
||||
|
||||
|
||||
def substitute_project_variables(
|
||||
config: Dict[str, Any],
|
||||
overrides: Dict[str, Any] = SimpleFrozenDict(),
|
||||
key: str = "vars",
|
||||
env_key: str = "env",
|
||||
) -> Dict[str, Any]:
|
||||
"""Interpolate variables in the project file using the config system.
|
||||
|
||||
config (Dict[str, Any]): The project config.
|
||||
overrides (Dict[str, Any]): Optional config overrides.
|
||||
key (str): Key containing variables in project config.
|
||||
env_key (str): Key containing environment variable mapping in project config.
|
||||
RETURNS (Dict[str, Any]): The interpolated project config.
|
||||
"""
|
||||
config.setdefault(key, {})
|
||||
config.setdefault(env_key, {})
|
||||
# Substitute references to env vars with their values
|
||||
for config_var, env_var in config[env_key].items():
|
||||
config[env_key][config_var] = _parse_override(os.environ.get(env_var, ""))
|
||||
# Need to put variables in the top scope again so we can have a top-level
|
||||
# section "project" (otherwise, a list of commands in the top scope wouldn't)
|
||||
# be allowed by Thinc's config system
|
||||
cfg = Config({"project": config, key: config[key], env_key: config[env_key]})
|
||||
cfg = Config().from_str(cfg.to_str(), overrides=overrides)
|
||||
interpolated = cfg.interpolate()
|
||||
return dict(interpolated["project"])
|
||||
|
||||
|
||||
def validate_project_version(config: Dict[str, Any]) -> None:
|
||||
"""If the project defines a compatible spaCy version range, chec that it's
|
||||
compatible with the current version of spaCy.
|
||||
|
||||
config (Dict[str, Any]): The loaded config.
|
||||
"""
|
||||
spacy_version = config.get("spacy_version", None)
|
||||
if spacy_version and not is_compatible_version(about.__version__, spacy_version):
|
||||
err = (
|
||||
f"The {PROJECT_FILE} specifies a spaCy version range ({spacy_version}) "
|
||||
f"that's not compatible with the version of spaCy you're running "
|
||||
f"({about.__version__}). You can edit version requirement in the "
|
||||
f"{PROJECT_FILE} to load it, but the project may not run as expected."
|
||||
)
|
||||
msg.fail(err, exits=1)
|
||||
|
||||
|
||||
def validate_project_commands(config: Dict[str, Any]) -> None:
|
||||
"""Check that project commands and workflows are valid, don't contain
|
||||
duplicates, don't clash and only refer to commands that exist.
|
||||
|
||||
config (Dict[str, Any]): The loaded config.
|
||||
"""
|
||||
command_names = [cmd["name"] for cmd in config.get("commands", [])]
|
||||
workflows = config.get("workflows", {})
|
||||
duplicates = set([cmd for cmd in command_names if command_names.count(cmd) > 1])
|
||||
if duplicates:
|
||||
err = f"Duplicate commands defined in {PROJECT_FILE}: {', '.join(duplicates)}"
|
||||
msg.fail(err, exits=1)
|
||||
for workflow_name, workflow_steps in workflows.items():
|
||||
if workflow_name in command_names:
|
||||
err = f"Can't use workflow name '{workflow_name}': name already exists as a command"
|
||||
msg.fail(err, exits=1)
|
||||
for step in workflow_steps:
|
||||
if step not in command_names:
|
||||
msg.fail(
|
||||
f"Unknown command specified in workflow '{workflow_name}': {step}",
|
||||
f"Workflows can only refer to commands defined in the 'commands' "
|
||||
f"section of the {PROJECT_FILE}.",
|
||||
exits=1,
|
||||
)
|
||||
|
||||
|
||||
def get_hash(data, exclude: Iterable[str] = tuple()) -> str:
|
||||
"""Get the hash for a JSON-serializable object.
|
||||
|
||||
data: The data to hash.
|
||||
exclude (Iterable[str]): Top-level keys to exclude if data is a dict.
|
||||
RETURNS (str): The hash.
|
||||
"""
|
||||
if isinstance(data, dict):
|
||||
data = {k: v for k, v in data.items() if k not in exclude}
|
||||
data_str = srsly.json_dumps(data, sort_keys=True).encode("utf8")
|
||||
return hashlib.md5(data_str).hexdigest()
|
||||
|
||||
|
||||
def get_checksum(path: Union[Path, str]) -> str:
|
||||
"""Get the checksum for a file or directory given its file path. If a
|
||||
directory path is provided, this uses all files in that directory.
|
||||
|
||||
path (Union[Path, str]): The file or directory path.
|
||||
RETURNS (str): The checksum.
|
||||
"""
|
||||
path = Path(path)
|
||||
if not (path.is_file() or path.is_dir()):
|
||||
msg.fail(f"Can't get checksum for {path}: not a file or directory", exits=1)
|
||||
if path.is_file():
|
||||
return hashlib.md5(Path(path).read_bytes()).hexdigest()
|
||||
else:
|
||||
# TODO: this is currently pretty slow
|
||||
dir_checksum = hashlib.md5()
|
||||
for sub_file in sorted(fp for fp in path.rglob("*") if fp.is_file()):
|
||||
dir_checksum.update(sub_file.read_bytes())
|
||||
return dir_checksum.hexdigest()
|
||||
|
||||
|
||||
@contextmanager
|
||||
def show_validation_error(
|
||||
file_path: Optional[Union[str, Path]] = None,
|
||||
|
@ -370,166 +223,10 @@ def import_code(code_path: Optional[Union[Path, str]]) -> None:
|
|||
msg.fail(f"Couldn't load Python code: {code_path}", e, exits=1)
|
||||
|
||||
|
||||
def upload_file(src: Path, dest: Union[str, "FluidPath"]) -> None:
|
||||
"""Upload a file.
|
||||
|
||||
src (Path): The source path.
|
||||
url (str): The destination URL to upload to.
|
||||
"""
|
||||
import smart_open
|
||||
|
||||
# Create parent directories for local paths
|
||||
if isinstance(dest, Path):
|
||||
if not dest.parent.exists():
|
||||
dest.parent.mkdir(parents=True)
|
||||
|
||||
dest = str(dest)
|
||||
with smart_open.open(dest, mode="wb") as output_file:
|
||||
with src.open(mode="rb") as input_file:
|
||||
output_file.write(input_file.read())
|
||||
|
||||
|
||||
def download_file(
|
||||
src: Union[str, "FluidPath"], dest: Path, *, force: bool = False
|
||||
) -> None:
|
||||
"""Download a file using smart_open.
|
||||
|
||||
url (str): The URL of the file.
|
||||
dest (Path): The destination path.
|
||||
force (bool): Whether to force download even if file exists.
|
||||
If False, the download will be skipped.
|
||||
"""
|
||||
import smart_open
|
||||
|
||||
if dest.exists() and not force:
|
||||
return None
|
||||
src = str(src)
|
||||
with smart_open.open(src, mode="rb", compression="disable") as input_file:
|
||||
with dest.open(mode="wb") as output_file:
|
||||
shutil.copyfileobj(input_file, output_file)
|
||||
|
||||
|
||||
def ensure_pathy(path):
|
||||
"""Temporary helper to prevent importing Pathy globally (which can cause
|
||||
slow and annoying Google Cloud warning)."""
|
||||
from pathy import Pathy # noqa: F811
|
||||
|
||||
return Pathy.fluid(path)
|
||||
|
||||
|
||||
def git_checkout(
|
||||
repo: str, subpath: str, dest: Path, *, branch: str = "master", sparse: bool = False
|
||||
):
|
||||
git_version = get_git_version()
|
||||
if dest.exists():
|
||||
msg.fail("Destination of checkout must not exist", exits=1)
|
||||
if not dest.parent.exists():
|
||||
msg.fail("Parent of destination of checkout must exist", exits=1)
|
||||
if sparse and git_version >= (2, 22):
|
||||
return git_sparse_checkout(repo, subpath, dest, branch)
|
||||
elif sparse:
|
||||
# Only show warnings if the user explicitly wants sparse checkout but
|
||||
# the Git version doesn't support it
|
||||
err_old = (
|
||||
f"You're running an old version of Git (v{git_version[0]}.{git_version[1]}) "
|
||||
f"that doesn't fully support sparse checkout yet."
|
||||
)
|
||||
err_unk = "You're running an unknown version of Git, so sparse checkout has been disabled."
|
||||
msg.warn(
|
||||
f"{err_unk if git_version == (0, 0) else err_old} "
|
||||
f"This means that more files than necessary may be downloaded "
|
||||
f"temporarily. To only download the files needed, make sure "
|
||||
f"you're using Git v2.22 or above."
|
||||
)
|
||||
with make_tempdir() as tmp_dir:
|
||||
cmd = f"git -C {tmp_dir} clone {repo} . -b {branch}"
|
||||
run_command(cmd, capture=True)
|
||||
# We need Path(name) to make sure we also support subdirectories
|
||||
try:
|
||||
source_path = tmp_dir / Path(subpath)
|
||||
if not is_subpath_of(tmp_dir, source_path):
|
||||
err = f"'{subpath}' is a path outside of the cloned repository."
|
||||
msg.fail(err, repo, exits=1)
|
||||
shutil.copytree(str(source_path), str(dest))
|
||||
except FileNotFoundError:
|
||||
err = f"Can't clone {subpath}. Make sure the directory exists in the repo (branch '{branch}')"
|
||||
msg.fail(err, repo, exits=1)
|
||||
|
||||
|
||||
def git_sparse_checkout(repo, subpath, dest, branch):
|
||||
# We're using Git, partial clone and sparse checkout to
|
||||
# only clone the files we need
|
||||
# This ends up being RIDICULOUS. omg.
|
||||
# So, every tutorial and SO post talks about 'sparse checkout'...But they
|
||||
# go and *clone* the whole repo. Worthless. And cloning part of a repo
|
||||
# turns out to be completely broken. The only way to specify a "path" is..
|
||||
# a path *on the server*? The contents of which, specifies the paths. Wat.
|
||||
# Obviously this is hopelessly broken and insecure, because you can query
|
||||
# arbitrary paths on the server! So nobody enables this.
|
||||
# What we have to do is disable *all* files. We could then just checkout
|
||||
# the path, and it'd "work", but be hopelessly slow...Because it goes and
|
||||
# transfers every missing object one-by-one. So the final piece is that we
|
||||
# need to use some weird git internals to fetch the missings in bulk, and
|
||||
# *that* we can do by path.
|
||||
# We're using Git and sparse checkout to only clone the files we need
|
||||
with make_tempdir() as tmp_dir:
|
||||
# This is the "clone, but don't download anything" part.
|
||||
cmd = (
|
||||
f"git clone {repo} {tmp_dir} --no-checkout --depth 1 "
|
||||
f"-b {branch} --filter=blob:none"
|
||||
)
|
||||
run_command(cmd)
|
||||
# Now we need to find the missing filenames for the subpath we want.
|
||||
# Looking for this 'rev-list' command in the git --help? Hah.
|
||||
cmd = f"git -C {tmp_dir} rev-list --objects --all --missing=print -- {subpath}"
|
||||
ret = run_command(cmd, capture=True)
|
||||
git_repo = _http_to_git(repo)
|
||||
# Now pass those missings into another bit of git internals
|
||||
missings = " ".join([x[1:] for x in ret.stdout.split() if x.startswith("?")])
|
||||
if not missings:
|
||||
err = (
|
||||
f"Could not find any relevant files for '{subpath}'. "
|
||||
f"Did you specify a correct and complete path within repo '{repo}' "
|
||||
f"and branch {branch}?"
|
||||
)
|
||||
msg.fail(err, exits=1)
|
||||
cmd = f"git -C {tmp_dir} fetch-pack {git_repo} {missings}"
|
||||
run_command(cmd, capture=True)
|
||||
# And finally, we can checkout our subpath
|
||||
cmd = f"git -C {tmp_dir} checkout {branch} {subpath}"
|
||||
run_command(cmd, capture=True)
|
||||
|
||||
# Get a subdirectory of the cloned path, if appropriate
|
||||
source_path = tmp_dir / Path(subpath)
|
||||
if not is_subpath_of(tmp_dir, source_path):
|
||||
err = f"'{subpath}' is a path outside of the cloned repository."
|
||||
msg.fail(err, repo, exits=1)
|
||||
|
||||
shutil.move(str(source_path), str(dest))
|
||||
|
||||
|
||||
def git_repo_branch_exists(repo: str, branch: str) -> bool:
|
||||
"""Uses 'git ls-remote' to check if a repository and branch exists
|
||||
|
||||
repo (str): URL to get repo.
|
||||
branch (str): Branch on repo to check.
|
||||
RETURNS (bool): True if repo:branch exists.
|
||||
"""
|
||||
get_git_version()
|
||||
cmd = f"git ls-remote {repo} {branch}"
|
||||
# We might be tempted to use `--exit-code` with `git ls-remote`, but
|
||||
# `run_command` handles the `returncode` for us, so we'll rely on
|
||||
# the fact that stdout returns '' if the requested branch doesn't exist
|
||||
ret = run_command(cmd, capture=True)
|
||||
exists = ret.stdout != ""
|
||||
return exists
|
||||
|
||||
|
||||
def get_git_version(
|
||||
error: str = "Could not run 'git'. Make sure it's installed and the executable is available.",
|
||||
) -> Tuple[int, int]:
|
||||
"""Get the version of git and raise an error if calling 'git --version' fails.
|
||||
|
||||
error (str): The error message to show.
|
||||
RETURNS (Tuple[int, int]): The version as a (major, minor) tuple. Returns
|
||||
(0, 0) if the version couldn't be determined.
|
||||
|
@ -545,30 +242,6 @@ def get_git_version(
|
|||
return int(version[0]), int(version[1])
|
||||
|
||||
|
||||
def _http_to_git(repo: str) -> str:
|
||||
if repo.startswith("http://"):
|
||||
repo = repo.replace(r"http://", r"https://")
|
||||
if repo.startswith(r"https://"):
|
||||
repo = repo.replace("https://", "git@").replace("/", ":", 1)
|
||||
if repo.endswith("/"):
|
||||
repo = repo[:-1]
|
||||
repo = f"{repo}.git"
|
||||
return repo
|
||||
|
||||
|
||||
def is_subpath_of(parent, child):
|
||||
"""
|
||||
Check whether `child` is a path contained within `parent`.
|
||||
"""
|
||||
# Based on https://stackoverflow.com/a/37095733 .
|
||||
|
||||
# In Python 3.9, the `Path.is_relative_to()` method will supplant this, so
|
||||
# we can stop using crusty old os.path functions.
|
||||
parent_realpath = os.path.realpath(parent)
|
||||
child_realpath = os.path.realpath(child)
|
||||
return os.path.commonpath([parent_realpath, child_realpath]) == parent_realpath
|
||||
|
||||
|
||||
@overload
|
||||
def string_to_list(value: str, intify: Literal[False] = ...) -> List[str]:
|
||||
...
|
||||
|
|
|
@ -133,7 +133,9 @@ def apply(
|
|||
if len(text_files) > 0:
|
||||
streams.append(_stream_texts(text_files))
|
||||
datagen = cast(DocOrStrStream, chain(*streams))
|
||||
for doc in tqdm.tqdm(nlp.pipe(datagen, batch_size=batch_size, n_process=n_process)):
|
||||
for doc in tqdm.tqdm(
|
||||
nlp.pipe(datagen, batch_size=batch_size, n_process=n_process), disable=None
|
||||
):
|
||||
docbin.add(doc)
|
||||
if output_file.suffix == "":
|
||||
output_file = output_file.with_suffix(".spacy")
|
||||
|
|
|
@ -40,7 +40,8 @@ def assemble_cli(
|
|||
|
||||
DOCS: https://spacy.io/api/cli#assemble
|
||||
"""
|
||||
util.logger.setLevel(logging.DEBUG if verbose else logging.INFO)
|
||||
if verbose:
|
||||
util.logger.setLevel(logging.DEBUG)
|
||||
# Make sure all files and paths exists if they are needed
|
||||
if not config_path or (str(config_path) != "-" and not config_path.exists()):
|
||||
msg.fail("Config file not found", config_path, exits=1)
|
||||
|
|
|
@ -89,7 +89,7 @@ class Quartiles:
|
|||
def annotate(
|
||||
nlp: Language, docs: List[Doc], batch_size: Optional[int]
|
||||
) -> numpy.ndarray:
|
||||
docs = nlp.pipe(tqdm(docs, unit="doc"), batch_size=batch_size)
|
||||
docs = nlp.pipe(tqdm(docs, unit="doc", disable=None), batch_size=batch_size)
|
||||
wps = []
|
||||
while True:
|
||||
with time_context() as elapsed:
|
||||
|
|
|
@ -10,6 +10,8 @@ from ..util import (
|
|||
get_installed_models,
|
||||
get_minor_version,
|
||||
get_package_version,
|
||||
is_in_interactive,
|
||||
is_in_jupyter,
|
||||
is_package,
|
||||
is_prerelease_version,
|
||||
run_command,
|
||||
|
@ -85,6 +87,27 @@ def download(
|
|||
"Download and installation successful",
|
||||
f"You can now load the package via spacy.load('{model_name}')",
|
||||
)
|
||||
if is_in_jupyter():
|
||||
reload_deps_msg = (
|
||||
"If you are in a Jupyter or Colab notebook, you may need to "
|
||||
"restart Python in order to load all the package's dependencies. "
|
||||
"You can do this by selecting the 'Restart kernel' or 'Restart "
|
||||
"runtime' option."
|
||||
)
|
||||
msg.warn(
|
||||
"Restart to reload dependencies",
|
||||
reload_deps_msg,
|
||||
)
|
||||
elif is_in_interactive():
|
||||
reload_deps_msg = (
|
||||
"If you are in an interactive Python session, you may need to "
|
||||
"exit and restart Python to load all the package's dependencies. "
|
||||
"You can exit with Ctrl-D (or Ctrl-Z and Enter on Windows)."
|
||||
)
|
||||
msg.warn(
|
||||
"Restart to reload dependencies",
|
||||
reload_deps_msg,
|
||||
)
|
||||
|
||||
|
||||
def get_model_filename(model_name: str, version: str, sdist: bool = False) -> str:
|
||||
|
|
|
@ -28,6 +28,7 @@ def evaluate_cli(
|
|||
displacy_path: Optional[Path] = Opt(None, "--displacy-path", "-dp", help="Directory to output rendered parses as HTML", exists=True, file_okay=False),
|
||||
displacy_limit: int = Opt(25, "--displacy-limit", "-dl", help="Limit of parses to render as HTML"),
|
||||
per_component: bool = Opt(False, "--per-component", "-P", help="Return scores per component, only applicable when an output JSON file is specified."),
|
||||
spans_key: str = Opt("sc", "--spans-key", "-sk", help="Spans key to use when evaluating Doc.spans"),
|
||||
# fmt: on
|
||||
):
|
||||
"""
|
||||
|
@ -53,6 +54,7 @@ def evaluate_cli(
|
|||
displacy_limit=displacy_limit,
|
||||
per_component=per_component,
|
||||
silent=False,
|
||||
spans_key=spans_key,
|
||||
)
|
||||
|
||||
|
||||
|
|
69
spacy/cli/find_function.py
Normal file
69
spacy/cli/find_function.py
Normal file
|
@ -0,0 +1,69 @@
|
|||
from typing import Optional, Tuple
|
||||
|
||||
from catalogue import RegistryError
|
||||
from wasabi import msg
|
||||
|
||||
from ..util import registry
|
||||
from ._util import Arg, Opt, app
|
||||
|
||||
|
||||
@app.command("find-function")
|
||||
def find_function_cli(
|
||||
# fmt: off
|
||||
func_name: str = Arg(..., help="Name of the registered function."),
|
||||
registry_name: Optional[str] = Opt(None, "--registry", "-r", help="Name of the catalogue registry."),
|
||||
# fmt: on
|
||||
):
|
||||
"""
|
||||
Find the module, path and line number to the file the registered
|
||||
function is defined in, if available.
|
||||
|
||||
func_name (str): Name of the registered function.
|
||||
registry_name (Optional[str]): Name of the catalogue registry.
|
||||
|
||||
DOCS: https://spacy.io/api/cli#find-function
|
||||
"""
|
||||
if not registry_name:
|
||||
registry_names = registry.get_registry_names()
|
||||
for name in registry_names:
|
||||
if registry.has(name, func_name):
|
||||
registry_name = name
|
||||
break
|
||||
|
||||
if not registry_name:
|
||||
msg.fail(
|
||||
f"Couldn't find registered function: '{func_name}'",
|
||||
exits=1,
|
||||
)
|
||||
|
||||
assert registry_name is not None
|
||||
find_function(func_name, registry_name)
|
||||
|
||||
|
||||
def find_function(func_name: str, registry_name: str) -> Tuple[str, int]:
|
||||
registry_desc = None
|
||||
try:
|
||||
registry_desc = registry.find(registry_name, func_name)
|
||||
except RegistryError as e:
|
||||
msg.fail(
|
||||
f"Couldn't find registered function: '{func_name}' in registry '{registry_name}'",
|
||||
)
|
||||
msg.fail(f"{e}", exits=1)
|
||||
assert registry_desc is not None
|
||||
|
||||
registry_path = None
|
||||
line_no = None
|
||||
if registry_desc["file"]:
|
||||
registry_path = registry_desc["file"]
|
||||
line_no = registry_desc["line_no"]
|
||||
|
||||
if not registry_path or not line_no:
|
||||
msg.fail(
|
||||
f"Couldn't find path to registered function: '{func_name}' in registry '{registry_name}'",
|
||||
exits=1,
|
||||
)
|
||||
assert registry_path is not None
|
||||
assert line_no is not None
|
||||
|
||||
msg.good(f"Found registered function '{func_name}' at {registry_path}:{line_no}")
|
||||
return str(registry_path), int(line_no)
|
|
@ -52,8 +52,8 @@ def find_threshold_cli(
|
|||
|
||||
DOCS: https://spacy.io/api/cli#find-threshold
|
||||
"""
|
||||
|
||||
util.logger.setLevel(logging.DEBUG if verbose else logging.INFO)
|
||||
if verbose:
|
||||
util.logger.setLevel(logging.DEBUG)
|
||||
import_code(code_path)
|
||||
find_threshold(
|
||||
model=model,
|
||||
|
|
|
@ -90,7 +90,8 @@ def init_pipeline_cli(
|
|||
use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU")
|
||||
# fmt: on
|
||||
):
|
||||
util.logger.setLevel(logging.DEBUG if verbose else logging.INFO)
|
||||
if verbose:
|
||||
util.logger.setLevel(logging.DEBUG)
|
||||
overrides = parse_config_overrides(ctx.args)
|
||||
import_code(code_path)
|
||||
setup_gpu(use_gpu)
|
||||
|
@ -119,7 +120,8 @@ def init_labels_cli(
|
|||
"""Generate JSON files for the labels in the data. This helps speed up the
|
||||
training process, since spaCy won't have to preprocess the data to
|
||||
extract the labels."""
|
||||
util.logger.setLevel(logging.DEBUG if verbose else logging.INFO)
|
||||
if verbose:
|
||||
util.logger.setLevel(logging.DEBUG)
|
||||
if not output_path.exists():
|
||||
output_path.mkdir(parents=True)
|
||||
overrides = parse_config_overrides(ctx.args)
|
||||
|
|
|
@ -1,5 +1,8 @@
|
|||
import importlib.metadata
|
||||
import os
|
||||
import re
|
||||
import shutil
|
||||
import subprocess
|
||||
import sys
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
|
@ -35,7 +38,7 @@ def package_cli(
|
|||
specified output directory, and the data will be copied over. If
|
||||
--create-meta is set and a meta.json already exists in the output directory,
|
||||
the existing values will be used as the defaults in the command-line prompt.
|
||||
After packaging, "python setup.py sdist" is run in the package directory,
|
||||
After packaging, "python -m build --sdist" is run in the package directory,
|
||||
which will create a .tar.gz archive that can be installed via "pip install".
|
||||
|
||||
If additional code files are provided (e.g. Python files containing custom
|
||||
|
@ -78,9 +81,17 @@ def package(
|
|||
input_path = util.ensure_path(input_dir)
|
||||
output_path = util.ensure_path(output_dir)
|
||||
meta_path = util.ensure_path(meta_path)
|
||||
if create_wheel and not has_wheel():
|
||||
err = "Generating a binary .whl file requires wheel to be installed"
|
||||
msg.fail(err, "pip install wheel", exits=1)
|
||||
if create_wheel and not has_wheel() and not has_build():
|
||||
err = (
|
||||
"Generating wheels requires 'build' or 'wheel' (deprecated) to be installed"
|
||||
)
|
||||
msg.fail(err, "pip install build", exits=1)
|
||||
if not has_build():
|
||||
msg.warn(
|
||||
"Generating packages without the 'build' package is deprecated and "
|
||||
"will not be supported in the future. To install 'build': pip "
|
||||
"install build"
|
||||
)
|
||||
if not input_path or not input_path.exists():
|
||||
msg.fail("Can't locate pipeline data", input_path, exits=1)
|
||||
if not output_path or not output_path.exists():
|
||||
|
@ -184,12 +195,37 @@ def package(
|
|||
msg.good(f"Successfully created package directory '{model_name_v}'", main_path)
|
||||
if create_sdist:
|
||||
with util.working_dir(main_path):
|
||||
util.run_command([sys.executable, "setup.py", "sdist"], capture=False)
|
||||
# run directly, since util.run_command is not designed to continue
|
||||
# after a command fails
|
||||
ret = subprocess.run(
|
||||
[sys.executable, "-m", "build", ".", "--sdist"],
|
||||
env=os.environ.copy(),
|
||||
)
|
||||
if ret.returncode != 0:
|
||||
msg.warn(
|
||||
"Creating sdist with 'python -m build' failed. Falling "
|
||||
"back to deprecated use of 'python setup.py sdist'"
|
||||
)
|
||||
util.run_command([sys.executable, "setup.py", "sdist"], capture=False)
|
||||
zip_file = main_path / "dist" / f"{model_name_v}{SDIST_SUFFIX}"
|
||||
msg.good(f"Successfully created zipped Python package", zip_file)
|
||||
if create_wheel:
|
||||
with util.working_dir(main_path):
|
||||
util.run_command([sys.executable, "setup.py", "bdist_wheel"], capture=False)
|
||||
# run directly, since util.run_command is not designed to continue
|
||||
# after a command fails
|
||||
ret = subprocess.run(
|
||||
[sys.executable, "-m", "build", ".", "--wheel"],
|
||||
env=os.environ.copy(),
|
||||
)
|
||||
if ret.returncode != 0:
|
||||
msg.warn(
|
||||
"Creating wheel with 'python -m build' failed. Falling "
|
||||
"back to deprecated use of 'wheel' with "
|
||||
"'python setup.py bdist_wheel'"
|
||||
)
|
||||
util.run_command(
|
||||
[sys.executable, "setup.py", "bdist_wheel"], capture=False
|
||||
)
|
||||
wheel_name_squashed = re.sub("_+", "_", model_name_v)
|
||||
wheel = main_path / "dist" / f"{wheel_name_squashed}{WHEEL_SUFFIX}"
|
||||
msg.good(f"Successfully created binary wheel", wheel)
|
||||
|
@ -209,6 +245,17 @@ def has_wheel() -> bool:
|
|||
return False
|
||||
|
||||
|
||||
def has_build() -> bool:
|
||||
# it's very likely that there is a local directory named build/ (especially
|
||||
# in an editable install), so an import check is not sufficient; instead
|
||||
# check that there is a package version
|
||||
try:
|
||||
importlib.metadata.version("build")
|
||||
return True
|
||||
except importlib.metadata.PackageNotFoundError: # type: ignore[attr-defined]
|
||||
return False
|
||||
|
||||
|
||||
def get_third_party_dependencies(
|
||||
config: Config, exclude: List[str] = util.SimpleFrozenList()
|
||||
) -> List[str]:
|
||||
|
@ -403,7 +450,7 @@ def _format_sources(data: Any) -> str:
|
|||
if author:
|
||||
result += " ({})".format(author)
|
||||
sources.append(result)
|
||||
return "<br />".join(sources)
|
||||
return "<br>".join(sources)
|
||||
|
||||
|
||||
def _format_accuracy(data: Dict[str, Any], exclude: List[str] = ["speed"]) -> str:
|
||||
|
|
|
@ -71,7 +71,7 @@ def profile(model: str, inputs: Optional[Path] = None, n_texts: int = 10000) ->
|
|||
|
||||
|
||||
def parse_texts(nlp: Language, texts: Sequence[str]) -> None:
|
||||
for doc in nlp.pipe(tqdm.tqdm(texts), batch_size=16):
|
||||
for doc in nlp.pipe(tqdm.tqdm(texts, disable=None), batch_size=16):
|
||||
pass
|
||||
|
||||
|
||||
|
|
|
@ -1,217 +1 @@
|
|||
import os
|
||||
import re
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
import requests
|
||||
import typer
|
||||
from wasabi import msg
|
||||
|
||||
from ...util import ensure_path, working_dir
|
||||
from .._util import (
|
||||
PROJECT_FILE,
|
||||
Arg,
|
||||
Opt,
|
||||
SimpleFrozenDict,
|
||||
download_file,
|
||||
get_checksum,
|
||||
get_git_version,
|
||||
git_checkout,
|
||||
load_project_config,
|
||||
parse_config_overrides,
|
||||
project_cli,
|
||||
)
|
||||
|
||||
# Whether assets are extra if `extra` is not set.
|
||||
EXTRA_DEFAULT = False
|
||||
|
||||
|
||||
@project_cli.command(
|
||||
"assets",
|
||||
context_settings={"allow_extra_args": True, "ignore_unknown_options": True},
|
||||
)
|
||||
def project_assets_cli(
|
||||
# fmt: off
|
||||
ctx: typer.Context, # This is only used to read additional arguments
|
||||
project_dir: Path = Arg(Path.cwd(), help="Path to cloned project. Defaults to current working directory.", exists=True, file_okay=False),
|
||||
sparse_checkout: bool = Opt(False, "--sparse", "-S", help="Use sparse checkout for assets provided via Git, to only check out and clone the files needed. Requires Git v22.2+."),
|
||||
extra: bool = Opt(False, "--extra", "-e", help="Download all assets, including those marked as 'extra'.")
|
||||
# fmt: on
|
||||
):
|
||||
"""Fetch project assets like datasets and pretrained weights. Assets are
|
||||
defined in the "assets" section of the project.yml. If a checksum is
|
||||
provided in the project.yml, the file is only downloaded if no local file
|
||||
with the same checksum exists.
|
||||
|
||||
DOCS: https://spacy.io/api/cli#project-assets
|
||||
"""
|
||||
overrides = parse_config_overrides(ctx.args)
|
||||
project_assets(
|
||||
project_dir,
|
||||
overrides=overrides,
|
||||
sparse_checkout=sparse_checkout,
|
||||
extra=extra,
|
||||
)
|
||||
|
||||
|
||||
def project_assets(
|
||||
project_dir: Path,
|
||||
*,
|
||||
overrides: Dict[str, Any] = SimpleFrozenDict(),
|
||||
sparse_checkout: bool = False,
|
||||
extra: bool = False,
|
||||
) -> None:
|
||||
"""Fetch assets for a project using DVC if possible.
|
||||
|
||||
project_dir (Path): Path to project directory.
|
||||
sparse_checkout (bool): Use sparse checkout for assets provided via Git, to only check out and clone the files
|
||||
needed.
|
||||
extra (bool): Whether to download all assets, including those marked as 'extra'.
|
||||
"""
|
||||
project_path = ensure_path(project_dir)
|
||||
config = load_project_config(project_path, overrides=overrides)
|
||||
assets = [
|
||||
asset
|
||||
for asset in config.get("assets", [])
|
||||
if extra or not asset.get("extra", EXTRA_DEFAULT)
|
||||
]
|
||||
if not assets:
|
||||
msg.warn(
|
||||
f"No assets specified in {PROJECT_FILE} (if assets are marked as extra, download them with --extra)",
|
||||
exits=0,
|
||||
)
|
||||
msg.info(f"Fetching {len(assets)} asset(s)")
|
||||
|
||||
for asset in assets:
|
||||
dest = (project_dir / asset["dest"]).resolve()
|
||||
checksum = asset.get("checksum")
|
||||
if "git" in asset:
|
||||
git_err = (
|
||||
f"Cloning spaCy project templates requires Git and the 'git' command. "
|
||||
f"Make sure it's installed and that the executable is available."
|
||||
)
|
||||
get_git_version(error=git_err)
|
||||
if dest.exists():
|
||||
# If there's already a file, check for checksum
|
||||
if checksum and checksum == get_checksum(dest):
|
||||
msg.good(
|
||||
f"Skipping download with matching checksum: {asset['dest']}"
|
||||
)
|
||||
continue
|
||||
else:
|
||||
if dest.is_dir():
|
||||
shutil.rmtree(dest)
|
||||
else:
|
||||
dest.unlink()
|
||||
if "repo" not in asset["git"] or asset["git"]["repo"] is None:
|
||||
msg.fail(
|
||||
"A git asset must include 'repo', the repository address.", exits=1
|
||||
)
|
||||
if "path" not in asset["git"] or asset["git"]["path"] is None:
|
||||
msg.fail(
|
||||
"A git asset must include 'path' - use \"\" to get the entire repository.",
|
||||
exits=1,
|
||||
)
|
||||
git_checkout(
|
||||
asset["git"]["repo"],
|
||||
asset["git"]["path"],
|
||||
dest,
|
||||
branch=asset["git"].get("branch"),
|
||||
sparse=sparse_checkout,
|
||||
)
|
||||
msg.good(f"Downloaded asset {dest}")
|
||||
else:
|
||||
url = asset.get("url")
|
||||
if not url:
|
||||
# project.yml defines asset without URL that the user has to place
|
||||
check_private_asset(dest, checksum)
|
||||
continue
|
||||
fetch_asset(project_path, url, dest, checksum)
|
||||
|
||||
|
||||
def check_private_asset(dest: Path, checksum: Optional[str] = None) -> None:
|
||||
"""Check and validate assets without a URL (private assets that the user
|
||||
has to provide themselves) and give feedback about the checksum.
|
||||
|
||||
dest (Path): Destination path of the asset.
|
||||
checksum (Optional[str]): Optional checksum of the expected file.
|
||||
"""
|
||||
if not Path(dest).exists():
|
||||
err = f"No URL provided for asset. You need to add this file yourself: {dest}"
|
||||
msg.warn(err)
|
||||
else:
|
||||
if not checksum:
|
||||
msg.good(f"Asset already exists: {dest}")
|
||||
elif checksum == get_checksum(dest):
|
||||
msg.good(f"Asset exists with matching checksum: {dest}")
|
||||
else:
|
||||
msg.fail(f"Asset available but with incorrect checksum: {dest}")
|
||||
|
||||
|
||||
def fetch_asset(
|
||||
project_path: Path, url: str, dest: Path, checksum: Optional[str] = None
|
||||
) -> None:
|
||||
"""Fetch an asset from a given URL or path. If a checksum is provided and a
|
||||
local file exists, it's only re-downloaded if the checksum doesn't match.
|
||||
|
||||
project_path (Path): Path to project directory.
|
||||
url (str): URL or path to asset.
|
||||
checksum (Optional[str]): Optional expected checksum of local file.
|
||||
RETURNS (Optional[Path]): The path to the fetched asset or None if fetching
|
||||
the asset failed.
|
||||
"""
|
||||
dest_path = (project_path / dest).resolve()
|
||||
if dest_path.exists():
|
||||
# If there's already a file, check for checksum
|
||||
if checksum:
|
||||
if checksum == get_checksum(dest_path):
|
||||
msg.good(f"Skipping download with matching checksum: {dest}")
|
||||
return
|
||||
else:
|
||||
# If there's not a checksum, make sure the file is a possibly valid size
|
||||
if os.path.getsize(dest_path) == 0:
|
||||
msg.warn(f"Asset exists but with size of 0 bytes, deleting: {dest}")
|
||||
os.remove(dest_path)
|
||||
# We might as well support the user here and create parent directories in
|
||||
# case the asset dir isn't listed as a dir to create in the project.yml
|
||||
if not dest_path.parent.exists():
|
||||
dest_path.parent.mkdir(parents=True)
|
||||
with working_dir(project_path):
|
||||
url = convert_asset_url(url)
|
||||
try:
|
||||
download_file(url, dest_path)
|
||||
msg.good(f"Downloaded asset {dest}")
|
||||
except requests.exceptions.RequestException as e:
|
||||
if Path(url).exists() and Path(url).is_file():
|
||||
# If it's a local file, copy to destination
|
||||
shutil.copy(url, str(dest_path))
|
||||
msg.good(f"Copied local asset {dest}")
|
||||
else:
|
||||
msg.fail(f"Download failed: {dest}", e)
|
||||
if checksum and checksum != get_checksum(dest_path):
|
||||
msg.fail(f"Checksum doesn't match value defined in {PROJECT_FILE}: {dest}")
|
||||
|
||||
|
||||
def convert_asset_url(url: str) -> str:
|
||||
"""Check and convert the asset URL if needed.
|
||||
|
||||
url (str): The asset URL.
|
||||
RETURNS (str): The converted URL.
|
||||
"""
|
||||
# If the asset URL is a regular GitHub URL it's likely a mistake
|
||||
if (
|
||||
re.match(r"(http(s?)):\/\/github.com", url)
|
||||
and "releases/download" not in url
|
||||
and "/raw/" not in url
|
||||
):
|
||||
converted = url.replace("github.com", "raw.githubusercontent.com")
|
||||
converted = re.sub(r"/(tree|blob)/", "/", converted)
|
||||
msg.warn(
|
||||
"Downloading from a regular GitHub URL. This will only download "
|
||||
"the source of the page, not the actual file. Converting the URL "
|
||||
"to a raw URL.",
|
||||
converted,
|
||||
)
|
||||
return converted
|
||||
return url
|
||||
from weasel.cli.assets import *
|
||||
|
|
|
@ -1,124 +1 @@
|
|||
import re
|
||||
import subprocess
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
from wasabi import msg
|
||||
|
||||
from ... import about
|
||||
from ...util import ensure_path
|
||||
from .._util import (
|
||||
COMMAND,
|
||||
PROJECT_FILE,
|
||||
Arg,
|
||||
Opt,
|
||||
get_git_version,
|
||||
git_checkout,
|
||||
git_repo_branch_exists,
|
||||
project_cli,
|
||||
)
|
||||
|
||||
DEFAULT_REPO = about.__projects__
|
||||
DEFAULT_PROJECTS_BRANCH = about.__projects_branch__
|
||||
DEFAULT_BRANCHES = ["main", "master"]
|
||||
|
||||
|
||||
@project_cli.command("clone")
|
||||
def project_clone_cli(
|
||||
# fmt: off
|
||||
name: str = Arg(..., help="The name of the template to clone"),
|
||||
dest: Optional[Path] = Arg(None, help="Where to clone the project. Defaults to current working directory", exists=False),
|
||||
repo: str = Opt(DEFAULT_REPO, "--repo", "-r", help="The repository to clone from"),
|
||||
branch: Optional[str] = Opt(None, "--branch", "-b", help=f"The branch to clone from. If not provided, will attempt {', '.join(DEFAULT_BRANCHES)}"),
|
||||
sparse_checkout: bool = Opt(False, "--sparse", "-S", help="Use sparse Git checkout to only check out and clone the files needed. Requires Git v22.2+.")
|
||||
# fmt: on
|
||||
):
|
||||
"""Clone a project template from a repository. Calls into "git" and will
|
||||
only download the files from the given subdirectory. The GitHub repo
|
||||
defaults to the official spaCy template repo, but can be customized
|
||||
(including using a private repo).
|
||||
|
||||
DOCS: https://spacy.io/api/cli#project-clone
|
||||
"""
|
||||
if dest is None:
|
||||
dest = Path.cwd() / Path(name).parts[-1]
|
||||
if repo == DEFAULT_REPO and branch is None:
|
||||
branch = DEFAULT_PROJECTS_BRANCH
|
||||
|
||||
if branch is None:
|
||||
for default_branch in DEFAULT_BRANCHES:
|
||||
if git_repo_branch_exists(repo, default_branch):
|
||||
branch = default_branch
|
||||
break
|
||||
if branch is None:
|
||||
default_branches_msg = ", ".join(f"'{b}'" for b in DEFAULT_BRANCHES)
|
||||
msg.fail(
|
||||
"No branch provided and attempted default "
|
||||
f"branches {default_branches_msg} do not exist.",
|
||||
exits=1,
|
||||
)
|
||||
else:
|
||||
if not git_repo_branch_exists(repo, branch):
|
||||
msg.fail(f"repo: {repo} (branch: {branch}) does not exist.", exits=1)
|
||||
assert isinstance(branch, str)
|
||||
project_clone(name, dest, repo=repo, branch=branch, sparse_checkout=sparse_checkout)
|
||||
|
||||
|
||||
def project_clone(
|
||||
name: str,
|
||||
dest: Path,
|
||||
*,
|
||||
repo: str = about.__projects__,
|
||||
branch: str = about.__projects_branch__,
|
||||
sparse_checkout: bool = False,
|
||||
) -> None:
|
||||
"""Clone a project template from a repository.
|
||||
|
||||
name (str): Name of subdirectory to clone.
|
||||
dest (Path): Destination path of cloned project.
|
||||
repo (str): URL of Git repo containing project templates.
|
||||
branch (str): The branch to clone from
|
||||
"""
|
||||
dest = ensure_path(dest)
|
||||
check_clone(name, dest, repo)
|
||||
project_dir = dest.resolve()
|
||||
repo_name = re.sub(r"(http(s?)):\/\/github.com/", "", repo)
|
||||
try:
|
||||
git_checkout(repo, name, dest, branch=branch, sparse=sparse_checkout)
|
||||
except subprocess.CalledProcessError:
|
||||
err = f"Could not clone '{name}' from repo '{repo_name}' (branch '{branch}')"
|
||||
msg.fail(err, exits=1)
|
||||
msg.good(f"Cloned '{name}' from '{repo_name}' (branch '{branch}')", project_dir)
|
||||
if not (project_dir / PROJECT_FILE).exists():
|
||||
msg.warn(f"No {PROJECT_FILE} found in directory")
|
||||
else:
|
||||
msg.good(f"Your project is now ready!")
|
||||
print(f"To fetch the assets, run:\n{COMMAND} project assets {dest}")
|
||||
|
||||
|
||||
def check_clone(name: str, dest: Path, repo: str) -> None:
|
||||
"""Check and validate that the destination path can be used to clone. Will
|
||||
check that Git is available and that the destination path is suitable.
|
||||
|
||||
name (str): Name of the directory to clone from the repo.
|
||||
dest (Path): Local destination of cloned directory.
|
||||
repo (str): URL of the repo to clone from.
|
||||
"""
|
||||
git_err = (
|
||||
f"Cloning spaCy project templates requires Git and the 'git' command. "
|
||||
f"To clone a project without Git, copy the files from the '{name}' "
|
||||
f"directory in the {repo} to {dest} manually."
|
||||
)
|
||||
get_git_version(error=git_err)
|
||||
if not dest:
|
||||
msg.fail(f"Not a valid directory to clone project: {dest}", exits=1)
|
||||
if dest.exists():
|
||||
# Directory already exists (not allowed, clone needs to create it)
|
||||
msg.fail(f"Can't clone project, directory already exists: {dest}", exits=1)
|
||||
if not dest.parent.exists():
|
||||
# We're not creating parents, parent dir should exist
|
||||
msg.fail(
|
||||
f"Can't clone project, parent directory doesn't exist: {dest.parent}. "
|
||||
f"Create the necessary folder(s) first before continuing.",
|
||||
exits=1,
|
||||
)
|
||||
from weasel.cli.clone import *
|
||||
|
|
|
@ -1,115 +1 @@
|
|||
from pathlib import Path
|
||||
|
||||
from wasabi import MarkdownRenderer, msg
|
||||
|
||||
from ...util import working_dir
|
||||
from .._util import PROJECT_FILE, Arg, Opt, load_project_config, project_cli
|
||||
|
||||
DOCS_URL = "https://spacy.io"
|
||||
INTRO_PROJECT = f"""The [`{PROJECT_FILE}`]({PROJECT_FILE}) defines the data assets required by the
|
||||
project, as well as the available commands and workflows. For details, see the
|
||||
[spaCy projects documentation]({DOCS_URL}/usage/projects)."""
|
||||
INTRO_COMMANDS = f"""The following commands are defined by the project. They
|
||||
can be executed using [`spacy project run [name]`]({DOCS_URL}/api/cli#project-run).
|
||||
Commands are only re-run if their inputs have changed."""
|
||||
INTRO_WORKFLOWS = f"""The following workflows are defined by the project. They
|
||||
can be executed using [`spacy project run [name]`]({DOCS_URL}/api/cli#project-run)
|
||||
and will run the specified commands in order. Commands are only re-run if their
|
||||
inputs have changed."""
|
||||
INTRO_ASSETS = f"""The following assets are defined by the project. They can
|
||||
be fetched by running [`spacy project assets`]({DOCS_URL}/api/cli#project-assets)
|
||||
in the project directory."""
|
||||
# These markers are added to the Markdown and can be used to update the file in
|
||||
# place if it already exists. Only the auto-generated part will be replaced.
|
||||
MARKER_START = "<!-- SPACY PROJECT: AUTO-GENERATED DOCS START (do not remove) -->"
|
||||
MARKER_END = "<!-- SPACY PROJECT: AUTO-GENERATED DOCS END (do not remove) -->"
|
||||
# If this marker is used in an existing README, it's ignored and not replaced
|
||||
MARKER_IGNORE = "<!-- SPACY PROJECT: IGNORE -->"
|
||||
|
||||
|
||||
@project_cli.command("document")
|
||||
def project_document_cli(
|
||||
# fmt: off
|
||||
project_dir: Path = Arg(Path.cwd(), help="Path to cloned project. Defaults to current working directory.", exists=True, file_okay=False),
|
||||
output_file: Path = Opt("-", "--output", "-o", help="Path to output Markdown file for output. Defaults to - for standard output"),
|
||||
no_emoji: bool = Opt(False, "--no-emoji", "-NE", help="Don't use emoji")
|
||||
# fmt: on
|
||||
):
|
||||
"""
|
||||
Auto-generate a README.md for a project. If the content is saved to a file,
|
||||
hidden markers are added so you can add custom content before or after the
|
||||
auto-generated section and only the auto-generated docs will be replaced
|
||||
when you re-run the command.
|
||||
|
||||
DOCS: https://spacy.io/api/cli#project-document
|
||||
"""
|
||||
project_document(project_dir, output_file, no_emoji=no_emoji)
|
||||
|
||||
|
||||
def project_document(
|
||||
project_dir: Path, output_file: Path, *, no_emoji: bool = False
|
||||
) -> None:
|
||||
is_stdout = str(output_file) == "-"
|
||||
config = load_project_config(project_dir)
|
||||
md = MarkdownRenderer(no_emoji=no_emoji)
|
||||
md.add(MARKER_START)
|
||||
title = config.get("title")
|
||||
description = config.get("description")
|
||||
md.add(md.title(1, f"spaCy Project{f': {title}' if title else ''}", "🪐"))
|
||||
if description:
|
||||
md.add(description)
|
||||
md.add(md.title(2, PROJECT_FILE, "📋"))
|
||||
md.add(INTRO_PROJECT)
|
||||
# Commands
|
||||
cmds = config.get("commands", [])
|
||||
data = [(md.code(cmd["name"]), cmd.get("help", "")) for cmd in cmds]
|
||||
if data:
|
||||
md.add(md.title(3, "Commands", "⏯"))
|
||||
md.add(INTRO_COMMANDS)
|
||||
md.add(md.table(data, ["Command", "Description"]))
|
||||
# Workflows
|
||||
wfs = config.get("workflows", {}).items()
|
||||
data = [(md.code(n), " → ".join(md.code(w) for w in stp)) for n, stp in wfs]
|
||||
if data:
|
||||
md.add(md.title(3, "Workflows", "⏭"))
|
||||
md.add(INTRO_WORKFLOWS)
|
||||
md.add(md.table(data, ["Workflow", "Steps"]))
|
||||
# Assets
|
||||
assets = config.get("assets", [])
|
||||
data = []
|
||||
for a in assets:
|
||||
source = "Git" if a.get("git") else "URL" if a.get("url") else "Local"
|
||||
dest_path = a["dest"]
|
||||
dest = md.code(dest_path)
|
||||
if source == "Local":
|
||||
# Only link assets if they're in the repo
|
||||
with working_dir(project_dir) as p:
|
||||
if (p / dest_path).exists():
|
||||
dest = md.link(dest, dest_path)
|
||||
data.append((dest, source, a.get("description", "")))
|
||||
if data:
|
||||
md.add(md.title(3, "Assets", "🗂"))
|
||||
md.add(INTRO_ASSETS)
|
||||
md.add(md.table(data, ["File", "Source", "Description"]))
|
||||
md.add(MARKER_END)
|
||||
# Output result
|
||||
if is_stdout:
|
||||
print(md.text)
|
||||
else:
|
||||
content = md.text
|
||||
if output_file.exists():
|
||||
with output_file.open("r", encoding="utf8") as f:
|
||||
existing = f.read()
|
||||
if MARKER_IGNORE in existing:
|
||||
msg.warn("Found ignore marker in existing file: skipping", output_file)
|
||||
return
|
||||
if MARKER_START in existing and MARKER_END in existing:
|
||||
msg.info("Found existing file: only replacing auto-generated docs")
|
||||
before = existing.split(MARKER_START)[0]
|
||||
after = existing.split(MARKER_END)[1]
|
||||
content = f"{before}{content}{after}"
|
||||
else:
|
||||
msg.warn("Replacing existing file")
|
||||
with output_file.open("w", encoding="utf8") as f:
|
||||
f.write(content)
|
||||
msg.good("Saved project documentation", output_file)
|
||||
from weasel.cli.document import *
|
||||
|
|
|
@ -1,220 +1 @@
|
|||
"""This module contains helpers and subcommands for integrating spaCy projects
|
||||
with Data Version Controk (DVC). https://dvc.org"""
|
||||
import subprocess
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Iterable, List, Optional
|
||||
|
||||
from wasabi import msg
|
||||
|
||||
from ...util import (
|
||||
SimpleFrozenList,
|
||||
join_command,
|
||||
run_command,
|
||||
split_command,
|
||||
working_dir,
|
||||
)
|
||||
from .._util import (
|
||||
COMMAND,
|
||||
NAME,
|
||||
PROJECT_FILE,
|
||||
Arg,
|
||||
Opt,
|
||||
get_hash,
|
||||
load_project_config,
|
||||
project_cli,
|
||||
)
|
||||
|
||||
DVC_CONFIG = "dvc.yaml"
|
||||
DVC_DIR = ".dvc"
|
||||
UPDATE_COMMAND = "dvc"
|
||||
DVC_CONFIG_COMMENT = f"""# This file is auto-generated by spaCy based on your {PROJECT_FILE}. If you've
|
||||
# edited your {PROJECT_FILE}, you can regenerate this file by running:
|
||||
# {COMMAND} project {UPDATE_COMMAND}"""
|
||||
|
||||
|
||||
@project_cli.command(UPDATE_COMMAND)
|
||||
def project_update_dvc_cli(
|
||||
# fmt: off
|
||||
project_dir: Path = Arg(Path.cwd(), help="Location of project directory. Defaults to current working directory.", exists=True, file_okay=False),
|
||||
workflow: Optional[str] = Arg(None, help=f"Name of workflow defined in {PROJECT_FILE}. Defaults to first workflow if not set."),
|
||||
verbose: bool = Opt(False, "--verbose", "-V", help="Print more info"),
|
||||
quiet: bool = Opt(False, "--quiet", "-q", help="Print less info"),
|
||||
force: bool = Opt(False, "--force", "-F", help="Force update DVC config"),
|
||||
# fmt: on
|
||||
):
|
||||
"""Auto-generate Data Version Control (DVC) config. A DVC
|
||||
project can only define one pipeline, so you need to specify one workflow
|
||||
defined in the project.yml. If no workflow is specified, the first defined
|
||||
workflow is used. The DVC config will only be updated if the project.yml
|
||||
changed.
|
||||
|
||||
DOCS: https://spacy.io/api/cli#project-dvc
|
||||
"""
|
||||
project_update_dvc(project_dir, workflow, verbose=verbose, quiet=quiet, force=force)
|
||||
|
||||
|
||||
def project_update_dvc(
|
||||
project_dir: Path,
|
||||
workflow: Optional[str] = None,
|
||||
*,
|
||||
verbose: bool = False,
|
||||
quiet: bool = False,
|
||||
force: bool = False,
|
||||
) -> None:
|
||||
"""Update the auto-generated Data Version Control (DVC) config file. A DVC
|
||||
project can only define one pipeline, so you need to specify one workflow
|
||||
defined in the project.yml. Will only update the file if the checksum changed.
|
||||
|
||||
project_dir (Path): The project directory.
|
||||
workflow (Optional[str]): Optional name of workflow defined in project.yml.
|
||||
If not set, the first workflow will be used.
|
||||
verbose (bool): Print more info.
|
||||
quiet (bool): Print less info.
|
||||
force (bool): Force update DVC config.
|
||||
"""
|
||||
config = load_project_config(project_dir)
|
||||
updated = update_dvc_config(
|
||||
project_dir, config, workflow, verbose=verbose, quiet=quiet, force=force
|
||||
)
|
||||
help_msg = "To execute the workflow with DVC, run: dvc repro"
|
||||
if updated:
|
||||
msg.good(f"Updated DVC config from {PROJECT_FILE}", help_msg)
|
||||
else:
|
||||
msg.info(f"No changes found in {PROJECT_FILE}, no update needed", help_msg)
|
||||
|
||||
|
||||
def update_dvc_config(
|
||||
path: Path,
|
||||
config: Dict[str, Any],
|
||||
workflow: Optional[str] = None,
|
||||
verbose: bool = False,
|
||||
quiet: bool = False,
|
||||
force: bool = False,
|
||||
) -> bool:
|
||||
"""Re-run the DVC commands in dry mode and update dvc.yaml file in the
|
||||
project directory. The file is auto-generated based on the config. The
|
||||
first line of the auto-generated file specifies the hash of the config
|
||||
dict, so if any of the config values change, the DVC config is regenerated.
|
||||
|
||||
path (Path): The path to the project directory.
|
||||
config (Dict[str, Any]): The loaded project.yml.
|
||||
verbose (bool): Whether to print additional info (via DVC).
|
||||
quiet (bool): Don't output anything (via DVC).
|
||||
force (bool): Force update, even if hashes match.
|
||||
RETURNS (bool): Whether the DVC config file was updated.
|
||||
"""
|
||||
ensure_dvc(path)
|
||||
workflows = config.get("workflows", {})
|
||||
workflow_names = list(workflows.keys())
|
||||
check_workflows(workflow_names, workflow)
|
||||
if not workflow:
|
||||
workflow = workflow_names[0]
|
||||
config_hash = get_hash(config)
|
||||
path = path.resolve()
|
||||
dvc_config_path = path / DVC_CONFIG
|
||||
if dvc_config_path.exists():
|
||||
# Check if the file was generated using the current config, if not, redo
|
||||
with dvc_config_path.open("r", encoding="utf8") as f:
|
||||
ref_hash = f.readline().strip().replace("# ", "")
|
||||
if ref_hash == config_hash and not force:
|
||||
return False # Nothing has changed in project.yml, don't need to update
|
||||
dvc_config_path.unlink()
|
||||
dvc_commands = []
|
||||
config_commands = {cmd["name"]: cmd for cmd in config.get("commands", [])}
|
||||
|
||||
# some flags that apply to every command
|
||||
flags = []
|
||||
if verbose:
|
||||
flags.append("--verbose")
|
||||
if quiet:
|
||||
flags.append("--quiet")
|
||||
|
||||
for name in workflows[workflow]:
|
||||
command = config_commands[name]
|
||||
deps = command.get("deps", [])
|
||||
outputs = command.get("outputs", [])
|
||||
outputs_no_cache = command.get("outputs_no_cache", [])
|
||||
if not deps and not outputs and not outputs_no_cache:
|
||||
continue
|
||||
# Default to the working dir as the project path since dvc.yaml is auto-generated
|
||||
# and we don't want arbitrary paths in there
|
||||
project_cmd = ["python", "-m", NAME, "project", "run", name]
|
||||
deps_cmd = [c for cl in [["-d", p] for p in deps] for c in cl]
|
||||
outputs_cmd = [c for cl in [["-o", p] for p in outputs] for c in cl]
|
||||
outputs_nc_cmd = [c for cl in [["-O", p] for p in outputs_no_cache] for c in cl]
|
||||
|
||||
dvc_cmd = ["run", *flags, "-n", name, "-w", str(path), "--no-exec"]
|
||||
if command.get("no_skip"):
|
||||
dvc_cmd.append("--always-changed")
|
||||
full_cmd = [*dvc_cmd, *deps_cmd, *outputs_cmd, *outputs_nc_cmd, *project_cmd]
|
||||
dvc_commands.append(join_command(full_cmd))
|
||||
|
||||
if not dvc_commands:
|
||||
# If we don't check for this, then there will be an error when reading the
|
||||
# config, since DVC wouldn't create it.
|
||||
msg.fail(
|
||||
"No usable commands for DVC found. This can happen if none of your "
|
||||
"commands have dependencies or outputs.",
|
||||
exits=1,
|
||||
)
|
||||
|
||||
with working_dir(path):
|
||||
for c in dvc_commands:
|
||||
dvc_command = "dvc " + c
|
||||
run_command(dvc_command)
|
||||
with dvc_config_path.open("r+", encoding="utf8") as f:
|
||||
content = f.read()
|
||||
f.seek(0, 0)
|
||||
f.write(f"# {config_hash}\n{DVC_CONFIG_COMMENT}\n{content}")
|
||||
return True
|
||||
|
||||
|
||||
def check_workflows(workflows: List[str], workflow: Optional[str] = None) -> None:
|
||||
"""Validate workflows provided in project.yml and check that a given
|
||||
workflow can be used to generate a DVC config.
|
||||
|
||||
workflows (List[str]): Names of the available workflows.
|
||||
workflow (Optional[str]): The name of the workflow to convert.
|
||||
"""
|
||||
if not workflows:
|
||||
msg.fail(
|
||||
f"No workflows defined in {PROJECT_FILE}. To generate a DVC config, "
|
||||
f"define at least one list of commands.",
|
||||
exits=1,
|
||||
)
|
||||
if workflow is not None and workflow not in workflows:
|
||||
msg.fail(
|
||||
f"Workflow '{workflow}' not defined in {PROJECT_FILE}. "
|
||||
f"Available workflows: {', '.join(workflows)}",
|
||||
exits=1,
|
||||
)
|
||||
if not workflow:
|
||||
msg.warn(
|
||||
f"No workflow specified for DVC pipeline. Using the first workflow "
|
||||
f"defined in {PROJECT_FILE}: '{workflows[0]}'"
|
||||
)
|
||||
|
||||
|
||||
def ensure_dvc(project_dir: Path) -> None:
|
||||
"""Ensure that the "dvc" command is available and that the current project
|
||||
directory is an initialized DVC project.
|
||||
"""
|
||||
try:
|
||||
subprocess.run(["dvc", "--version"], stdout=subprocess.DEVNULL)
|
||||
except Exception:
|
||||
msg.fail(
|
||||
"To use spaCy projects with DVC (Data Version Control), DVC needs "
|
||||
"to be installed and the 'dvc' command needs to be available",
|
||||
"You can install the Python package from pip (pip install dvc) or "
|
||||
"conda (conda install -c conda-forge dvc). For more details, see the "
|
||||
"documentation: https://dvc.org/doc/install",
|
||||
exits=1,
|
||||
)
|
||||
if not (project_dir / ".dvc").exists():
|
||||
msg.fail(
|
||||
"Project not initialized as a DVC project",
|
||||
"To initialize a DVC project, you can run 'dvc init' in the project "
|
||||
"directory. For more details, see the documentation: "
|
||||
"https://dvc.org/doc/command-reference/init",
|
||||
exits=1,
|
||||
)
|
||||
from weasel.cli.dvc import *
|
||||
|
|
|
@ -1,67 +1 @@
|
|||
from pathlib import Path
|
||||
|
||||
from wasabi import msg
|
||||
|
||||
from .._util import Arg, load_project_config, logger, project_cli
|
||||
from .remote_storage import RemoteStorage, get_command_hash
|
||||
from .run import update_lockfile
|
||||
|
||||
|
||||
@project_cli.command("pull")
|
||||
def project_pull_cli(
|
||||
# fmt: off
|
||||
remote: str = Arg("default", help="Name or path of remote storage"),
|
||||
project_dir: Path = Arg(Path.cwd(), help="Location of project directory. Defaults to current working directory.", exists=True, file_okay=False),
|
||||
# fmt: on
|
||||
):
|
||||
"""Retrieve available precomputed outputs from a remote storage.
|
||||
You can alias remotes in your project.yml by mapping them to storage paths.
|
||||
A storage can be anything that the smart-open library can upload to, e.g.
|
||||
AWS, Google Cloud Storage, SSH, local directories etc.
|
||||
|
||||
DOCS: https://spacy.io/api/cli#project-pull
|
||||
"""
|
||||
for url, output_path in project_pull(project_dir, remote):
|
||||
if url is not None:
|
||||
msg.good(f"Pulled {output_path} from {url}")
|
||||
|
||||
|
||||
def project_pull(project_dir: Path, remote: str, *, verbose: bool = False):
|
||||
# TODO: We don't have tests for this :(. It would take a bit of mockery to
|
||||
# set up. I guess see if it breaks first?
|
||||
config = load_project_config(project_dir)
|
||||
if remote in config.get("remotes", {}):
|
||||
remote = config["remotes"][remote]
|
||||
storage = RemoteStorage(project_dir, remote)
|
||||
commands = list(config.get("commands", []))
|
||||
# We use a while loop here because we don't know how the commands
|
||||
# will be ordered. A command might need dependencies from one that's later
|
||||
# in the list.
|
||||
while commands:
|
||||
for i, cmd in enumerate(list(commands)):
|
||||
logger.debug("CMD: %s.", cmd["name"])
|
||||
deps = [project_dir / dep for dep in cmd.get("deps", [])]
|
||||
if all(dep.exists() for dep in deps):
|
||||
cmd_hash = get_command_hash("", "", deps, cmd["script"])
|
||||
for output_path in cmd.get("outputs", []):
|
||||
url = storage.pull(output_path, command_hash=cmd_hash)
|
||||
logger.debug(
|
||||
"URL: %s for %s with command hash %s",
|
||||
url,
|
||||
output_path,
|
||||
cmd_hash,
|
||||
)
|
||||
yield url, output_path
|
||||
|
||||
out_locs = [project_dir / out for out in cmd.get("outputs", [])]
|
||||
if all(loc.exists() for loc in out_locs):
|
||||
update_lockfile(project_dir, cmd)
|
||||
# We remove the command from the list here, and break, so that
|
||||
# we iterate over the loop again.
|
||||
commands.pop(i)
|
||||
break
|
||||
else:
|
||||
logger.debug("Dependency missing. Skipping %s outputs.", cmd["name"])
|
||||
else:
|
||||
# If we didn't break the for loop, break the while loop.
|
||||
break
|
||||
from weasel.cli.pull import *
|
||||
|
|
|
@ -1,69 +1 @@
|
|||
from pathlib import Path
|
||||
|
||||
from wasabi import msg
|
||||
|
||||
from .._util import Arg, load_project_config, logger, project_cli
|
||||
from .remote_storage import RemoteStorage, get_command_hash, get_content_hash
|
||||
|
||||
|
||||
@project_cli.command("push")
|
||||
def project_push_cli(
|
||||
# fmt: off
|
||||
remote: str = Arg("default", help="Name or path of remote storage"),
|
||||
project_dir: Path = Arg(Path.cwd(), help="Location of project directory. Defaults to current working directory.", exists=True, file_okay=False),
|
||||
# fmt: on
|
||||
):
|
||||
"""Persist outputs to a remote storage. You can alias remotes in your
|
||||
project.yml by mapping them to storage paths. A storage can be anything that
|
||||
the smart-open library can upload to, e.g. AWS, Google Cloud Storage, SSH,
|
||||
local directories etc.
|
||||
|
||||
DOCS: https://spacy.io/api/cli#project-push
|
||||
"""
|
||||
for output_path, url in project_push(project_dir, remote):
|
||||
if url is None:
|
||||
msg.info(f"Skipping {output_path}")
|
||||
else:
|
||||
msg.good(f"Pushed {output_path} to {url}")
|
||||
|
||||
|
||||
def project_push(project_dir: Path, remote: str):
|
||||
"""Persist outputs to a remote storage. You can alias remotes in your project.yml
|
||||
by mapping them to storage paths. A storage can be anything that the smart-open
|
||||
library can upload to, e.g. gcs, aws, ssh, local directories etc
|
||||
"""
|
||||
config = load_project_config(project_dir)
|
||||
if remote in config.get("remotes", {}):
|
||||
remote = config["remotes"][remote]
|
||||
storage = RemoteStorage(project_dir, remote)
|
||||
for cmd in config.get("commands", []):
|
||||
logger.debug("CMD: %s", cmd["name"])
|
||||
deps = [project_dir / dep for dep in cmd.get("deps", [])]
|
||||
if any(not dep.exists() for dep in deps):
|
||||
logger.debug("Dependency missing. Skipping %s outputs", cmd["name"])
|
||||
continue
|
||||
cmd_hash = get_command_hash(
|
||||
"", "", [project_dir / dep for dep in cmd.get("deps", [])], cmd["script"]
|
||||
)
|
||||
logger.debug("CMD_HASH: %s", cmd_hash)
|
||||
for output_path in cmd.get("outputs", []):
|
||||
output_loc = project_dir / output_path
|
||||
if output_loc.exists() and _is_not_empty_dir(output_loc):
|
||||
url = storage.push(
|
||||
output_path,
|
||||
command_hash=cmd_hash,
|
||||
content_hash=get_content_hash(output_loc),
|
||||
)
|
||||
logger.debug(
|
||||
"URL: %s for output %s with cmd_hash %s", url, output_path, cmd_hash
|
||||
)
|
||||
yield output_path, url
|
||||
|
||||
|
||||
def _is_not_empty_dir(loc: Path):
|
||||
if not loc.is_dir():
|
||||
return True
|
||||
elif any(_is_not_empty_dir(child) for child in loc.iterdir()):
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
from weasel.cli.push import *
|
||||
|
|
|
@ -1,212 +1 @@
|
|||
import hashlib
|
||||
import os
|
||||
import site
|
||||
import tarfile
|
||||
import urllib.parse
|
||||
from pathlib import Path
|
||||
from typing import TYPE_CHECKING, Dict, List, Optional
|
||||
|
||||
from wasabi import msg
|
||||
|
||||
from ... import about
|
||||
from ...errors import Errors
|
||||
from ...git_info import GIT_VERSION
|
||||
from ...util import ENV_VARS, check_bool_env_var, get_minor_version
|
||||
from .._util import (
|
||||
download_file,
|
||||
ensure_pathy,
|
||||
get_checksum,
|
||||
get_hash,
|
||||
make_tempdir,
|
||||
upload_file,
|
||||
)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from pathy import FluidPath # noqa: F401
|
||||
|
||||
|
||||
class RemoteStorage:
|
||||
"""Push and pull outputs to and from a remote file storage.
|
||||
|
||||
Remotes can be anything that `smart-open` can support: AWS, GCS, file system,
|
||||
ssh, etc.
|
||||
"""
|
||||
|
||||
def __init__(self, project_root: Path, url: str, *, compression="gz"):
|
||||
self.root = project_root
|
||||
self.url = ensure_pathy(url)
|
||||
self.compression = compression
|
||||
|
||||
def push(self, path: Path, command_hash: str, content_hash: str) -> "FluidPath":
|
||||
"""Compress a file or directory within a project and upload it to a remote
|
||||
storage. If an object exists at the full URL, nothing is done.
|
||||
|
||||
Within the remote storage, files are addressed by their project path
|
||||
(url encoded) and two user-supplied hashes, representing their creation
|
||||
context and their file contents. If the URL already exists, the data is
|
||||
not uploaded. Paths are archived and compressed prior to upload.
|
||||
"""
|
||||
loc = self.root / path
|
||||
if not loc.exists():
|
||||
raise IOError(f"Cannot push {loc}: does not exist.")
|
||||
url = self.make_url(path, command_hash, content_hash)
|
||||
if url.exists():
|
||||
return url
|
||||
tmp: Path
|
||||
with make_tempdir() as tmp:
|
||||
tar_loc = tmp / self.encode_name(str(path))
|
||||
mode_string = f"w:{self.compression}" if self.compression else "w"
|
||||
with tarfile.open(tar_loc, mode=mode_string) as tar_file:
|
||||
tar_file.add(str(loc), arcname=str(path))
|
||||
upload_file(tar_loc, url)
|
||||
return url
|
||||
|
||||
def pull(
|
||||
self,
|
||||
path: Path,
|
||||
*,
|
||||
command_hash: Optional[str] = None,
|
||||
content_hash: Optional[str] = None,
|
||||
) -> Optional["FluidPath"]:
|
||||
"""Retrieve a file from the remote cache. If the file already exists,
|
||||
nothing is done.
|
||||
|
||||
If the command_hash and/or content_hash are specified, only matching
|
||||
results are returned. If no results are available, an error is raised.
|
||||
"""
|
||||
dest = self.root / path
|
||||
if dest.exists():
|
||||
return None
|
||||
url = self.find(path, command_hash=command_hash, content_hash=content_hash)
|
||||
if url is None:
|
||||
return url
|
||||
else:
|
||||
# Make sure the destination exists
|
||||
if not dest.parent.exists():
|
||||
dest.parent.mkdir(parents=True)
|
||||
tmp: Path
|
||||
with make_tempdir() as tmp:
|
||||
tar_loc = tmp / url.parts[-1]
|
||||
download_file(url, tar_loc)
|
||||
mode_string = f"r:{self.compression}" if self.compression else "r"
|
||||
with tarfile.open(tar_loc, mode=mode_string) as tar_file:
|
||||
# This requires that the path is added correctly, relative
|
||||
# to root. This is how we set things up in push()
|
||||
|
||||
# Disallow paths outside the current directory for the tar
|
||||
# file (CVE-2007-4559, directory traversal vulnerability)
|
||||
def is_within_directory(directory, target):
|
||||
abs_directory = os.path.abspath(directory)
|
||||
abs_target = os.path.abspath(target)
|
||||
prefix = os.path.commonprefix([abs_directory, abs_target])
|
||||
return prefix == abs_directory
|
||||
|
||||
def safe_extract(tar, path):
|
||||
for member in tar.getmembers():
|
||||
member_path = os.path.join(path, member.name)
|
||||
if not is_within_directory(path, member_path):
|
||||
raise ValueError(Errors.E852)
|
||||
tar.extractall(path)
|
||||
|
||||
safe_extract(tar_file, self.root)
|
||||
return url
|
||||
|
||||
def find(
|
||||
self,
|
||||
path: Path,
|
||||
*,
|
||||
command_hash: Optional[str] = None,
|
||||
content_hash: Optional[str] = None,
|
||||
) -> Optional["FluidPath"]:
|
||||
"""Find the best matching version of a file within the storage,
|
||||
or `None` if no match can be found. If both the creation and content hash
|
||||
are specified, only exact matches will be returned. Otherwise, the most
|
||||
recent matching file is preferred.
|
||||
"""
|
||||
name = self.encode_name(str(path))
|
||||
urls = []
|
||||
if command_hash is not None and content_hash is not None:
|
||||
url = self.url / name / command_hash / content_hash
|
||||
urls = [url] if url.exists() else []
|
||||
elif command_hash is not None:
|
||||
if (self.url / name / command_hash).exists():
|
||||
urls = list((self.url / name / command_hash).iterdir())
|
||||
else:
|
||||
if (self.url / name).exists():
|
||||
for sub_dir in (self.url / name).iterdir():
|
||||
urls.extend(sub_dir.iterdir())
|
||||
if content_hash is not None:
|
||||
urls = [url for url in urls if url.parts[-1] == content_hash]
|
||||
if len(urls) >= 2:
|
||||
try:
|
||||
urls.sort(key=lambda x: x.stat().last_modified) # type: ignore
|
||||
except Exception:
|
||||
msg.warn(
|
||||
"Unable to sort remote files by last modified. The file(s) "
|
||||
"pulled from the cache may not be the most recent."
|
||||
)
|
||||
return urls[-1] if urls else None
|
||||
|
||||
def make_url(self, path: Path, command_hash: str, content_hash: str) -> "FluidPath":
|
||||
"""Construct a URL from a subpath, a creation hash and a content hash."""
|
||||
return self.url / self.encode_name(str(path)) / command_hash / content_hash
|
||||
|
||||
def encode_name(self, name: str) -> str:
|
||||
"""Encode a subpath into a URL-safe name."""
|
||||
return urllib.parse.quote_plus(name)
|
||||
|
||||
|
||||
def get_content_hash(loc: Path) -> str:
|
||||
return get_checksum(loc)
|
||||
|
||||
|
||||
def get_command_hash(
|
||||
site_hash: str, env_hash: str, deps: List[Path], cmd: List[str]
|
||||
) -> str:
|
||||
"""Create a hash representing the execution of a command. This includes the
|
||||
currently installed packages, whatever environment variables have been marked
|
||||
as relevant, and the command.
|
||||
"""
|
||||
if check_bool_env_var(ENV_VARS.PROJECT_USE_GIT_VERSION):
|
||||
spacy_v = GIT_VERSION
|
||||
else:
|
||||
spacy_v = str(get_minor_version(about.__version__) or "")
|
||||
dep_checksums = [get_checksum(dep) for dep in sorted(deps)]
|
||||
hashes = [spacy_v, site_hash, env_hash] + dep_checksums
|
||||
hashes.extend(cmd)
|
||||
creation_bytes = "".join(hashes).encode("utf8")
|
||||
return hashlib.md5(creation_bytes).hexdigest()
|
||||
|
||||
|
||||
def get_site_hash():
|
||||
"""Hash the current Python environment's site-packages contents, including
|
||||
the name and version of the libraries. The list we're hashing is what
|
||||
`pip freeze` would output.
|
||||
"""
|
||||
site_dirs = site.getsitepackages()
|
||||
if site.ENABLE_USER_SITE:
|
||||
site_dirs.extend(site.getusersitepackages())
|
||||
packages = set()
|
||||
for site_dir in site_dirs:
|
||||
site_dir = Path(site_dir)
|
||||
for subpath in site_dir.iterdir():
|
||||
if subpath.parts[-1].endswith("dist-info"):
|
||||
packages.add(subpath.parts[-1].replace(".dist-info", ""))
|
||||
package_bytes = "".join(sorted(packages)).encode("utf8")
|
||||
return hashlib.md5sum(package_bytes).hexdigest()
|
||||
|
||||
|
||||
def get_env_hash(env: Dict[str, str]) -> str:
|
||||
"""Construct a hash of the environment variables that will be passed into
|
||||
the commands.
|
||||
|
||||
Values in the env dict may be references to the current os.environ, using
|
||||
the syntax $ENV_VAR to mean os.environ[ENV_VAR]
|
||||
"""
|
||||
env_vars = {}
|
||||
for key, value in env.items():
|
||||
if value.startswith("$"):
|
||||
env_vars[key] = os.environ.get(value[1:], "")
|
||||
else:
|
||||
env_vars[key] = value
|
||||
return get_hash(env_vars)
|
||||
from weasel.cli.remote_storage import *
|
||||
|
|
|
@ -1,379 +1 @@
|
|||
import os.path
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Iterable, List, Optional, Sequence, Tuple
|
||||
|
||||
import srsly
|
||||
import typer
|
||||
from wasabi import msg
|
||||
from wasabi.util import locale_escape
|
||||
|
||||
from ... import about
|
||||
from ...git_info import GIT_VERSION
|
||||
from ...util import (
|
||||
ENV_VARS,
|
||||
SimpleFrozenDict,
|
||||
SimpleFrozenList,
|
||||
check_bool_env_var,
|
||||
is_cwd,
|
||||
is_minor_version_match,
|
||||
join_command,
|
||||
run_command,
|
||||
split_command,
|
||||
working_dir,
|
||||
)
|
||||
from .._util import (
|
||||
COMMAND,
|
||||
PROJECT_FILE,
|
||||
PROJECT_LOCK,
|
||||
Arg,
|
||||
Opt,
|
||||
get_checksum,
|
||||
get_hash,
|
||||
load_project_config,
|
||||
parse_config_overrides,
|
||||
project_cli,
|
||||
)
|
||||
|
||||
|
||||
@project_cli.command(
|
||||
"run", context_settings={"allow_extra_args": True, "ignore_unknown_options": True}
|
||||
)
|
||||
def project_run_cli(
|
||||
# fmt: off
|
||||
ctx: typer.Context, # This is only used to read additional arguments
|
||||
subcommand: str = Arg(None, help=f"Name of command defined in the {PROJECT_FILE}"),
|
||||
project_dir: Path = Arg(Path.cwd(), help="Location of project directory. Defaults to current working directory.", exists=True, file_okay=False),
|
||||
force: bool = Opt(False, "--force", "-F", help="Force re-running steps, even if nothing changed"),
|
||||
dry: bool = Opt(False, "--dry", "-D", help="Perform a dry run and don't execute scripts"),
|
||||
show_help: bool = Opt(False, "--help", help="Show help message and available subcommands")
|
||||
# fmt: on
|
||||
):
|
||||
"""Run a named command or workflow defined in the project.yml. If a workflow
|
||||
name is specified, all commands in the workflow are run, in order. If
|
||||
commands define dependencies and/or outputs, they will only be re-run if
|
||||
state has changed.
|
||||
|
||||
DOCS: https://spacy.io/api/cli#project-run
|
||||
"""
|
||||
if show_help or not subcommand:
|
||||
print_run_help(project_dir, subcommand)
|
||||
else:
|
||||
overrides = parse_config_overrides(ctx.args)
|
||||
project_run(project_dir, subcommand, overrides=overrides, force=force, dry=dry)
|
||||
|
||||
|
||||
def project_run(
|
||||
project_dir: Path,
|
||||
subcommand: str,
|
||||
*,
|
||||
overrides: Dict[str, Any] = SimpleFrozenDict(),
|
||||
force: bool = False,
|
||||
dry: bool = False,
|
||||
capture: bool = False,
|
||||
skip_requirements_check: bool = False,
|
||||
) -> None:
|
||||
"""Run a named script defined in the project.yml. If the script is part
|
||||
of the default pipeline (defined in the "run" section), DVC is used to
|
||||
execute the command, so it can determine whether to rerun it. It then
|
||||
calls into "exec" to execute it.
|
||||
|
||||
project_dir (Path): Path to project directory.
|
||||
subcommand (str): Name of command to run.
|
||||
overrides (Dict[str, Any]): Optional config overrides.
|
||||
force (bool): Force re-running, even if nothing changed.
|
||||
dry (bool): Perform a dry run and don't execute commands.
|
||||
capture (bool): Whether to capture the output and errors of individual commands.
|
||||
If False, the stdout and stderr will not be redirected, and if there's an error,
|
||||
sys.exit will be called with the return code. You should use capture=False
|
||||
when you want to turn over execution to the command, and capture=True
|
||||
when you want to run the command more like a function.
|
||||
skip_requirements_check (bool): Whether to skip the requirements check.
|
||||
"""
|
||||
config = load_project_config(project_dir, overrides=overrides)
|
||||
commands = {cmd["name"]: cmd for cmd in config.get("commands", [])}
|
||||
workflows = config.get("workflows", {})
|
||||
validate_subcommand(list(commands.keys()), list(workflows.keys()), subcommand)
|
||||
|
||||
req_path = project_dir / "requirements.txt"
|
||||
if not skip_requirements_check:
|
||||
if config.get("check_requirements", True) and os.path.exists(req_path):
|
||||
with req_path.open() as requirements_file:
|
||||
_check_requirements([req.strip() for req in requirements_file])
|
||||
|
||||
if subcommand in workflows:
|
||||
msg.info(f"Running workflow '{subcommand}'")
|
||||
for cmd in workflows[subcommand]:
|
||||
project_run(
|
||||
project_dir,
|
||||
cmd,
|
||||
overrides=overrides,
|
||||
force=force,
|
||||
dry=dry,
|
||||
capture=capture,
|
||||
skip_requirements_check=True,
|
||||
)
|
||||
else:
|
||||
cmd = commands[subcommand]
|
||||
for dep in cmd.get("deps", []):
|
||||
if not (project_dir / dep).exists():
|
||||
err = f"Missing dependency specified by command '{subcommand}': {dep}"
|
||||
err_help = "Maybe you forgot to run the 'project assets' command or a previous step?"
|
||||
err_exits = 1 if not dry else None
|
||||
msg.fail(err, err_help, exits=err_exits)
|
||||
check_spacy_commit = check_bool_env_var(ENV_VARS.PROJECT_USE_GIT_VERSION)
|
||||
with working_dir(project_dir) as current_dir:
|
||||
msg.divider(subcommand)
|
||||
rerun = check_rerun(current_dir, cmd, check_spacy_commit=check_spacy_commit)
|
||||
if not rerun and not force:
|
||||
msg.info(f"Skipping '{cmd['name']}': nothing changed")
|
||||
else:
|
||||
run_commands(cmd["script"], dry=dry, capture=capture)
|
||||
if not dry:
|
||||
update_lockfile(current_dir, cmd)
|
||||
|
||||
|
||||
def print_run_help(project_dir: Path, subcommand: Optional[str] = None) -> None:
|
||||
"""Simulate a CLI help prompt using the info available in the project.yml.
|
||||
|
||||
project_dir (Path): The project directory.
|
||||
subcommand (Optional[str]): The subcommand or None. If a subcommand is
|
||||
provided, the subcommand help is shown. Otherwise, the top-level help
|
||||
and a list of available commands is printed.
|
||||
"""
|
||||
config = load_project_config(project_dir)
|
||||
config_commands = config.get("commands", [])
|
||||
commands = {cmd["name"]: cmd for cmd in config_commands}
|
||||
workflows = config.get("workflows", {})
|
||||
project_loc = "" if is_cwd(project_dir) else project_dir
|
||||
if subcommand:
|
||||
validate_subcommand(list(commands.keys()), list(workflows.keys()), subcommand)
|
||||
print(f"Usage: {COMMAND} project run {subcommand} {project_loc}")
|
||||
if subcommand in commands:
|
||||
help_text = commands[subcommand].get("help")
|
||||
if help_text:
|
||||
print(f"\n{help_text}\n")
|
||||
elif subcommand in workflows:
|
||||
steps = workflows[subcommand]
|
||||
print(f"\nWorkflow consisting of {len(steps)} commands:")
|
||||
steps_data = [
|
||||
(f"{i + 1}. {step}", commands[step].get("help", ""))
|
||||
for i, step in enumerate(steps)
|
||||
]
|
||||
msg.table(steps_data)
|
||||
help_cmd = f"{COMMAND} project run [COMMAND] {project_loc} --help"
|
||||
print(f"For command details, run: {help_cmd}")
|
||||
else:
|
||||
print("")
|
||||
title = config.get("title")
|
||||
if title:
|
||||
print(f"{locale_escape(title)}\n")
|
||||
if config_commands:
|
||||
print(f"Available commands in {PROJECT_FILE}")
|
||||
print(f"Usage: {COMMAND} project run [COMMAND] {project_loc}")
|
||||
msg.table([(cmd["name"], cmd.get("help", "")) for cmd in config_commands])
|
||||
if workflows:
|
||||
print(f"Available workflows in {PROJECT_FILE}")
|
||||
print(f"Usage: {COMMAND} project run [WORKFLOW] {project_loc}")
|
||||
msg.table([(name, " -> ".join(steps)) for name, steps in workflows.items()])
|
||||
|
||||
|
||||
def run_commands(
|
||||
commands: Iterable[str] = SimpleFrozenList(),
|
||||
silent: bool = False,
|
||||
dry: bool = False,
|
||||
capture: bool = False,
|
||||
) -> None:
|
||||
"""Run a sequence of commands in a subprocess, in order.
|
||||
|
||||
commands (List[str]): The string commands.
|
||||
silent (bool): Don't print the commands.
|
||||
dry (bool): Perform a dry run and don't execut anything.
|
||||
capture (bool): Whether to capture the output and errors of individual commands.
|
||||
If False, the stdout and stderr will not be redirected, and if there's an error,
|
||||
sys.exit will be called with the return code. You should use capture=False
|
||||
when you want to turn over execution to the command, and capture=True
|
||||
when you want to run the command more like a function.
|
||||
"""
|
||||
for c in commands:
|
||||
command = split_command(c)
|
||||
# Not sure if this is needed or a good idea. Motivation: users may often
|
||||
# use commands in their config that reference "python" and we want to
|
||||
# make sure that it's always executing the same Python that spaCy is
|
||||
# executed with and the pip in the same env, not some other Python/pip.
|
||||
# Also ensures cross-compatibility if user 1 writes "python3" (because
|
||||
# that's how it's set up on their system), and user 2 without the
|
||||
# shortcut tries to re-run the command.
|
||||
if len(command) and command[0] in ("python", "python3"):
|
||||
command[0] = sys.executable
|
||||
elif len(command) and command[0] in ("pip", "pip3"):
|
||||
command = [sys.executable, "-m", "pip", *command[1:]]
|
||||
if not silent:
|
||||
print(f"Running command: {join_command(command)}")
|
||||
if not dry:
|
||||
run_command(command, capture=capture)
|
||||
|
||||
|
||||
def validate_subcommand(
|
||||
commands: Sequence[str], workflows: Sequence[str], subcommand: str
|
||||
) -> None:
|
||||
"""Check that a subcommand is valid and defined. Raises an error otherwise.
|
||||
|
||||
commands (Sequence[str]): The available commands.
|
||||
subcommand (str): The subcommand.
|
||||
"""
|
||||
if not commands and not workflows:
|
||||
msg.fail(f"No commands or workflows defined in {PROJECT_FILE}", exits=1)
|
||||
if subcommand not in commands and subcommand not in workflows:
|
||||
help_msg = []
|
||||
if subcommand in ["assets", "asset"]:
|
||||
help_msg.append("Did you mean to run: python -m spacy project assets?")
|
||||
if commands:
|
||||
help_msg.append(f"Available commands: {', '.join(commands)}")
|
||||
if workflows:
|
||||
help_msg.append(f"Available workflows: {', '.join(workflows)}")
|
||||
msg.fail(
|
||||
f"Can't find command or workflow '{subcommand}' in {PROJECT_FILE}",
|
||||
". ".join(help_msg),
|
||||
exits=1,
|
||||
)
|
||||
|
||||
|
||||
def check_rerun(
|
||||
project_dir: Path,
|
||||
command: Dict[str, Any],
|
||||
*,
|
||||
check_spacy_version: bool = True,
|
||||
check_spacy_commit: bool = False,
|
||||
) -> bool:
|
||||
"""Check if a command should be rerun because its settings or inputs/outputs
|
||||
changed.
|
||||
|
||||
project_dir (Path): The current project directory.
|
||||
command (Dict[str, Any]): The command, as defined in the project.yml.
|
||||
strict_version (bool):
|
||||
RETURNS (bool): Whether to re-run the command.
|
||||
"""
|
||||
# Always rerun if no-skip is set
|
||||
if command.get("no_skip", False):
|
||||
return True
|
||||
lock_path = project_dir / PROJECT_LOCK
|
||||
if not lock_path.exists(): # We don't have a lockfile, run command
|
||||
return True
|
||||
data = srsly.read_yaml(lock_path)
|
||||
if command["name"] not in data: # We don't have info about this command
|
||||
return True
|
||||
entry = data[command["name"]]
|
||||
# Always run commands with no outputs (otherwise they'd always be skipped)
|
||||
if not entry.get("outs", []):
|
||||
return True
|
||||
# Always rerun if spaCy version or commit hash changed
|
||||
spacy_v = entry.get("spacy_version")
|
||||
commit = entry.get("spacy_git_version")
|
||||
if check_spacy_version and not is_minor_version_match(spacy_v, about.__version__):
|
||||
info = f"({spacy_v} in {PROJECT_LOCK}, {about.__version__} current)"
|
||||
msg.info(f"Re-running '{command['name']}': spaCy minor version changed {info}")
|
||||
return True
|
||||
if check_spacy_commit and commit != GIT_VERSION:
|
||||
info = f"({commit} in {PROJECT_LOCK}, {GIT_VERSION} current)"
|
||||
msg.info(f"Re-running '{command['name']}': spaCy commit changed {info}")
|
||||
return True
|
||||
# If the entry in the lockfile matches the lockfile entry that would be
|
||||
# generated from the current command, we don't rerun because it means that
|
||||
# all inputs/outputs, hashes and scripts are the same and nothing changed
|
||||
lock_entry = get_lock_entry(project_dir, command)
|
||||
exclude = ["spacy_version", "spacy_git_version"]
|
||||
return get_hash(lock_entry, exclude=exclude) != get_hash(entry, exclude=exclude)
|
||||
|
||||
|
||||
def update_lockfile(project_dir: Path, command: Dict[str, Any]) -> None:
|
||||
"""Update the lockfile after running a command. Will create a lockfile if
|
||||
it doesn't yet exist and will add an entry for the current command, its
|
||||
script and dependencies/outputs.
|
||||
|
||||
project_dir (Path): The current project directory.
|
||||
command (Dict[str, Any]): The command, as defined in the project.yml.
|
||||
"""
|
||||
lock_path = project_dir / PROJECT_LOCK
|
||||
if not lock_path.exists():
|
||||
srsly.write_yaml(lock_path, {})
|
||||
data = {}
|
||||
else:
|
||||
data = srsly.read_yaml(lock_path)
|
||||
data[command["name"]] = get_lock_entry(project_dir, command)
|
||||
srsly.write_yaml(lock_path, data)
|
||||
|
||||
|
||||
def get_lock_entry(project_dir: Path, command: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""Get a lockfile entry for a given command. An entry includes the command,
|
||||
the script (command steps) and a list of dependencies and outputs with
|
||||
their paths and file hashes, if available. The format is based on the
|
||||
dvc.lock files, to keep things consistent.
|
||||
|
||||
project_dir (Path): The current project directory.
|
||||
command (Dict[str, Any]): The command, as defined in the project.yml.
|
||||
RETURNS (Dict[str, Any]): The lockfile entry.
|
||||
"""
|
||||
deps = get_fileinfo(project_dir, command.get("deps", []))
|
||||
outs = get_fileinfo(project_dir, command.get("outputs", []))
|
||||
outs_nc = get_fileinfo(project_dir, command.get("outputs_no_cache", []))
|
||||
return {
|
||||
"cmd": f"{COMMAND} run {command['name']}",
|
||||
"script": command["script"],
|
||||
"deps": deps,
|
||||
"outs": [*outs, *outs_nc],
|
||||
"spacy_version": about.__version__,
|
||||
"spacy_git_version": GIT_VERSION,
|
||||
}
|
||||
|
||||
|
||||
def get_fileinfo(project_dir: Path, paths: List[str]) -> List[Dict[str, Optional[str]]]:
|
||||
"""Generate the file information for a list of paths (dependencies, outputs).
|
||||
Includes the file path and the file's checksum.
|
||||
|
||||
project_dir (Path): The current project directory.
|
||||
paths (List[str]): The file paths.
|
||||
RETURNS (List[Dict[str, str]]): The lockfile entry for a file.
|
||||
"""
|
||||
data = []
|
||||
for path in paths:
|
||||
file_path = project_dir / path
|
||||
md5 = get_checksum(file_path) if file_path.exists() else None
|
||||
data.append({"path": path, "md5": md5})
|
||||
return data
|
||||
|
||||
|
||||
def _check_requirements(requirements: List[str]) -> Tuple[bool, bool]:
|
||||
"""Checks whether requirements are installed and free of version conflicts.
|
||||
requirements (List[str]): List of requirements.
|
||||
RETURNS (Tuple[bool, bool]): Whether (1) any packages couldn't be imported, (2) any packages with version conflicts
|
||||
exist.
|
||||
"""
|
||||
import pkg_resources
|
||||
|
||||
failed_pkgs_msgs: List[str] = []
|
||||
conflicting_pkgs_msgs: List[str] = []
|
||||
|
||||
for req in requirements:
|
||||
try:
|
||||
pkg_resources.require(req)
|
||||
except pkg_resources.DistributionNotFound as dnf:
|
||||
failed_pkgs_msgs.append(dnf.report())
|
||||
except pkg_resources.VersionConflict as vc:
|
||||
conflicting_pkgs_msgs.append(vc.report())
|
||||
except Exception:
|
||||
msg.warn(
|
||||
f"Unable to check requirement: {req} "
|
||||
"Checks are currently limited to requirement specifiers "
|
||||
"(PEP 508)"
|
||||
)
|
||||
|
||||
if len(failed_pkgs_msgs) or len(conflicting_pkgs_msgs):
|
||||
msg.warn(
|
||||
title="Missing requirements or requirement conflicts detected. Make sure your Python environment is set up "
|
||||
"correctly and you installed all requirements specified in your project's requirements.txt: "
|
||||
)
|
||||
for pgk_msg in failed_pkgs_msgs + conflicting_pkgs_msgs:
|
||||
msg.text(pgk_msg)
|
||||
|
||||
return len(failed_pkgs_msgs) > 0, len(conflicting_pkgs_msgs) > 0
|
||||
from weasel.cli.run import *
|
||||
|
|
|
@ -271,8 +271,9 @@ grad_factor = 1.0
|
|||
@layers = "reduce_mean.v1"
|
||||
|
||||
[components.textcat.model.linear_model]
|
||||
@architectures = "spacy.TextCatBOW.v2"
|
||||
@architectures = "spacy.TextCatBOW.v3"
|
||||
exclusive_classes = true
|
||||
length = 262144
|
||||
ngram_size = 1
|
||||
no_output_layer = false
|
||||
|
||||
|
@ -308,8 +309,9 @@ grad_factor = 1.0
|
|||
@layers = "reduce_mean.v1"
|
||||
|
||||
[components.textcat_multilabel.model.linear_model]
|
||||
@architectures = "spacy.TextCatBOW.v2"
|
||||
@architectures = "spacy.TextCatBOW.v3"
|
||||
exclusive_classes = false
|
||||
length = 262144
|
||||
ngram_size = 1
|
||||
no_output_layer = false
|
||||
|
||||
|
@ -542,14 +544,15 @@ nO = null
|
|||
width = ${components.tok2vec.model.encode.width}
|
||||
|
||||
[components.textcat.model.linear_model]
|
||||
@architectures = "spacy.TextCatBOW.v2"
|
||||
@architectures = "spacy.TextCatBOW.v3"
|
||||
exclusive_classes = true
|
||||
length = 262144
|
||||
ngram_size = 1
|
||||
no_output_layer = false
|
||||
|
||||
{% else -%}
|
||||
[components.textcat.model]
|
||||
@architectures = "spacy.TextCatBOW.v2"
|
||||
@architectures = "spacy.TextCatBOW.v3"
|
||||
exclusive_classes = true
|
||||
ngram_size = 1
|
||||
no_output_layer = false
|
||||
|
@ -570,15 +573,17 @@ nO = null
|
|||
width = ${components.tok2vec.model.encode.width}
|
||||
|
||||
[components.textcat_multilabel.model.linear_model]
|
||||
@architectures = "spacy.TextCatBOW.v2"
|
||||
@architectures = "spacy.TextCatBOW.v3"
|
||||
exclusive_classes = false
|
||||
length = 262144
|
||||
ngram_size = 1
|
||||
no_output_layer = false
|
||||
|
||||
{% else -%}
|
||||
[components.textcat_multilabel.model]
|
||||
@architectures = "spacy.TextCatBOW.v2"
|
||||
@architectures = "spacy.TextCatBOW.v3"
|
||||
exclusive_classes = false
|
||||
length = 262144
|
||||
ngram_size = 1
|
||||
no_output_layer = false
|
||||
{%- endif %}
|
||||
|
|
|
@ -47,7 +47,8 @@ def train_cli(
|
|||
|
||||
DOCS: https://spacy.io/api/cli#train
|
||||
"""
|
||||
util.logger.setLevel(logging.DEBUG if verbose else logging.INFO)
|
||||
if verbose:
|
||||
util.logger.setLevel(logging.DEBUG)
|
||||
overrides = parse_config_overrides(ctx.args)
|
||||
import_code_paths(code_path)
|
||||
train(config_path, output_path, use_gpu=use_gpu, overrides=overrides)
|
||||
|
|
|
@ -26,6 +26,9 @@ batch_size = 1000
|
|||
[nlp.tokenizer]
|
||||
@tokenizers = "spacy.Tokenizer.v1"
|
||||
|
||||
[nlp.vectors]
|
||||
@vectors = "spacy.Vectors.v1"
|
||||
|
||||
# The pipeline components and their models
|
||||
[components]
|
||||
|
||||
|
|
|
@ -142,7 +142,25 @@ class SpanRenderer:
|
|||
spans (list): Individual entity spans and their start, end, label, kb_id and kb_url.
|
||||
title (str / None): Document title set in Doc.user_data['title'].
|
||||
"""
|
||||
per_token_info = []
|
||||
per_token_info = self._assemble_per_token_info(tokens, spans)
|
||||
markup = self._render_markup(per_token_info)
|
||||
markup = TPL_SPANS.format(content=markup, dir=self.direction)
|
||||
if title:
|
||||
markup = TPL_TITLE.format(title=title) + markup
|
||||
return markup
|
||||
|
||||
@staticmethod
|
||||
def _assemble_per_token_info(
|
||||
tokens: List[str], spans: List[Dict[str, Any]]
|
||||
) -> List[Dict[str, List[Dict[str, Any]]]]:
|
||||
"""Assembles token info used to generate markup in render_spans().
|
||||
tokens (List[str]): Tokens in text.
|
||||
spans (List[Dict[str, Any]]): Spans in text.
|
||||
RETURNS (List[Dict[str, List[Dict, str, Any]]]): Per token info needed to render HTML markup for given tokens
|
||||
and spans.
|
||||
"""
|
||||
per_token_info: List[Dict[str, List[Dict[str, Any]]]] = []
|
||||
|
||||
# we must sort so that we can correctly describe when spans need to "stack"
|
||||
# which is determined by their start token, then span length (longer spans on top),
|
||||
# then break any remaining ties with the span label
|
||||
|
@ -154,21 +172,22 @@ class SpanRenderer:
|
|||
s["label"],
|
||||
),
|
||||
)
|
||||
|
||||
for s in spans:
|
||||
# this is the vertical 'slot' that the span will be rendered in
|
||||
# vertical_position = span_label_offset + (offset_step * (slot - 1))
|
||||
s["render_slot"] = 0
|
||||
|
||||
for idx, token in enumerate(tokens):
|
||||
# Identify if a token belongs to a Span (and which) and if it's a
|
||||
# start token of said Span. We'll use this for the final HTML render
|
||||
token_markup: Dict[str, Any] = {}
|
||||
token_markup["text"] = token
|
||||
concurrent_spans = 0
|
||||
intersecting_spans: List[Dict[str, Any]] = []
|
||||
entities = []
|
||||
for span in spans:
|
||||
ent = {}
|
||||
if span["start_token"] <= idx < span["end_token"]:
|
||||
concurrent_spans += 1
|
||||
span_start = idx == span["start_token"]
|
||||
ent["label"] = span["label"]
|
||||
ent["is_start"] = span_start
|
||||
|
@ -176,7 +195,12 @@ class SpanRenderer:
|
|||
# When the span starts, we need to know how many other
|
||||
# spans are on the 'span stack' and will be rendered.
|
||||
# This value becomes the vertical render slot for this entire span
|
||||
span["render_slot"] = concurrent_spans
|
||||
span["render_slot"] = (
|
||||
intersecting_spans[-1]["render_slot"]
|
||||
if len(intersecting_spans)
|
||||
else 0
|
||||
) + 1
|
||||
intersecting_spans.append(span)
|
||||
ent["render_slot"] = span["render_slot"]
|
||||
kb_id = span.get("kb_id", "")
|
||||
kb_url = span.get("kb_url", "#")
|
||||
|
@ -193,11 +217,8 @@ class SpanRenderer:
|
|||
span["render_slot"] = 0
|
||||
token_markup["entities"] = entities
|
||||
per_token_info.append(token_markup)
|
||||
markup = self._render_markup(per_token_info)
|
||||
markup = TPL_SPANS.format(content=markup, dir=self.direction)
|
||||
if title:
|
||||
markup = TPL_TITLE.format(title=title) + markup
|
||||
return markup
|
||||
|
||||
return per_token_info
|
||||
|
||||
def _render_markup(self, per_token_info: List[Dict[str, Any]]) -> str:
|
||||
"""Render the markup from per-token information"""
|
||||
|
@ -313,6 +334,8 @@ class DependencyRenderer:
|
|||
self.lang = settings.get("lang", DEFAULT_LANG)
|
||||
render_id = f"{id_prefix}-{i}"
|
||||
svg = self.render_svg(render_id, p["words"], p["arcs"])
|
||||
if p.get("title"):
|
||||
svg = TPL_TITLE.format(title=p.get("title")) + svg
|
||||
rendered.append(svg)
|
||||
if page:
|
||||
content = "".join([TPL_FIGURE.format(content=svg) for svg in rendered])
|
||||
|
@ -565,7 +588,7 @@ class EntityRenderer:
|
|||
for i, fragment in enumerate(fragments):
|
||||
markup += escape_html(fragment)
|
||||
if len(fragments) > 1 and i != len(fragments) - 1:
|
||||
markup += "</br>"
|
||||
markup += "<br>"
|
||||
if self.ents is None or label.upper() in self.ents:
|
||||
color = self.colors.get(label.upper(), self.default_color)
|
||||
ent_settings = {
|
||||
|
@ -583,7 +606,7 @@ class EntityRenderer:
|
|||
for i, fragment in enumerate(fragments):
|
||||
markup += escape_html(fragment)
|
||||
if len(fragments) > 1 and i != len(fragments) - 1:
|
||||
markup += "</br>"
|
||||
markup += "<br>"
|
||||
markup = TPL_ENTS.format(content=markup, dir=self.direction)
|
||||
if title:
|
||||
markup = TPL_TITLE.format(title=title) + markup
|
||||
|
|
|
@ -214,6 +214,7 @@ class Warnings(metaclass=ErrorsWithCodes):
|
|||
W125 = ("The StaticVectors key_attr is no longer used. To set a custom "
|
||||
"key attribute for vectors, configure it through Vectors(attr=) or "
|
||||
"'spacy init vectors --attr'")
|
||||
W126 = ("These keys are unsupported: {unsupported}")
|
||||
|
||||
# v4 warning strings
|
||||
W401 = ("`incl_prior is True`, but the selected knowledge base type {kb_type} doesn't support prior probability "
|
||||
|
@ -226,7 +227,6 @@ class Errors(metaclass=ErrorsWithCodes):
|
|||
E002 = ("Can't find factory for '{name}' for language {lang} ({lang_code}). "
|
||||
"This usually happens when spaCy calls `nlp.{method}` with a custom "
|
||||
"component name that's not registered on the current language class. "
|
||||
"If you're using a Transformer, make sure to install 'spacy-transformers'. "
|
||||
"If you're using a custom component, make sure you've added the "
|
||||
"decorator `@Language.component` (for function components) or "
|
||||
"`@Language.factory` (for class components).\n\nAvailable "
|
||||
|
@ -551,12 +551,12 @@ class Errors(metaclass=ErrorsWithCodes):
|
|||
"during training, make sure to include it in 'annotating components'")
|
||||
|
||||
# New errors added in v3.x
|
||||
E849 = ("The vocab only supports {method} for vectors of type "
|
||||
"spacy.vectors.Vectors, not {vectors_type}.")
|
||||
E850 = ("The PretrainVectors objective currently only supports default or "
|
||||
"floret vectors, not {mode} vectors.")
|
||||
E851 = ("The 'textcat' component labels should only have values of 0 or 1, "
|
||||
"but found value of '{val}'.")
|
||||
E852 = ("The tar file pulled from the remote attempted an unsafe path "
|
||||
"traversal.")
|
||||
E853 = ("Unsupported component factory name '{name}'. The character '.' is "
|
||||
"not permitted in factory names.")
|
||||
E854 = ("Unable to set doc.ents. Check that the 'ents_filter' does not "
|
||||
|
@ -970,6 +970,12 @@ class Errors(metaclass=ErrorsWithCodes):
|
|||
" 'min_length': {min_length}, 'max_length': {max_length}")
|
||||
E1054 = ("The text, including whitespace, must match between reference and "
|
||||
"predicted docs when training {component}.")
|
||||
E1055 = ("The 'replace_listener' callback expects {num_params} parameters, "
|
||||
"but only callbacks with one or three parameters are supported")
|
||||
E1056 = ("The `TextCatBOW` architecture expects a length of at least 1, was {length}.")
|
||||
E1057 = ("The `TextCatReduce` architecture must be used with at least one "
|
||||
"reduction. Please enable one of `use_reduce_first`, "
|
||||
"`use_reduce_last`, `use_reduce_max` or `use_reduce_mean`.")
|
||||
|
||||
# v4 error strings
|
||||
E4000 = ("Expected a Doc as input, but got: '{type}'")
|
||||
|
|
|
@ -2,4 +2,9 @@ from .candidate import Candidate, InMemoryCandidate
|
|||
from .kb import KnowledgeBase
|
||||
from .kb_in_memory import InMemoryLookupKB
|
||||
|
||||
__all__ = ["KnowledgeBase", "InMemoryLookupKB", "Candidate", "InMemoryCandidate"]
|
||||
__all__ = [
|
||||
"Candidate",
|
||||
"KnowledgeBase",
|
||||
"InMemoryCandidate",
|
||||
"InMemoryLookupKB",
|
||||
]
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# cython: infer_types=True, profile=True
|
||||
# cython: infer_types=True
|
||||
|
||||
from .kb_in_memory cimport InMemoryLookupKB
|
||||
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# cython: infer_types=True, profile=True
|
||||
# cython: infer_types=True
|
||||
|
||||
from pathlib import Path
|
||||
from typing import Iterable, Tuple, Union
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# cython: infer_types=True, profile=True
|
||||
# cython: infer_types=True
|
||||
from typing import Any, Callable, Dict, Iterable
|
||||
|
||||
import srsly
|
||||
|
|
|
@ -6,7 +6,8 @@ _num_words = [
|
|||
"nine", "ten", "eleven", "twelve", "thirteen", "fourteen", "fifteen",
|
||||
"sixteen", "seventeen", "eighteen", "nineteen", "twenty", "thirty", "forty",
|
||||
"fifty", "sixty", "seventy", "eighty", "ninety", "hundred", "thousand",
|
||||
"million", "billion", "trillion", "quadrillion", "gajillion", "bazillion"
|
||||
"million", "billion", "trillion", "quadrillion", "quintillion", "sextillion",
|
||||
"septillion", "octillion", "nonillion", "decillion", "gajillion", "bazillion"
|
||||
]
|
||||
_ordinal_words = [
|
||||
"first", "second", "third", "fourth", "fifth", "sixth", "seventh", "eighth",
|
||||
|
@ -14,7 +15,8 @@ _ordinal_words = [
|
|||
"fifteenth", "sixteenth", "seventeenth", "eighteenth", "nineteenth",
|
||||
"twentieth", "thirtieth", "fortieth", "fiftieth", "sixtieth", "seventieth",
|
||||
"eightieth", "ninetieth", "hundredth", "thousandth", "millionth", "billionth",
|
||||
"trillionth", "quadrillionth", "gajillionth", "bazillionth"
|
||||
"trillionth", "quadrillionth", "quintillionth", "sextillionth", "septillionth",
|
||||
"octillionth", "nonillionth", "decillionth", "gajillionth", "bazillionth"
|
||||
]
|
||||
# fmt: on
|
||||
|
||||
|
|
|
@ -163,7 +163,7 @@ class SpanishLemmatizer(Lemmatizer):
|
|||
for old, new in self.lookups.get_table("lemma_rules").get("det", []):
|
||||
if word == old:
|
||||
return [new]
|
||||
# If none of the specfic rules apply, search in the common rules for
|
||||
# If none of the specific rules apply, search in the common rules for
|
||||
# determiners and pronouns that follow a unique pattern for
|
||||
# lemmatization. If the word is in the list, return the corresponding
|
||||
# lemma.
|
||||
|
@ -291,7 +291,7 @@ class SpanishLemmatizer(Lemmatizer):
|
|||
for old, new in self.lookups.get_table("lemma_rules").get("pron", []):
|
||||
if word == old:
|
||||
return [new]
|
||||
# If none of the specfic rules apply, search in the common rules for
|
||||
# If none of the specific rules apply, search in the common rules for
|
||||
# determiners and pronouns that follow a unique pattern for
|
||||
# lemmatization. If the word is in the list, return the corresponding
|
||||
# lemma.
|
||||
|
|
18
spacy/lang/fo/__init__.py
Normal file
18
spacy/lang/fo/__init__.py
Normal file
|
@ -0,0 +1,18 @@
|
|||
from ...language import BaseDefaults, Language
|
||||
from ..punctuation import TOKENIZER_INFIXES, TOKENIZER_PREFIXES, TOKENIZER_SUFFIXES
|
||||
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
|
||||
|
||||
|
||||
class FaroeseDefaults(BaseDefaults):
|
||||
tokenizer_exceptions = TOKENIZER_EXCEPTIONS
|
||||
infixes = TOKENIZER_INFIXES
|
||||
suffixes = TOKENIZER_SUFFIXES
|
||||
prefixes = TOKENIZER_PREFIXES
|
||||
|
||||
|
||||
class Faroese(Language):
|
||||
lang = "fo"
|
||||
Defaults = FaroeseDefaults
|
||||
|
||||
|
||||
__all__ = ["Faroese"]
|
90
spacy/lang/fo/tokenizer_exceptions.py
Normal file
90
spacy/lang/fo/tokenizer_exceptions.py
Normal file
|
@ -0,0 +1,90 @@
|
|||
from ...symbols import ORTH
|
||||
from ...util import update_exc
|
||||
from ..tokenizer_exceptions import BASE_EXCEPTIONS
|
||||
|
||||
_exc = {}
|
||||
|
||||
for orth in [
|
||||
"apr.",
|
||||
"aug.",
|
||||
"avgr.",
|
||||
"árg.",
|
||||
"ávís.",
|
||||
"beinl.",
|
||||
"blkv.",
|
||||
"blaðkv.",
|
||||
"blm.",
|
||||
"blaðm.",
|
||||
"bls.",
|
||||
"blstj.",
|
||||
"blaðstj.",
|
||||
"des.",
|
||||
"eint.",
|
||||
"febr.",
|
||||
"fyrrv.",
|
||||
"góðk.",
|
||||
"h.m.",
|
||||
"innt.",
|
||||
"jan.",
|
||||
"kl.",
|
||||
"m.a.",
|
||||
"mðr.",
|
||||
"mió.",
|
||||
"nr.",
|
||||
"nto.",
|
||||
"nov.",
|
||||
"nút.",
|
||||
"o.a.",
|
||||
"o.a.m.",
|
||||
"o.a.tíl.",
|
||||
"o.fl.",
|
||||
"ff.",
|
||||
"o.m.a.",
|
||||
"o.o.",
|
||||
"o.s.fr.",
|
||||
"o.tíl.",
|
||||
"o.ø.",
|
||||
"okt.",
|
||||
"omf.",
|
||||
"pst.",
|
||||
"ritstj.",
|
||||
"sbr.",
|
||||
"sms.",
|
||||
"smst.",
|
||||
"smb.",
|
||||
"sb.",
|
||||
"sbrt.",
|
||||
"sp.",
|
||||
"sept.",
|
||||
"spf.",
|
||||
"spsk.",
|
||||
"t.e.",
|
||||
"t.s.",
|
||||
"t.s.s.",
|
||||
"tlf.",
|
||||
"tel.",
|
||||
"tsk.",
|
||||
"t.o.v.",
|
||||
"t.d.",
|
||||
"uml.",
|
||||
"ums.",
|
||||
"uppl.",
|
||||
"upprfr.",
|
||||
"uppr.",
|
||||
"útg.",
|
||||
"útl.",
|
||||
"útr.",
|
||||
"vanl.",
|
||||
"v.",
|
||||
"v.h.",
|
||||
"v.ø.o.",
|
||||
"viðm.",
|
||||
"viðv.",
|
||||
"vm.",
|
||||
"v.m.",
|
||||
]:
|
||||
_exc[orth] = [{ORTH: orth}]
|
||||
capitalized = orth.capitalize()
|
||||
_exc[capitalized] = [{ORTH: capitalized}]
|
||||
|
||||
TOKENIZER_EXCEPTIONS = update_exc(BASE_EXCEPTIONS, _exc)
|
|
@ -15,6 +15,7 @@ _prefixes = (
|
|||
[
|
||||
"†",
|
||||
"⸏",
|
||||
"〈",
|
||||
]
|
||||
+ LIST_PUNCT
|
||||
+ LIST_ELLIPSES
|
||||
|
@ -31,6 +32,7 @@ _suffixes = (
|
|||
+ [
|
||||
"†",
|
||||
"⸎",
|
||||
"〉",
|
||||
r"(?<=[\u1F00-\u1FFF\u0370-\u03FF])[\-\.⸏]",
|
||||
]
|
||||
)
|
||||
|
|
20
spacy/lang/nn/__init__.py
Normal file
20
spacy/lang/nn/__init__.py
Normal file
|
@ -0,0 +1,20 @@
|
|||
from ...language import BaseDefaults, Language
|
||||
from ..nb import SYNTAX_ITERATORS
|
||||
from .punctuation import TOKENIZER_INFIXES, TOKENIZER_PREFIXES, TOKENIZER_SUFFIXES
|
||||
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
|
||||
|
||||
|
||||
class NorwegianNynorskDefaults(BaseDefaults):
|
||||
tokenizer_exceptions = TOKENIZER_EXCEPTIONS
|
||||
prefixes = TOKENIZER_PREFIXES
|
||||
infixes = TOKENIZER_INFIXES
|
||||
suffixes = TOKENIZER_SUFFIXES
|
||||
syntax_iterators = SYNTAX_ITERATORS
|
||||
|
||||
|
||||
class NorwegianNynorsk(Language):
|
||||
lang = "nn"
|
||||
Defaults = NorwegianNynorskDefaults
|
||||
|
||||
|
||||
__all__ = ["NorwegianNynorsk"]
|
15
spacy/lang/nn/examples.py
Normal file
15
spacy/lang/nn/examples.py
Normal file
|
@ -0,0 +1,15 @@
|
|||
"""
|
||||
Example sentences to test spaCy and its language models.
|
||||
|
||||
>>> from spacy.lang.nn.examples import sentences
|
||||
>>> docs = nlp.pipe(sentences)
|
||||
"""
|
||||
|
||||
|
||||
# sentences taken from Omsetjingsminne frå Nynorsk pressekontor 2022 (https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-80/)
|
||||
sentences = [
|
||||
"Konseptet går ut på at alle tre omgangar tel, alle hopparar må stille i kvalifiseringa og poengsummen skal telje.",
|
||||
"Det er ein meir enn i same periode i fjor.",
|
||||
"Det har lava ned enorme snømengder i store delar av Europa den siste tida.",
|
||||
"Akhtar Chaudhry er ikkje innstilt på Oslo-lista til SV, men utfordrar Heikki Holmås om førsteplassen.",
|
||||
]
|
74
spacy/lang/nn/punctuation.py
Normal file
74
spacy/lang/nn/punctuation.py
Normal file
|
@ -0,0 +1,74 @@
|
|||
from ..char_classes import (
|
||||
ALPHA,
|
||||
ALPHA_LOWER,
|
||||
ALPHA_UPPER,
|
||||
CONCAT_QUOTES,
|
||||
CURRENCY,
|
||||
LIST_CURRENCY,
|
||||
LIST_ELLIPSES,
|
||||
LIST_ICONS,
|
||||
LIST_PUNCT,
|
||||
LIST_QUOTES,
|
||||
PUNCT,
|
||||
UNITS,
|
||||
)
|
||||
from ..punctuation import TOKENIZER_SUFFIXES
|
||||
|
||||
_quotes = CONCAT_QUOTES.replace("'", "")
|
||||
_list_punct = [x for x in LIST_PUNCT if x != "#"]
|
||||
_list_icons = [x for x in LIST_ICONS if x != "°"]
|
||||
_list_icons = [x.replace("\\u00B0", "") for x in _list_icons]
|
||||
_list_quotes = [x for x in LIST_QUOTES if x != "\\'"]
|
||||
|
||||
|
||||
_prefixes = (
|
||||
["§", "%", "=", "—", "–", r"\+(?![0-9])"]
|
||||
+ _list_punct
|
||||
+ LIST_ELLIPSES
|
||||
+ LIST_QUOTES
|
||||
+ LIST_CURRENCY
|
||||
+ LIST_ICONS
|
||||
)
|
||||
|
||||
|
||||
_infixes = (
|
||||
LIST_ELLIPSES
|
||||
+ _list_icons
|
||||
+ [
|
||||
r"(?<=[{al}])\.(?=[{au}])".format(al=ALPHA_LOWER, au=ALPHA_UPPER),
|
||||
r"(?<=[{a}])[,!?](?=[{a}])".format(a=ALPHA),
|
||||
r"(?<=[{a}])[:<>=/](?=[{a}])".format(a=ALPHA),
|
||||
r"(?<=[{a}]),(?=[{a}])".format(a=ALPHA),
|
||||
r"(?<=[{a}])([{q}\)\]\(\[])(?=[{a}])".format(a=ALPHA, q=_quotes),
|
||||
r"(?<=[{a}])--(?=[{a}])".format(a=ALPHA),
|
||||
]
|
||||
)
|
||||
|
||||
_suffixes = (
|
||||
LIST_PUNCT
|
||||
+ LIST_ELLIPSES
|
||||
+ _list_quotes
|
||||
+ _list_icons
|
||||
+ ["—", "–"]
|
||||
+ [
|
||||
r"(?<=[0-9])\+",
|
||||
r"(?<=°[FfCcKk])\.",
|
||||
r"(?<=[0-9])(?:{c})".format(c=CURRENCY),
|
||||
r"(?<=[0-9])(?:{u})".format(u=UNITS),
|
||||
r"(?<=[{al}{e}{p}(?:{q})])\.".format(
|
||||
al=ALPHA_LOWER, e=r"%²\-\+", q=_quotes, p=PUNCT
|
||||
),
|
||||
r"(?<=[{au}][{au}])\.".format(au=ALPHA_UPPER),
|
||||
]
|
||||
+ [r"(?<=[^sSxXzZ])'"]
|
||||
)
|
||||
_suffixes += [
|
||||
suffix
|
||||
for suffix in TOKENIZER_SUFFIXES
|
||||
if suffix not in ["'s", "'S", "’s", "’S", r"\'"]
|
||||
]
|
||||
|
||||
|
||||
TOKENIZER_PREFIXES = _prefixes
|
||||
TOKENIZER_INFIXES = _infixes
|
||||
TOKENIZER_SUFFIXES = _suffixes
|
228
spacy/lang/nn/tokenizer_exceptions.py
Normal file
228
spacy/lang/nn/tokenizer_exceptions.py
Normal file
|
@ -0,0 +1,228 @@
|
|||
from ...symbols import NORM, ORTH
|
||||
from ...util import update_exc
|
||||
from ..tokenizer_exceptions import BASE_EXCEPTIONS
|
||||
|
||||
_exc = {}
|
||||
|
||||
|
||||
for exc_data in [
|
||||
{ORTH: "jan.", NORM: "januar"},
|
||||
{ORTH: "feb.", NORM: "februar"},
|
||||
{ORTH: "mar.", NORM: "mars"},
|
||||
{ORTH: "apr.", NORM: "april"},
|
||||
{ORTH: "jun.", NORM: "juni"},
|
||||
# note: "jul." is in the simple list below without a NORM exception
|
||||
{ORTH: "aug.", NORM: "august"},
|
||||
{ORTH: "sep.", NORM: "september"},
|
||||
{ORTH: "okt.", NORM: "oktober"},
|
||||
{ORTH: "nov.", NORM: "november"},
|
||||
{ORTH: "des.", NORM: "desember"},
|
||||
]:
|
||||
_exc[exc_data[ORTH]] = [exc_data]
|
||||
|
||||
|
||||
for orth in [
|
||||
"Ap.",
|
||||
"Aq.",
|
||||
"Ca.",
|
||||
"Chr.",
|
||||
"Co.",
|
||||
"Dr.",
|
||||
"F.eks.",
|
||||
"Fr.p.",
|
||||
"Frp.",
|
||||
"Grl.",
|
||||
"Kr.",
|
||||
"Kr.F.",
|
||||
"Kr.F.s",
|
||||
"Mr.",
|
||||
"Mrs.",
|
||||
"Pb.",
|
||||
"Pr.",
|
||||
"Sp.",
|
||||
"St.",
|
||||
"a.m.",
|
||||
"ad.",
|
||||
"adm.dir.",
|
||||
"adr.",
|
||||
"b.c.",
|
||||
"bl.a.",
|
||||
"bla.",
|
||||
"bm.",
|
||||
"bnr.",
|
||||
"bto.",
|
||||
"c.c.",
|
||||
"ca.",
|
||||
"cand.mag.",
|
||||
"co.",
|
||||
"d.d.",
|
||||
"d.m.",
|
||||
"d.y.",
|
||||
"dept.",
|
||||
"dr.",
|
||||
"dr.med.",
|
||||
"dr.philos.",
|
||||
"dr.psychol.",
|
||||
"dss.",
|
||||
"dvs.",
|
||||
"e.Kr.",
|
||||
"e.l.",
|
||||
"eg.",
|
||||
"eig.",
|
||||
"ekskl.",
|
||||
"el.",
|
||||
"et.",
|
||||
"etc.",
|
||||
"etg.",
|
||||
"ev.",
|
||||
"evt.",
|
||||
"f.",
|
||||
"f.Kr.",
|
||||
"f.eks.",
|
||||
"f.o.m.",
|
||||
"fhv.",
|
||||
"fk.",
|
||||
"foreg.",
|
||||
"fork.",
|
||||
"fv.",
|
||||
"fvt.",
|
||||
"g.",
|
||||
"gl.",
|
||||
"gno.",
|
||||
"gnr.",
|
||||
"grl.",
|
||||
"gt.",
|
||||
"h.r.adv.",
|
||||
"hhv.",
|
||||
"hoh.",
|
||||
"hr.",
|
||||
"ifb.",
|
||||
"ifm.",
|
||||
"iht.",
|
||||
"inkl.",
|
||||
"istf.",
|
||||
"jf.",
|
||||
"jr.",
|
||||
"jul.",
|
||||
"juris.",
|
||||
"kfr.",
|
||||
"kgl.",
|
||||
"kgl.res.",
|
||||
"kl.",
|
||||
"komm.",
|
||||
"kr.",
|
||||
"kst.",
|
||||
"lat.",
|
||||
"lø.",
|
||||
"m.a.",
|
||||
"m.a.o.",
|
||||
"m.fl.",
|
||||
"m.m.",
|
||||
"m.v.",
|
||||
"ma.",
|
||||
"mag.art.",
|
||||
"md.",
|
||||
"mfl.",
|
||||
"mht.",
|
||||
"mill.",
|
||||
"min.",
|
||||
"mnd.",
|
||||
"moh.",
|
||||
"mrd.",
|
||||
"muh.",
|
||||
"mv.",
|
||||
"mva.",
|
||||
"n.å.",
|
||||
"ndf.",
|
||||
"nr.",
|
||||
"nto.",
|
||||
"nyno.",
|
||||
"o.a.",
|
||||
"o.l.",
|
||||
"obl.",
|
||||
"off.",
|
||||
"ofl.",
|
||||
"on.",
|
||||
"op.",
|
||||
"org.",
|
||||
"osv.",
|
||||
"ovf.",
|
||||
"p.",
|
||||
"p.a.",
|
||||
"p.g.a.",
|
||||
"p.m.",
|
||||
"p.t.",
|
||||
"pga.",
|
||||
"ph.d.",
|
||||
"pkt.",
|
||||
"pr.",
|
||||
"pst.",
|
||||
"pt.",
|
||||
"red.anm.",
|
||||
"ref.",
|
||||
"res.",
|
||||
"res.kap.",
|
||||
"resp.",
|
||||
"rv.",
|
||||
"s.",
|
||||
"s.d.",
|
||||
"s.k.",
|
||||
"s.u.",
|
||||
"s.å.",
|
||||
"sen.",
|
||||
"sep.",
|
||||
"siviling.",
|
||||
"sms.",
|
||||
"snr.",
|
||||
"spm.",
|
||||
"sr.",
|
||||
"sst.",
|
||||
"st.",
|
||||
"st.meld.",
|
||||
"st.prp.",
|
||||
"stip.",
|
||||
"stk.",
|
||||
"stud.",
|
||||
"sv.",
|
||||
"såk.",
|
||||
"sø.",
|
||||
"t.d.",
|
||||
"t.h.",
|
||||
"t.o.m.",
|
||||
"t.v.",
|
||||
"temp.",
|
||||
"ti.",
|
||||
"tils.",
|
||||
"tilsv.",
|
||||
"tl;dr",
|
||||
"tlf.",
|
||||
"to.",
|
||||
"ult.",
|
||||
"utg.",
|
||||
"v.",
|
||||
"vedk.",
|
||||
"vedr.",
|
||||
"vg.",
|
||||
"vgs.",
|
||||
"vha.",
|
||||
"vit.ass.",
|
||||
"vn.",
|
||||
"vol.",
|
||||
"vs.",
|
||||
"vsa.",
|
||||
"§§",
|
||||
"©NTB",
|
||||
"årg.",
|
||||
"årh.",
|
||||
]:
|
||||
_exc[orth] = [{ORTH: orth}]
|
||||
|
||||
# Dates
|
||||
for h in range(1, 31 + 1):
|
||||
for period in ["."]:
|
||||
_exc[f"{h}{period}"] = [{ORTH: f"{h}."}]
|
||||
|
||||
_custom_base_exc = {"i.": [{ORTH: "i", NORM: "i"}, {ORTH: "."}]}
|
||||
_exc.update(_custom_base_exc)
|
||||
|
||||
TOKENIZER_EXCEPTIONS = update_exc(BASE_EXCEPTIONS, _exc)
|
|
@ -15,4 +15,7 @@ sentences = [
|
|||
"Türkiye'nin başkenti neresi?",
|
||||
"Bakanlar Kurulu 180 günlük eylem planını açıkladı.",
|
||||
"Merkez Bankası, beklentiler doğrultusunda faizlerde değişikliğe gitmedi.",
|
||||
"Cemal Sureya kimdir?",
|
||||
"Bunlari Biliyor muydunuz?",
|
||||
"Altinoluk Turkiye haritasinin neresinde yer alir?",
|
||||
]
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
import functools
|
||||
import inspect
|
||||
import itertools
|
||||
import multiprocessing as mp
|
||||
import random
|
||||
|
@ -64,6 +65,7 @@ from .util import (
|
|||
registry,
|
||||
warn_if_jupyter_cupy,
|
||||
)
|
||||
from .vectors import BaseVectors
|
||||
from .vocab import Vocab, create_vocab
|
||||
|
||||
PipeCallable = Callable[[Doc], Doc]
|
||||
|
@ -153,6 +155,7 @@ class Language:
|
|||
max_length: int = 10**6,
|
||||
meta: Dict[str, Any] = {},
|
||||
create_tokenizer: Optional[Callable[["Language"], Callable[[str], Doc]]] = None,
|
||||
create_vectors: Optional[Callable[["Vocab"], BaseVectors]] = None,
|
||||
batch_size: int = 1000,
|
||||
**kwargs,
|
||||
) -> None:
|
||||
|
@ -192,6 +195,10 @@ class Language:
|
|||
raise ValueError(Errors.E918.format(vocab=vocab, vocab_type=type(Vocab)))
|
||||
if vocab is True:
|
||||
vocab = create_vocab(self.lang, self.Defaults)
|
||||
if not create_vectors:
|
||||
vectors_cfg = {"vectors": self._config["nlp"]["vectors"]}
|
||||
create_vectors = registry.resolve(vectors_cfg)["vectors"]
|
||||
vocab.vectors = create_vectors(vocab)
|
||||
else:
|
||||
if (self.lang and vocab.lang) and (self.lang != vocab.lang):
|
||||
raise ValueError(Errors.E150.format(nlp=self.lang, vocab=vocab.lang))
|
||||
|
@ -1790,6 +1797,12 @@ class Language:
|
|||
for proc in procs:
|
||||
proc.start()
|
||||
|
||||
# Close writing-end of channels. This is needed to avoid that reading
|
||||
# from the channel blocks indefinitely when the worker closes the
|
||||
# channel.
|
||||
for tx in bytedocs_send_ch:
|
||||
tx.close()
|
||||
|
||||
# Cycle channels not to break the order of docs.
|
||||
# The received object is a batch of byte-encoded docs, so flatten them with chain.from_iterable.
|
||||
byte_tuples = chain.from_iterable(
|
||||
|
@ -1812,8 +1825,23 @@ class Language:
|
|||
# tell `sender` that one batch was consumed.
|
||||
sender.step()
|
||||
finally:
|
||||
# If we are stopping in an orderly fashion, the workers' queues
|
||||
# are empty. Put the sentinel in their queues to signal that work
|
||||
# is done, so that they can exit gracefully.
|
||||
for q in texts_q:
|
||||
q.put(_WORK_DONE_SENTINEL)
|
||||
|
||||
# Otherwise, we are stopping because the error handler raised an
|
||||
# exception. The sentinel will be last to go out of the queue.
|
||||
# To avoid doing unnecessary work or hanging on platforms that
|
||||
# block on sending (Windows), we'll close our end of the channel.
|
||||
# This signals to the worker that it can exit the next time it
|
||||
# attempts to send data down the channel.
|
||||
for r in bytedocs_recv_ch:
|
||||
r.close()
|
||||
|
||||
for proc in procs:
|
||||
proc.terminate()
|
||||
proc.join()
|
||||
|
||||
def _link_components(self) -> None:
|
||||
"""Register 'listeners' within pipeline components, to allow them to
|
||||
|
@ -1878,6 +1906,10 @@ class Language:
|
|||
).merge(config)
|
||||
if "nlp" not in config:
|
||||
raise ValueError(Errors.E985.format(config=config))
|
||||
# fill in [nlp.vectors] if not present (as a narrower alternative to
|
||||
# auto-filling [nlp] from the default config)
|
||||
if "vectors" not in config["nlp"]:
|
||||
config["nlp"]["vectors"] = {"@vectors": "spacy.Vectors.v1"}
|
||||
config_lang = config["nlp"].get("lang")
|
||||
if config_lang is not None and config_lang != cls.lang:
|
||||
raise ValueError(
|
||||
|
@ -1913,6 +1945,7 @@ class Language:
|
|||
filled["nlp"], validate=validate, schema=ConfigSchemaNlp
|
||||
)
|
||||
create_tokenizer = resolved_nlp["tokenizer"]
|
||||
create_vectors = resolved_nlp["vectors"]
|
||||
before_creation = resolved_nlp["before_creation"]
|
||||
after_creation = resolved_nlp["after_creation"]
|
||||
after_pipeline_creation = resolved_nlp["after_pipeline_creation"]
|
||||
|
@ -1933,7 +1966,12 @@ class Language:
|
|||
# inside stuff like the spacy train function. If we loaded them here,
|
||||
# then we would load them twice at runtime: once when we make from config,
|
||||
# and then again when we load from disk.
|
||||
nlp = lang_cls(vocab=vocab, create_tokenizer=create_tokenizer, meta=meta)
|
||||
nlp = lang_cls(
|
||||
vocab=vocab,
|
||||
create_tokenizer=create_tokenizer,
|
||||
create_vectors=create_vectors,
|
||||
meta=meta,
|
||||
)
|
||||
if after_creation is not None:
|
||||
nlp = after_creation(nlp)
|
||||
if not isinstance(nlp, cls):
|
||||
|
@ -2150,8 +2188,20 @@ class Language:
|
|||
# Go over the listener layers and replace them
|
||||
for listener in pipe_listeners:
|
||||
new_model = tok2vec_model.copy()
|
||||
if "replace_listener" in tok2vec_model.attrs:
|
||||
new_model = tok2vec_model.attrs["replace_listener"](new_model)
|
||||
replace_listener_func = tok2vec_model.attrs.get("replace_listener")
|
||||
if replace_listener_func is not None:
|
||||
# Pass the extra args to the callback without breaking compatibility with
|
||||
# old library versions that only expect a single parameter.
|
||||
num_params = len(
|
||||
inspect.signature(replace_listener_func).parameters
|
||||
)
|
||||
if num_params == 1:
|
||||
new_model = replace_listener_func(new_model)
|
||||
elif num_params == 3:
|
||||
new_model = replace_listener_func(new_model, listener, tok2vec)
|
||||
else:
|
||||
raise ValueError(Errors.E1055.format(num_params=num_params))
|
||||
|
||||
util.replace_model_node(pipe.model, listener, new_model) # type: ignore[attr-defined]
|
||||
tok2vec.remove_listener(listener, pipe_name)
|
||||
|
||||
|
@ -2411,6 +2461,11 @@ def _apply_pipes(
|
|||
while True:
|
||||
try:
|
||||
texts_with_ctx = receiver.get()
|
||||
|
||||
# Stop working if we encounter the end-of-work sentinel.
|
||||
if isinstance(texts_with_ctx, _WorkDoneSentinel):
|
||||
return
|
||||
|
||||
docs = (
|
||||
ensure_doc(doc_like, context) for doc_like, context in texts_with_ctx
|
||||
)
|
||||
|
@ -2419,11 +2474,21 @@ def _apply_pipes(
|
|||
# Connection does not accept unpickable objects, so send list.
|
||||
byte_docs = [(doc.to_bytes(), doc._context, None) for doc in docs]
|
||||
padding = [(None, None, None)] * (len(texts_with_ctx) - len(byte_docs))
|
||||
sender.send(byte_docs + padding) # type: ignore[operator]
|
||||
data: Sequence[Tuple[Optional[bytes], Optional[Any], Optional[bytes]]] = (
|
||||
byte_docs + padding # type: ignore[operator]
|
||||
)
|
||||
except Exception:
|
||||
error_msg = [(None, None, srsly.msgpack_dumps(traceback.format_exc()))]
|
||||
padding = [(None, None, None)] * (len(texts_with_ctx) - 1)
|
||||
sender.send(error_msg + padding)
|
||||
data = error_msg + padding
|
||||
|
||||
try:
|
||||
sender.send(data)
|
||||
except BrokenPipeError:
|
||||
# Parent has closed the pipe prematurely. This happens when a
|
||||
# worker encounters an error and the error handler is set to
|
||||
# stop processing.
|
||||
return
|
||||
|
||||
|
||||
class _Sender:
|
||||
|
@ -2453,3 +2518,10 @@ class _Sender:
|
|||
if self.count >= self.chunk_size:
|
||||
self.count = 0
|
||||
self.send()
|
||||
|
||||
|
||||
class _WorkDoneSentinel:
|
||||
pass
|
||||
|
||||
|
||||
_WORK_DONE_SENTINEL = _WorkDoneSentinel()
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
# cython: embedsignature=True
|
||||
# cython: profile=False
|
||||
# Compiler crashes on memory view coercion without this. Should report bug.
|
||||
cimport numpy as np
|
||||
from libc.string cimport memset
|
||||
|
|
|
@ -3,4 +3,4 @@ from .levenshtein import levenshtein
|
|||
from .matcher import Matcher
|
||||
from .phrasematcher import PhraseMatcher
|
||||
|
||||
__all__ = ["Matcher", "PhraseMatcher", "DependencyMatcher", "levenshtein"]
|
||||
__all__ = ["DependencyMatcher", "Matcher", "PhraseMatcher", "levenshtein"]
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# cython: infer_types=True, profile=True
|
||||
# cython: infer_types=True
|
||||
import warnings
|
||||
from collections import defaultdict
|
||||
from itertools import product
|
||||
|
@ -129,6 +129,7 @@ cdef class DependencyMatcher:
|
|||
else:
|
||||
required_keys = {"RIGHT_ID", "RIGHT_ATTRS", "REL_OP", "LEFT_ID"}
|
||||
relation_keys = set(relation.keys())
|
||||
# Identify required keys that have not been specified
|
||||
missing = required_keys - relation_keys
|
||||
if missing:
|
||||
missing_txt = ", ".join(list(missing))
|
||||
|
@ -136,6 +137,13 @@ cdef class DependencyMatcher:
|
|||
required=required_keys,
|
||||
missing=missing_txt
|
||||
))
|
||||
# Identify additional, unsupported keys
|
||||
unsupported = relation_keys - required_keys
|
||||
if unsupported:
|
||||
unsupported_txt = ", ".join(list(unsupported))
|
||||
warnings.warn(Warnings.W126.format(
|
||||
unsupported=unsupported_txt
|
||||
))
|
||||
if (
|
||||
relation["RIGHT_ID"] in visited_nodes
|
||||
or relation["LEFT_ID"] not in visited_nodes
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# cython: profile=True, binding=True, infer_types=True
|
||||
# cython: binding=True, infer_types=True
|
||||
from cpython.object cimport PyObject
|
||||
from libc.stdint cimport int64_t
|
||||
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# cython: binding=True, infer_types=True, profile=True
|
||||
# cython: binding=True, infer_types=True
|
||||
from typing import Iterable, List
|
||||
|
||||
from cymem.cymem cimport Pool
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# cython: infer_types=True, profile=True
|
||||
# cython: infer_types=True
|
||||
from collections import defaultdict
|
||||
from typing import List
|
||||
|
||||
|
|
|
@ -1,21 +1,28 @@
|
|||
from functools import partial
|
||||
from typing import List, Optional, cast
|
||||
from typing import List, Optional, Tuple, cast
|
||||
|
||||
from thinc.api import (
|
||||
Dropout,
|
||||
Gelu,
|
||||
LayerNorm,
|
||||
Linear,
|
||||
Logistic,
|
||||
Maxout,
|
||||
Model,
|
||||
ParametricAttention,
|
||||
ParametricAttention_v2,
|
||||
Relu,
|
||||
Softmax,
|
||||
SparseLinear,
|
||||
SparseLinear_v2,
|
||||
chain,
|
||||
clone,
|
||||
concatenate,
|
||||
list2ragged,
|
||||
noop,
|
||||
reduce_first,
|
||||
reduce_last,
|
||||
reduce_max,
|
||||
reduce_mean,
|
||||
reduce_sum,
|
||||
residual,
|
||||
|
@ -25,9 +32,10 @@ from thinc.api import (
|
|||
)
|
||||
from thinc.layers.chain import init as init_chain
|
||||
from thinc.layers.resizable import resize_linear_weighted, resize_model
|
||||
from thinc.types import Floats2d
|
||||
from thinc.types import ArrayXd, Floats2d
|
||||
|
||||
from ...attrs import ORTH
|
||||
from ...errors import Errors
|
||||
from ...tokens import Doc
|
||||
from ...util import registry
|
||||
from ..extract_ngrams import extract_ngrams
|
||||
|
@ -47,10 +55,255 @@ def build_simple_cnn_text_classifier(
|
|||
outputs sum to 1. If exclusive_classes=False, a logistic non-linearity
|
||||
is applied instead, so that outputs are in the range [0, 1].
|
||||
"""
|
||||
return build_reduce_text_classifier(
|
||||
tok2vec=tok2vec,
|
||||
exclusive_classes=exclusive_classes,
|
||||
use_reduce_first=False,
|
||||
use_reduce_last=False,
|
||||
use_reduce_max=False,
|
||||
use_reduce_mean=True,
|
||||
nO=nO,
|
||||
)
|
||||
|
||||
|
||||
def resize_and_set_ref(model, new_nO, resizable_layer):
|
||||
resizable_layer = resize_model(resizable_layer, new_nO)
|
||||
model.set_ref("output_layer", resizable_layer.layers[0])
|
||||
model.set_dim("nO", new_nO, force=True)
|
||||
return model
|
||||
|
||||
|
||||
@registry.architectures("spacy.TextCatBOW.v2")
|
||||
def build_bow_text_classifier(
|
||||
exclusive_classes: bool,
|
||||
ngram_size: int,
|
||||
no_output_layer: bool,
|
||||
nO: Optional[int] = None,
|
||||
) -> Model[List[Doc], Floats2d]:
|
||||
return _build_bow_text_classifier(
|
||||
exclusive_classes=exclusive_classes,
|
||||
ngram_size=ngram_size,
|
||||
no_output_layer=no_output_layer,
|
||||
nO=nO,
|
||||
sparse_linear=SparseLinear(nO=nO),
|
||||
)
|
||||
|
||||
|
||||
@registry.architectures("spacy.TextCatBOW.v3")
|
||||
def build_bow_text_classifier_v3(
|
||||
exclusive_classes: bool,
|
||||
ngram_size: int,
|
||||
no_output_layer: bool,
|
||||
length: int = 262144,
|
||||
nO: Optional[int] = None,
|
||||
) -> Model[List[Doc], Floats2d]:
|
||||
if length < 1:
|
||||
raise ValueError(Errors.E1056.format(length=length))
|
||||
|
||||
# Find k such that 2**(k-1) < length <= 2**k.
|
||||
length = 2 ** (length - 1).bit_length()
|
||||
|
||||
return _build_bow_text_classifier(
|
||||
exclusive_classes=exclusive_classes,
|
||||
ngram_size=ngram_size,
|
||||
no_output_layer=no_output_layer,
|
||||
nO=nO,
|
||||
sparse_linear=SparseLinear_v2(nO=nO, length=length),
|
||||
)
|
||||
|
||||
|
||||
def _build_bow_text_classifier(
|
||||
exclusive_classes: bool,
|
||||
ngram_size: int,
|
||||
no_output_layer: bool,
|
||||
sparse_linear: Model[Tuple[ArrayXd, ArrayXd, ArrayXd], ArrayXd],
|
||||
nO: Optional[int] = None,
|
||||
) -> Model[List[Doc], Floats2d]:
|
||||
fill_defaults = {"b": 0, "W": 0}
|
||||
with Model.define_operators({">>": chain}):
|
||||
cnn = tok2vec >> list2ragged() >> reduce_mean()
|
||||
nI = tok2vec.maybe_get_dim("nO")
|
||||
output_layer = None
|
||||
if not no_output_layer:
|
||||
fill_defaults["b"] = NEG_VALUE
|
||||
output_layer = softmax_activation() if exclusive_classes else Logistic()
|
||||
resizable_layer: Model[Floats2d, Floats2d] = resizable(
|
||||
sparse_linear,
|
||||
resize_layer=partial(resize_linear_weighted, fill_defaults=fill_defaults),
|
||||
)
|
||||
model = extract_ngrams(ngram_size, attr=ORTH) >> resizable_layer
|
||||
model = with_cpu(model, model.ops)
|
||||
if output_layer:
|
||||
model = model >> with_cpu(output_layer, output_layer.ops)
|
||||
if nO is not None:
|
||||
model.set_dim("nO", cast(int, nO))
|
||||
model.set_ref("output_layer", sparse_linear)
|
||||
model.attrs["multi_label"] = not exclusive_classes
|
||||
model.attrs["resize_output"] = partial(
|
||||
resize_and_set_ref, resizable_layer=resizable_layer
|
||||
)
|
||||
return model
|
||||
|
||||
|
||||
@registry.architectures("spacy.TextCatEnsemble.v2")
|
||||
def build_text_classifier_v2(
|
||||
tok2vec: Model[List[Doc], List[Floats2d]],
|
||||
linear_model: Model[List[Doc], Floats2d],
|
||||
nO: Optional[int] = None,
|
||||
) -> Model[List[Doc], Floats2d]:
|
||||
width = tok2vec.maybe_get_dim("nO")
|
||||
exclusive_classes = not linear_model.attrs["multi_label"]
|
||||
parametric_attention = _build_parametric_attention_with_residual_nonlinear(
|
||||
tok2vec=tok2vec,
|
||||
nonlinear_layer=Maxout(nI=width, nO=width),
|
||||
key_transform=noop(),
|
||||
)
|
||||
with Model.define_operators({">>": chain, "|": concatenate}):
|
||||
nO_double = nO * 2 if nO else None
|
||||
if exclusive_classes:
|
||||
output_layer = Softmax(nO=nO, nI=nO_double)
|
||||
else:
|
||||
output_layer = Linear(nO=nO, nI=nO_double) >> Logistic()
|
||||
model = (linear_model | parametric_attention) >> output_layer
|
||||
model.set_ref("tok2vec", tok2vec)
|
||||
if model.has_dim("nO") is not False and nO is not None:
|
||||
model.set_dim("nO", cast(int, nO))
|
||||
model.set_ref("output_layer", linear_model.get_ref("output_layer"))
|
||||
model.attrs["multi_label"] = not exclusive_classes
|
||||
|
||||
return model
|
||||
|
||||
|
||||
@registry.architectures("spacy.TextCatLowData.v1")
|
||||
def build_text_classifier_lowdata(
|
||||
width: int, dropout: Optional[float], nO: Optional[int] = None
|
||||
) -> Model[List[Doc], Floats2d]:
|
||||
# Don't document this yet, I'm not sure it's right.
|
||||
# Note, before v.3, this was the default if setting "low_data" and "pretrained_dims"
|
||||
with Model.define_operators({">>": chain, "**": clone}):
|
||||
model = (
|
||||
StaticVectors(width)
|
||||
>> list2ragged()
|
||||
>> ParametricAttention(width)
|
||||
>> reduce_sum()
|
||||
>> residual(Relu(width, width)) ** 2
|
||||
>> Linear(nO, width)
|
||||
)
|
||||
if dropout:
|
||||
model = model >> Dropout(dropout)
|
||||
model = model >> Logistic()
|
||||
return model
|
||||
|
||||
|
||||
@registry.architectures("spacy.TextCatParametricAttention.v1")
|
||||
def build_textcat_parametric_attention_v1(
|
||||
tok2vec: Model[List[Doc], List[Floats2d]],
|
||||
exclusive_classes: bool,
|
||||
nO: Optional[int] = None,
|
||||
) -> Model[List[Doc], Floats2d]:
|
||||
width = tok2vec.maybe_get_dim("nO")
|
||||
parametric_attention = _build_parametric_attention_with_residual_nonlinear(
|
||||
tok2vec=tok2vec,
|
||||
nonlinear_layer=Maxout(nI=width, nO=width),
|
||||
key_transform=Gelu(nI=width, nO=width),
|
||||
)
|
||||
with Model.define_operators({">>": chain}):
|
||||
if exclusive_classes:
|
||||
output_layer = Softmax(nO=nO)
|
||||
else:
|
||||
output_layer = Linear(nO=nO) >> Logistic()
|
||||
model = parametric_attention >> output_layer
|
||||
if model.has_dim("nO") is not False and nO is not None:
|
||||
model.set_dim("nO", cast(int, nO))
|
||||
model.set_ref("output_layer", output_layer)
|
||||
model.attrs["multi_label"] = not exclusive_classes
|
||||
|
||||
return model
|
||||
|
||||
|
||||
def _build_parametric_attention_with_residual_nonlinear(
|
||||
*,
|
||||
tok2vec: Model[List[Doc], List[Floats2d]],
|
||||
nonlinear_layer: Model[Floats2d, Floats2d],
|
||||
key_transform: Optional[Model[Floats2d, Floats2d]] = None,
|
||||
) -> Model[List[Doc], Floats2d]:
|
||||
with Model.define_operators({">>": chain, "|": concatenate}):
|
||||
width = tok2vec.maybe_get_dim("nO")
|
||||
attention_layer = ParametricAttention_v2(nO=width, key_transform=key_transform)
|
||||
norm_layer = LayerNorm(nI=width)
|
||||
parametric_attention = (
|
||||
tok2vec
|
||||
>> list2ragged()
|
||||
>> attention_layer
|
||||
>> reduce_sum()
|
||||
>> residual(nonlinear_layer >> norm_layer >> Dropout(0.0))
|
||||
)
|
||||
|
||||
parametric_attention.init = _init_parametric_attention_with_residual_nonlinear
|
||||
|
||||
parametric_attention.set_ref("tok2vec", tok2vec)
|
||||
parametric_attention.set_ref("attention_layer", attention_layer)
|
||||
parametric_attention.set_ref("nonlinear_layer", nonlinear_layer)
|
||||
parametric_attention.set_ref("norm_layer", norm_layer)
|
||||
|
||||
return parametric_attention
|
||||
|
||||
|
||||
def _init_parametric_attention_with_residual_nonlinear(model, X, Y) -> Model:
|
||||
tok2vec_width = get_tok2vec_width(model)
|
||||
model.get_ref("attention_layer").set_dim("nO", tok2vec_width)
|
||||
model.get_ref("nonlinear_layer").set_dim("nO", tok2vec_width)
|
||||
model.get_ref("nonlinear_layer").set_dim("nI", tok2vec_width)
|
||||
model.get_ref("norm_layer").set_dim("nI", tok2vec_width)
|
||||
model.get_ref("norm_layer").set_dim("nO", tok2vec_width)
|
||||
init_chain(model, X, Y)
|
||||
return model
|
||||
|
||||
|
||||
@registry.architectures("spacy.TextCatReduce.v1")
|
||||
def build_reduce_text_classifier(
|
||||
tok2vec: Model,
|
||||
exclusive_classes: bool,
|
||||
use_reduce_first: bool,
|
||||
use_reduce_last: bool,
|
||||
use_reduce_max: bool,
|
||||
use_reduce_mean: bool,
|
||||
nO: Optional[int] = None,
|
||||
) -> Model[List[Doc], Floats2d]:
|
||||
"""Build a model that classifies pooled `Doc` representations.
|
||||
|
||||
Pooling is performed using reductions. Reductions are concatenated when
|
||||
multiple reductions are used.
|
||||
|
||||
tok2vec (Model): the tok2vec layer to pool over.
|
||||
exclusive_classes (bool): Whether or not classes are mutually exclusive.
|
||||
use_reduce_first (bool): Pool by using the hidden representation of the
|
||||
first token of a `Doc`.
|
||||
use_reduce_last (bool): Pool by using the hidden representation of the
|
||||
last token of a `Doc`.
|
||||
use_reduce_max (bool): Pool by taking the maximum values of the hidden
|
||||
representations of a `Doc`.
|
||||
use_reduce_mean (bool): Pool by taking the mean of all hidden
|
||||
representations of a `Doc`.
|
||||
nO (Optional[int]): Number of classes.
|
||||
"""
|
||||
|
||||
fill_defaults = {"b": 0, "W": 0}
|
||||
reductions = []
|
||||
if use_reduce_first:
|
||||
reductions.append(reduce_first())
|
||||
if use_reduce_last:
|
||||
reductions.append(reduce_last())
|
||||
if use_reduce_max:
|
||||
reductions.append(reduce_max())
|
||||
if use_reduce_mean:
|
||||
reductions.append(reduce_mean())
|
||||
|
||||
if not len(reductions):
|
||||
raise ValueError(Errors.E1057)
|
||||
|
||||
with Model.define_operators({">>": chain}):
|
||||
cnn = tok2vec >> list2ragged() >> concatenate(*reductions)
|
||||
nO_tok2vec = tok2vec.maybe_get_dim("nO")
|
||||
nI = nO_tok2vec * len(reductions) if nO_tok2vec is not None else None
|
||||
if exclusive_classes:
|
||||
output_layer = Softmax(nO=nO, nI=nI)
|
||||
fill_defaults["b"] = NEG_VALUE
|
||||
|
@ -80,113 +333,3 @@ def build_simple_cnn_text_classifier(
|
|||
model.set_dim("nO", cast(int, nO))
|
||||
model.attrs["multi_label"] = not exclusive_classes
|
||||
return model
|
||||
|
||||
|
||||
def resize_and_set_ref(model, new_nO, resizable_layer):
|
||||
resizable_layer = resize_model(resizable_layer, new_nO)
|
||||
model.set_ref("output_layer", resizable_layer.layers[0])
|
||||
model.set_dim("nO", new_nO, force=True)
|
||||
return model
|
||||
|
||||
|
||||
@registry.architectures("spacy.TextCatBOW.v2")
|
||||
def build_bow_text_classifier(
|
||||
exclusive_classes: bool,
|
||||
ngram_size: int,
|
||||
no_output_layer: bool,
|
||||
nO: Optional[int] = None,
|
||||
) -> Model[List[Doc], Floats2d]:
|
||||
fill_defaults = {"b": 0, "W": 0}
|
||||
with Model.define_operators({">>": chain}):
|
||||
sparse_linear = SparseLinear(nO=nO)
|
||||
output_layer = None
|
||||
if not no_output_layer:
|
||||
fill_defaults["b"] = NEG_VALUE
|
||||
output_layer = softmax_activation() if exclusive_classes else Logistic()
|
||||
resizable_layer: Model[Floats2d, Floats2d] = resizable(
|
||||
sparse_linear,
|
||||
resize_layer=partial(resize_linear_weighted, fill_defaults=fill_defaults),
|
||||
)
|
||||
model = extract_ngrams(ngram_size, attr=ORTH) >> resizable_layer
|
||||
model = with_cpu(model, model.ops)
|
||||
if output_layer:
|
||||
model = model >> with_cpu(output_layer, output_layer.ops)
|
||||
if nO is not None:
|
||||
model.set_dim("nO", cast(int, nO))
|
||||
model.set_ref("output_layer", sparse_linear)
|
||||
model.attrs["multi_label"] = not exclusive_classes
|
||||
model.attrs["resize_output"] = partial(
|
||||
resize_and_set_ref, resizable_layer=resizable_layer
|
||||
)
|
||||
return model
|
||||
|
||||
|
||||
@registry.architectures("spacy.TextCatEnsemble.v2")
|
||||
def build_text_classifier_v2(
|
||||
tok2vec: Model[List[Doc], List[Floats2d]],
|
||||
linear_model: Model[List[Doc], Floats2d],
|
||||
nO: Optional[int] = None,
|
||||
) -> Model[List[Doc], Floats2d]:
|
||||
exclusive_classes = not linear_model.attrs["multi_label"]
|
||||
with Model.define_operators({">>": chain, "|": concatenate}):
|
||||
width = tok2vec.maybe_get_dim("nO")
|
||||
attention_layer = ParametricAttention(width)
|
||||
maxout_layer = Maxout(nO=width, nI=width)
|
||||
norm_layer = LayerNorm(nI=width)
|
||||
cnn_model = (
|
||||
tok2vec
|
||||
>> list2ragged()
|
||||
>> attention_layer
|
||||
>> reduce_sum()
|
||||
>> residual(maxout_layer >> norm_layer >> Dropout(0.0))
|
||||
)
|
||||
|
||||
nO_double = nO * 2 if nO else None
|
||||
if exclusive_classes:
|
||||
output_layer = Softmax(nO=nO, nI=nO_double)
|
||||
else:
|
||||
output_layer = Linear(nO=nO, nI=nO_double) >> Logistic()
|
||||
model = (linear_model | cnn_model) >> output_layer
|
||||
model.set_ref("tok2vec", tok2vec)
|
||||
if model.has_dim("nO") is not False and nO is not None:
|
||||
model.set_dim("nO", cast(int, nO))
|
||||
model.set_ref("output_layer", linear_model.get_ref("output_layer"))
|
||||
model.set_ref("attention_layer", attention_layer)
|
||||
model.set_ref("maxout_layer", maxout_layer)
|
||||
model.set_ref("norm_layer", norm_layer)
|
||||
model.attrs["multi_label"] = not exclusive_classes
|
||||
|
||||
model.init = init_ensemble_textcat # type: ignore[assignment]
|
||||
return model
|
||||
|
||||
|
||||
def init_ensemble_textcat(model, X, Y) -> Model:
|
||||
tok2vec_width = get_tok2vec_width(model)
|
||||
model.get_ref("attention_layer").set_dim("nO", tok2vec_width)
|
||||
model.get_ref("maxout_layer").set_dim("nO", tok2vec_width)
|
||||
model.get_ref("maxout_layer").set_dim("nI", tok2vec_width)
|
||||
model.get_ref("norm_layer").set_dim("nI", tok2vec_width)
|
||||
model.get_ref("norm_layer").set_dim("nO", tok2vec_width)
|
||||
init_chain(model, X, Y)
|
||||
return model
|
||||
|
||||
|
||||
@registry.architectures("spacy.TextCatLowData.v1")
|
||||
def build_text_classifier_lowdata(
|
||||
width: int, dropout: Optional[float], nO: Optional[int] = None
|
||||
) -> Model[List[Doc], Floats2d]:
|
||||
# Don't document this yet, I'm not sure it's right.
|
||||
# Note, before v.3, this was the default if setting "low_data" and "pretrained_dims"
|
||||
with Model.define_operators({">>": chain, "**": clone}):
|
||||
model = (
|
||||
StaticVectors(width)
|
||||
>> list2ragged()
|
||||
>> ParametricAttention(width)
|
||||
>> reduce_sum()
|
||||
>> residual(Relu(width, width)) ** 2
|
||||
>> Linear(nO, width)
|
||||
)
|
||||
if dropout:
|
||||
model = model >> Dropout(dropout)
|
||||
model = model >> Logistic()
|
||||
return model
|
||||
|
|
|
@ -67,8 +67,8 @@ def build_hash_embed_cnn_tok2vec(
|
|||
are between 2 and 8.
|
||||
window_size (int): The number of tokens on either side to concatenate during
|
||||
the convolutions. The receptive field of the CNN will be
|
||||
depth * (window_size * 2 + 1), so a 4-layer network with window_size of
|
||||
2 will be sensitive to 20 words at a time. Recommended value is 1.
|
||||
depth * window_size * 2 + 1, so a 4-layer network with window_size of
|
||||
2 will be sensitive to 17 words at a time. Recommended value is 1.
|
||||
embed_size (int): The number of rows in the hash embedding tables. This can
|
||||
be surprisingly small, due to the use of the hash embeddings. Recommended
|
||||
values are between 2000 and 10000.
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
# cython: infer_types=True, cdivision=True, boundscheck=False
|
||||
# cython: profile=False
|
||||
cimport numpy as np
|
||||
from libc.math cimport exp
|
||||
from libc.stdlib cimport calloc, free, realloc
|
||||
|
|
|
@ -9,7 +9,7 @@ from thinc.util import partial
|
|||
from ..attrs import ORTH
|
||||
from ..errors import Errors, Warnings
|
||||
from ..tokens import Doc
|
||||
from ..vectors import Mode
|
||||
from ..vectors import Mode, Vectors
|
||||
from ..vocab import Vocab
|
||||
|
||||
|
||||
|
@ -48,11 +48,14 @@ def forward(
|
|||
key_attr: int = getattr(vocab.vectors, "attr", ORTH)
|
||||
keys = model.ops.flatten([cast(Ints1d, doc.to_array(key_attr)) for doc in docs])
|
||||
W = cast(Floats2d, model.ops.as_contig(model.get_param("W")))
|
||||
if vocab.vectors.mode == Mode.default:
|
||||
if isinstance(vocab.vectors, Vectors) and vocab.vectors.mode == Mode.default:
|
||||
V = model.ops.asarray(vocab.vectors.data)
|
||||
rows = vocab.vectors.find(keys=keys)
|
||||
V = model.ops.as_contig(V[rows])
|
||||
elif vocab.vectors.mode == Mode.floret:
|
||||
elif isinstance(vocab.vectors, Vectors) and vocab.vectors.mode == Mode.floret:
|
||||
V = vocab.vectors.get_batch(keys)
|
||||
V = model.ops.as_contig(V)
|
||||
elif hasattr(vocab.vectors, "get_batch"):
|
||||
V = vocab.vectors.get_batch(keys)
|
||||
V = model.ops.as_contig(V)
|
||||
else:
|
||||
|
@ -61,7 +64,7 @@ def forward(
|
|||
vectors_data = model.ops.gemm(V, W, trans2=True)
|
||||
except ValueError:
|
||||
raise RuntimeError(Errors.E896)
|
||||
if vocab.vectors.mode == Mode.default:
|
||||
if isinstance(vocab.vectors, Vectors) and vocab.vectors.mode == Mode.default:
|
||||
# Convert negative indices to 0-vectors
|
||||
# TODO: more options for UNK tokens
|
||||
vectors_data[rows < 0] = 0
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
# cython: infer_types
|
||||
# cython: profile=False
|
||||
import warnings
|
||||
from typing import Dict, List, Optional, Tuple, Union
|
||||
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
|
||||
# cython: profile=False
|
||||
IDS = {
|
||||
"": NO_TAG,
|
||||
"ADJ": ADJ,
|
||||
|
|
|
@ -21,6 +21,7 @@ from .trainable_pipe import TrainablePipe
|
|||
__all__ = [
|
||||
"AttributeRuler",
|
||||
"DependencyParser",
|
||||
"EditTreeLemmatizer",
|
||||
"EntityLinker",
|
||||
"EntityRecognizer",
|
||||
"Morphologizer",
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
# cython: infer_types=True, binding=True
|
||||
# cython: profile=False
|
||||
from cython.operator cimport dereference as deref
|
||||
from libc.stdint cimport UINT32_MAX, uint32_t
|
||||
from libc.string cimport memset
|
||||
|
|
|
@ -1,8 +1,12 @@
|
|||
from collections import defaultdict
|
||||
from typing import Any, Dict, List, Union
|
||||
|
||||
from pydantic import BaseModel, Field, ValidationError
|
||||
from pydantic.types import StrictBool, StrictInt, StrictStr
|
||||
try:
|
||||
from pydantic.v1 import BaseModel, Field, ValidationError
|
||||
from pydantic.v1.types import StrictBool, StrictInt, StrictStr
|
||||
except ImportError:
|
||||
from pydantic import BaseModel, Field, ValidationError # type: ignore
|
||||
from pydantic.types import StrictBool, StrictInt, StrictStr # type: ignore
|
||||
|
||||
|
||||
class MatchNodeSchema(BaseModel):
|
||||
|
|
|
@ -1,5 +1,4 @@
|
|||
# cython: infer_types=True
|
||||
# cython: profile=True
|
||||
import numpy
|
||||
|
||||
from ...typedefs cimport class_t
|
||||
|
|
|
@ -0,0 +1 @@
|
|||
# cython: profile=False
|
|
@ -1,4 +1,4 @@
|
|||
# cython: profile=True, cdivision=True, infer_types=True
|
||||
# cython: cdivision=True, infer_types=True
|
||||
from cymem.cymem cimport Address, Pool
|
||||
from libc.stdint cimport int32_t
|
||||
from libcpp.vector cimport vector
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
# cython: profile=False
|
||||
from cymem.cymem cimport Pool
|
||||
from libcpp.memory cimport shared_ptr
|
||||
from libcpp.vector cimport vector
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# cython: profile=True, infer_types=True
|
||||
# cython: infer_types=True
|
||||
"""Implements the projectivize/deprojectivize mechanism in Nivre & Nilsson 2005
|
||||
for doing pseudo-projective parsing implementation uses the HEAD decoration
|
||||
scheme.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# cython: profile=True, experimental_cpp_class_def=True, cdivision=True, infer_types=True
|
||||
# cython: experimental_cpp_class_def=True, cdivision=True, infer_types=True
|
||||
cimport cython
|
||||
from cymem.cymem cimport Pool
|
||||
from libc.math cimport exp
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
# cython: infer_types=True
|
||||
# cython: profile=False
|
||||
from libcpp.vector cimport vector
|
||||
|
||||
from ...tokens.doc cimport Doc
|
||||
|
@ -28,7 +29,7 @@ cdef class StateClass:
|
|||
return [self.B(i) for i in range(self.c.buffer_length())]
|
||||
|
||||
@property
|
||||
def token_vector_lenth(self):
|
||||
def token_vector_length(self):
|
||||
return self.doc.tensor.shape[1]
|
||||
|
||||
@property
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
# cython: infer_types=True
|
||||
# cython: profile=False
|
||||
from __future__ import print_function
|
||||
|
||||
from cymem.cymem cimport Pool
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# cython: infer_types=True, profile=True, binding=True
|
||||
# cython: infer_types=True, binding=True
|
||||
from collections import defaultdict
|
||||
from typing import Callable, Optional
|
||||
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# cython: infer_types=True, profile=True, binding=True
|
||||
# cython: infer_types=True, binding=True
|
||||
from itertools import islice
|
||||
from typing import Callable, Dict, Iterable, Optional, Union
|
||||
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# cython: infer_types=True, profile=True, binding=True
|
||||
# cython: infer_types=True, binding=True
|
||||
from collections import defaultdict
|
||||
from typing import Callable, Optional
|
||||
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# cython: infer_types=True, profile=True, binding=True
|
||||
# cython: infer_types=True, binding=True
|
||||
from typing import Callable, Dict, Iterable, Iterator, Tuple, Union
|
||||
|
||||
import srsly
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# cython: infer_types=True, profile=True, binding=True
|
||||
# cython: infer_types=True, binding=True
|
||||
from typing import Callable, List, Optional
|
||||
|
||||
import srsly
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# cython: infer_types=True, profile=True, binding=True
|
||||
# cython: infer_types=True, binding=True
|
||||
from itertools import islice
|
||||
from typing import Callable, Iterable, Optional
|
||||
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# cython: infer_types=True, profile=True, binding=True
|
||||
# cython: infer_types=True, binding=True
|
||||
from itertools import islice
|
||||
from typing import Callable, Dict, Iterable, List, Optional, Tuple, Union
|
||||
|
||||
|
|
|
@ -39,8 +39,9 @@ maxout_pieces = 3
|
|||
depth = 2
|
||||
|
||||
[model.linear_model]
|
||||
@architectures = "spacy.TextCatBOW.v2"
|
||||
@architectures = "spacy.TextCatBOW.v3"
|
||||
exclusive_classes = true
|
||||
length = 262144
|
||||
ngram_size = 1
|
||||
no_output_layer = false
|
||||
"""
|
||||
|
@ -48,16 +49,21 @@ DEFAULT_SINGLE_TEXTCAT_MODEL = Config().from_str(single_label_default_config)["m
|
|||
|
||||
single_label_bow_config = """
|
||||
[model]
|
||||
@architectures = "spacy.TextCatBOW.v2"
|
||||
@architectures = "spacy.TextCatBOW.v3"
|
||||
exclusive_classes = true
|
||||
length = 262144
|
||||
ngram_size = 1
|
||||
no_output_layer = false
|
||||
"""
|
||||
|
||||
single_label_cnn_config = """
|
||||
[model]
|
||||
@architectures = "spacy.TextCatCNN.v2"
|
||||
@architectures = "spacy.TextCatReduce.v1"
|
||||
exclusive_classes = true
|
||||
use_reduce_first = false
|
||||
use_reduce_last = false
|
||||
use_reduce_max = false
|
||||
use_reduce_mean = true
|
||||
|
||||
[model.tok2vec]
|
||||
@architectures = "spacy.HashEmbedCNN.v2"
|
||||
|
|
|
@ -35,8 +35,9 @@ maxout_pieces = 3
|
|||
depth = 2
|
||||
|
||||
[model.linear_model]
|
||||
@architectures = "spacy.TextCatBOW.v2"
|
||||
@architectures = "spacy.TextCatBOW.v3"
|
||||
exclusive_classes = false
|
||||
length = 262144
|
||||
ngram_size = 1
|
||||
no_output_layer = false
|
||||
"""
|
||||
|
@ -44,7 +45,7 @@ DEFAULT_MULTI_TEXTCAT_MODEL = Config().from_str(multi_label_default_config)["mod
|
|||
|
||||
multi_label_bow_config = """
|
||||
[model]
|
||||
@architectures = "spacy.TextCatBOW.v2"
|
||||
@architectures = "spacy.TextCatBOW.v3"
|
||||
exclusive_classes = false
|
||||
ngram_size = 1
|
||||
no_output_layer = false
|
||||
|
@ -52,8 +53,12 @@ no_output_layer = false
|
|||
|
||||
multi_label_cnn_config = """
|
||||
[model]
|
||||
@architectures = "spacy.TextCatCNN.v2"
|
||||
@architectures = "spacy.TextCatReduce.v1"
|
||||
exclusive_classes = false
|
||||
use_reduce_first = false
|
||||
use_reduce_last = false
|
||||
use_reduce_max = false
|
||||
use_reduce_mean = true
|
||||
|
||||
[model.tok2vec]
|
||||
@architectures = "spacy.HashEmbedCNN.v2"
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# cython: infer_types=True, profile=True, binding=True
|
||||
# cython: infer_types=True, binding=True
|
||||
from typing import Callable, Dict, Iterable, Iterator, Optional, Tuple
|
||||
|
||||
import srsly
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
# cython: infer_types=True, cdivision=True, boundscheck=False, binding=True
|
||||
# cython: profile=False
|
||||
from __future__ import print_function
|
||||
|
||||
from typing import Dict, Iterable, List, Optional, Tuple
|
||||
|
|
102
spacy/schemas.py
102
spacy/schemas.py
|
@ -17,19 +17,34 @@ from typing import (
|
|||
Union,
|
||||
)
|
||||
|
||||
from pydantic import (
|
||||
BaseModel,
|
||||
ConstrainedStr,
|
||||
Field,
|
||||
StrictBool,
|
||||
StrictFloat,
|
||||
StrictInt,
|
||||
StrictStr,
|
||||
ValidationError,
|
||||
create_model,
|
||||
validator,
|
||||
)
|
||||
from pydantic.main import ModelMetaclass
|
||||
try:
|
||||
from pydantic.v1 import (
|
||||
BaseModel,
|
||||
ConstrainedStr,
|
||||
Field,
|
||||
StrictBool,
|
||||
StrictFloat,
|
||||
StrictInt,
|
||||
StrictStr,
|
||||
ValidationError,
|
||||
create_model,
|
||||
validator,
|
||||
)
|
||||
from pydantic.v1.main import ModelMetaclass
|
||||
except ImportError:
|
||||
from pydantic import ( # type: ignore
|
||||
BaseModel,
|
||||
ConstrainedStr,
|
||||
Field,
|
||||
StrictBool,
|
||||
StrictFloat,
|
||||
StrictInt,
|
||||
StrictStr,
|
||||
ValidationError,
|
||||
create_model,
|
||||
validator,
|
||||
)
|
||||
from pydantic.main import ModelMetaclass # type: ignore
|
||||
from thinc.api import ConfigValidationError, Model, Optimizer
|
||||
from thinc.config import Promise
|
||||
|
||||
|
@ -397,6 +412,7 @@ class ConfigSchemaNlp(BaseModel):
|
|||
after_creation: Optional[Callable[["Language"], "Language"]] = Field(..., title="Optional callback to modify nlp object after creation and before the pipeline is constructed")
|
||||
after_pipeline_creation: Optional[Callable[["Language"], "Language"]] = Field(..., title="Optional callback to modify nlp object after the pipeline is constructed")
|
||||
batch_size: Optional[int] = Field(..., title="Default batch size")
|
||||
vectors: Callable = Field(..., title="Vectors implementation")
|
||||
# fmt: on
|
||||
|
||||
class Config:
|
||||
|
@ -488,66 +504,6 @@ CONFIG_SCHEMAS = {
|
|||
"distillation": ConfigSchemaDistill,
|
||||
}
|
||||
|
||||
|
||||
# Project config Schema
|
||||
|
||||
|
||||
class ProjectConfigAssetGitItem(BaseModel):
|
||||
# fmt: off
|
||||
repo: StrictStr = Field(..., title="URL of Git repo to download from")
|
||||
path: StrictStr = Field(..., title="File path or sub-directory to download (used for sparse checkout)")
|
||||
branch: StrictStr = Field("master", title="Branch to clone from")
|
||||
# fmt: on
|
||||
|
||||
|
||||
class ProjectConfigAssetURL(BaseModel):
|
||||
# fmt: off
|
||||
dest: StrictStr = Field(..., title="Destination of downloaded asset")
|
||||
url: Optional[StrictStr] = Field(None, title="URL of asset")
|
||||
checksum: Optional[str] = Field(None, title="MD5 hash of file", regex=r"([a-fA-F\d]{32})")
|
||||
description: StrictStr = Field("", title="Description of asset")
|
||||
# fmt: on
|
||||
|
||||
|
||||
class ProjectConfigAssetGit(BaseModel):
|
||||
# fmt: off
|
||||
git: ProjectConfigAssetGitItem = Field(..., title="Git repo information")
|
||||
checksum: Optional[str] = Field(None, title="MD5 hash of file", regex=r"([a-fA-F\d]{32})")
|
||||
description: Optional[StrictStr] = Field(None, title="Description of asset")
|
||||
# fmt: on
|
||||
|
||||
|
||||
class ProjectConfigCommand(BaseModel):
|
||||
# fmt: off
|
||||
name: StrictStr = Field(..., title="Name of command")
|
||||
help: Optional[StrictStr] = Field(None, title="Command description")
|
||||
script: List[StrictStr] = Field([], title="List of CLI commands to run, in order")
|
||||
deps: List[StrictStr] = Field([], title="File dependencies required by this command")
|
||||
outputs: List[StrictStr] = Field([], title="Outputs produced by this command")
|
||||
outputs_no_cache: List[StrictStr] = Field([], title="Outputs not tracked by DVC (DVC only)")
|
||||
no_skip: bool = Field(False, title="Never skip this command, even if nothing changed")
|
||||
# fmt: on
|
||||
|
||||
class Config:
|
||||
title = "A single named command specified in a project config"
|
||||
extra = "forbid"
|
||||
|
||||
|
||||
class ProjectConfigSchema(BaseModel):
|
||||
# fmt: off
|
||||
vars: Dict[StrictStr, Any] = Field({}, title="Optional variables to substitute in commands")
|
||||
env: Dict[StrictStr, Any] = Field({}, title="Optional variable names to substitute in commands, mapped to environment variable names")
|
||||
assets: List[Union[ProjectConfigAssetURL, ProjectConfigAssetGit]] = Field([], title="Data assets")
|
||||
workflows: Dict[StrictStr, List[StrictStr]] = Field({}, title="Named workflows, mapped to list of project commands to run in order")
|
||||
commands: List[ProjectConfigCommand] = Field([], title="Project command shortucts")
|
||||
title: Optional[str] = Field(None, title="Project title")
|
||||
spacy_version: Optional[StrictStr] = Field(None, title="spaCy version range that the project is compatible with")
|
||||
# fmt: on
|
||||
|
||||
class Config:
|
||||
title = "Schema for project configuration file"
|
||||
|
||||
|
||||
# Recommendations for init config workflows
|
||||
|
||||
|
||||
|
|
138
spacy/scorer.py
138
spacy/scorer.py
|
@ -802,6 +802,140 @@ def get_ner_prf(examples: Iterable[Example], **kwargs) -> Dict[str, Any]:
|
|||
}
|
||||
|
||||
|
||||
# The following implementation of trapezoid() is adapted from SciPy,
|
||||
# which is distributed under the New BSD License.
|
||||
# Copyright (c) 2001-2002 Enthought, Inc. 2003-2023, SciPy Developers.
|
||||
# See licenses/3rd_party_licenses.txt
|
||||
def trapezoid(y, x=None, dx=1.0, axis=-1):
|
||||
r"""
|
||||
Integrate along the given axis using the composite trapezoidal rule.
|
||||
|
||||
If `x` is provided, the integration happens in sequence along its
|
||||
elements - they are not sorted.
|
||||
|
||||
Integrate `y` (`x`) along each 1d slice on the given axis, compute
|
||||
:math:`\int y(x) dx`.
|
||||
When `x` is specified, this integrates along the parametric curve,
|
||||
computing :math:`\int_t y(t) dt =
|
||||
\int_t y(t) \left.\frac{dx}{dt}\right|_{x=x(t)} dt`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
y : array_like
|
||||
Input array to integrate.
|
||||
x : array_like, optional
|
||||
The sample points corresponding to the `y` values. If `x` is None,
|
||||
the sample points are assumed to be evenly spaced `dx` apart. The
|
||||
default is None.
|
||||
dx : scalar, optional
|
||||
The spacing between sample points when `x` is None. The default is 1.
|
||||
axis : int, optional
|
||||
The axis along which to integrate.
|
||||
|
||||
Returns
|
||||
-------
|
||||
trapezoid : float or ndarray
|
||||
Definite integral of `y` = n-dimensional array as approximated along
|
||||
a single axis by the trapezoidal rule. If `y` is a 1-dimensional array,
|
||||
then the result is a float. If `n` is greater than 1, then the result
|
||||
is an `n`-1 dimensional array.
|
||||
|
||||
See Also
|
||||
--------
|
||||
cumulative_trapezoid, simpson, romb
|
||||
|
||||
Notes
|
||||
-----
|
||||
Image [2]_ illustrates trapezoidal rule -- y-axis locations of points
|
||||
will be taken from `y` array, by default x-axis distances between
|
||||
points will be 1.0, alternatively they can be provided with `x` array
|
||||
or with `dx` scalar. Return value will be equal to combined area under
|
||||
the red lines.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Wikipedia page: https://en.wikipedia.org/wiki/Trapezoidal_rule
|
||||
|
||||
.. [2] Illustration image:
|
||||
https://en.wikipedia.org/wiki/File:Composite_trapezoidal_rule_illustration.png
|
||||
|
||||
Examples
|
||||
--------
|
||||
Use the trapezoidal rule on evenly spaced points:
|
||||
|
||||
>>> import numpy as np
|
||||
>>> from scipy import integrate
|
||||
>>> integrate.trapezoid([1, 2, 3])
|
||||
4.0
|
||||
|
||||
The spacing between sample points can be selected by either the
|
||||
``x`` or ``dx`` arguments:
|
||||
|
||||
>>> integrate.trapezoid([1, 2, 3], x=[4, 6, 8])
|
||||
8.0
|
||||
>>> integrate.trapezoid([1, 2, 3], dx=2)
|
||||
8.0
|
||||
|
||||
Using a decreasing ``x`` corresponds to integrating in reverse:
|
||||
|
||||
>>> integrate.trapezoid([1, 2, 3], x=[8, 6, 4])
|
||||
-8.0
|
||||
|
||||
More generally ``x`` is used to integrate along a parametric curve. We can
|
||||
estimate the integral :math:`\int_0^1 x^2 = 1/3` using:
|
||||
|
||||
>>> x = np.linspace(0, 1, num=50)
|
||||
>>> y = x**2
|
||||
>>> integrate.trapezoid(y, x)
|
||||
0.33340274885464394
|
||||
|
||||
Or estimate the area of a circle, noting we repeat the sample which closes
|
||||
the curve:
|
||||
|
||||
>>> theta = np.linspace(0, 2 * np.pi, num=1000, endpoint=True)
|
||||
>>> integrate.trapezoid(np.cos(theta), x=np.sin(theta))
|
||||
3.141571941375841
|
||||
|
||||
``trapezoid`` can be applied along a specified axis to do multiple
|
||||
computations in one call:
|
||||
|
||||
>>> a = np.arange(6).reshape(2, 3)
|
||||
>>> a
|
||||
array([[0, 1, 2],
|
||||
[3, 4, 5]])
|
||||
>>> integrate.trapezoid(a, axis=0)
|
||||
array([1.5, 2.5, 3.5])
|
||||
>>> integrate.trapezoid(a, axis=1)
|
||||
array([2., 8.])
|
||||
"""
|
||||
y = np.asanyarray(y)
|
||||
if x is None:
|
||||
d = dx
|
||||
else:
|
||||
x = np.asanyarray(x)
|
||||
if x.ndim == 1:
|
||||
d = np.diff(x)
|
||||
# reshape to correct shape
|
||||
shape = [1] * y.ndim
|
||||
shape[axis] = d.shape[0]
|
||||
d = d.reshape(shape)
|
||||
else:
|
||||
d = np.diff(x, axis=axis)
|
||||
nd = y.ndim
|
||||
slice1 = [slice(None)] * nd
|
||||
slice2 = [slice(None)] * nd
|
||||
slice1[axis] = slice(1, None)
|
||||
slice2[axis] = slice(None, -1)
|
||||
try:
|
||||
ret = (d * (y[tuple(slice1)] + y[tuple(slice2)]) / 2.0).sum(axis)
|
||||
except ValueError:
|
||||
# Operations didn't work, cast to ndarray
|
||||
d = np.asarray(d)
|
||||
y = np.asarray(y)
|
||||
ret = np.add.reduce(d * (y[tuple(slice1)] + y[tuple(slice2)]) / 2.0, axis)
|
||||
return ret
|
||||
|
||||
|
||||
# The following implementation of roc_auc_score() is adapted from
|
||||
# scikit-learn, which is distributed under the New BSD License.
|
||||
# Copyright (c) 2007–2019 The scikit-learn developers.
|
||||
|
@ -1024,9 +1158,9 @@ def _auc(x, y):
|
|||
else:
|
||||
raise ValueError(Errors.E164.format(x=x))
|
||||
|
||||
area = direction * np.trapz(y, x)
|
||||
area = direction * trapezoid(y, x)
|
||||
if isinstance(area, np.memmap):
|
||||
# Reductions such as .sum used internally in np.trapz do not return a
|
||||
# Reductions such as .sum used internally in trapezoid do not return a
|
||||
# scalar by default for numpy.memmap instances contrary to
|
||||
# regular numpy.ndarray instances.
|
||||
area = area.dtype.type(area)
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
# cython: infer_types=True
|
||||
# cython: profile=False
|
||||
from typing import Iterable, Iterator, List, Optional, Tuple, Union
|
||||
|
||||
from libc.stdint cimport uint32_t
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
# cython: optimize.unpack_method_calls=False
|
||||
# cython: profile=False
|
||||
IDS = {
|
||||
"": NIL,
|
||||
"IS_ALPHA": IS_ALPHA,
|
||||
|
|
|
@ -194,6 +194,11 @@ def fi_tokenizer():
|
|||
return get_lang_class("fi")().tokenizer
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def fo_tokenizer():
|
||||
return get_lang_class("fo")().tokenizer
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def fr_tokenizer():
|
||||
return get_lang_class("fr")().tokenizer
|
||||
|
@ -363,6 +368,11 @@ def nl_tokenizer():
|
|||
return get_lang_class("nl")().tokenizer
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def nn_tokenizer():
|
||||
return get_lang_class("nn")().tokenizer
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def pl_tokenizer():
|
||||
return get_lang_class("pl")().tokenizer
|
||||
|
|
|
@ -783,3 +783,12 @@ def test_for_no_ent_sents():
|
|||
sents = list(doc.ents[0].sents)
|
||||
assert len(sents) == 1
|
||||
assert str(sents[0]) == str(doc.ents[0].sent) == "ENTITY"
|
||||
|
||||
|
||||
def test_span_api_richcmp_other(en_tokenizer):
|
||||
doc1 = en_tokenizer("a b")
|
||||
doc2 = en_tokenizer("b c")
|
||||
assert not doc1[1:2] == doc1[1]
|
||||
assert not doc1[1:2] == doc2[0]
|
||||
assert not doc1[1:2] == doc2[0:1]
|
||||
assert not doc1[0:1] == doc2
|
||||
|
|
|
@ -294,3 +294,12 @@ def test_missing_head_dep(en_vocab):
|
|||
assert aligned_heads[0] == ref_heads[0]
|
||||
assert aligned_deps[5] == ref_deps[5]
|
||||
assert aligned_heads[5] == ref_heads[5]
|
||||
|
||||
|
||||
def test_token_api_richcmp_other(en_tokenizer):
|
||||
doc1 = en_tokenizer("a b")
|
||||
doc2 = en_tokenizer("b c")
|
||||
assert not doc1[1] == doc1[0:1]
|
||||
assert not doc1[1] == doc2[1:2]
|
||||
assert not doc1[1] == doc2[0]
|
||||
assert not doc1[0] == doc2
|
||||
|
|
0
spacy/tests/lang/fo/__init__.py
Normal file
0
spacy/tests/lang/fo/__init__.py
Normal file
26
spacy/tests/lang/fo/test_tokenizer.py
Normal file
26
spacy/tests/lang/fo/test_tokenizer.py
Normal file
|
@ -0,0 +1,26 @@
|
|||
import pytest
|
||||
|
||||
# examples taken from Basic LAnguage Resource Kit 1.0 for Faroese (https://maltokni.fo/en/resources) licensed with CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/)
|
||||
# fmt: off
|
||||
FO_TOKEN_EXCEPTION_TESTS = [
|
||||
(
|
||||
"Eftir løgtingslóg um samsýning og eftirløn landsstýrismanna v.m., skulu løgmaður og landsstýrismenn vanliga siga frá sær størv í almennari tænastu ella privatum virkjum, samtøkum ella stovnum. ",
|
||||
[
|
||||
"Eftir", "løgtingslóg", "um", "samsýning", "og", "eftirløn", "landsstýrismanna", "v.m.", ",", "skulu", "løgmaður", "og", "landsstýrismenn", "vanliga", "siga", "frá", "sær", "størv", "í", "almennari", "tænastu", "ella", "privatum", "virkjum", ",", "samtøkum", "ella", "stovnum", ".",
|
||||
],
|
||||
),
|
||||
(
|
||||
"Sambandsflokkurin gongur aftur við 2,7 prosentum í mun til valið í 1994, tá flokkurin fekk undirtøku frá 23,4 prosent av veljarunum.",
|
||||
[
|
||||
"Sambandsflokkurin", "gongur", "aftur", "við", "2,7", "prosentum", "í", "mun", "til", "valið", "í", "1994", ",", "tá", "flokkurin", "fekk", "undirtøku", "frá", "23,4", "prosent", "av", "veljarunum", ".",
|
||||
],
|
||||
),
|
||||
]
|
||||
# fmt: on
|
||||
|
||||
|
||||
@pytest.mark.parametrize("text,expected_tokens", FO_TOKEN_EXCEPTION_TESTS)
|
||||
def test_fo_tokenizer_handles_exception_cases(fo_tokenizer, text, expected_tokens):
|
||||
tokens = fo_tokenizer(text)
|
||||
token_list = [token.text for token in tokens if not token.is_space]
|
||||
assert expected_tokens == token_list
|
0
spacy/tests/lang/nn/__init__.py
Normal file
0
spacy/tests/lang/nn/__init__.py
Normal file
38
spacy/tests/lang/nn/test_tokenizer.py
Normal file
38
spacy/tests/lang/nn/test_tokenizer.py
Normal file
|
@ -0,0 +1,38 @@
|
|||
import pytest
|
||||
|
||||
# examples taken from Omsetjingsminne frå Nynorsk pressekontor 2022 (https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-80/)
|
||||
# fmt: off
|
||||
NN_TOKEN_EXCEPTION_TESTS = [
|
||||
(
|
||||
"Målet til direktoratet er at alle skal bli tilbydd jobb i politiet så raskt som mogleg i 2014.",
|
||||
[
|
||||
"Målet", "til", "direktoratet", "er", "at", "alle", "skal", "bli", "tilbydd", "jobb", "i", "politiet", "så", "raskt", "som", "mogleg", "i", "2014", ".",
|
||||
],
|
||||
),
|
||||
(
|
||||
"Han ønskjer ikkje at staten skal vere med på å finansiere slik undervisning, men dette er rektor på skulen ueinig i.",
|
||||
[
|
||||
"Han", "ønskjer", "ikkje", "at", "staten", "skal", "vere", "med", "på", "å", "finansiere", "slik", "undervisning", ",", "men", "dette", "er", "rektor", "på", "skulen", "ueinig", "i", ".",
|
||||
],
|
||||
),
|
||||
(
|
||||
"Ifølgje China Daily vart det 8.848 meter høge fjellet flytta 3 centimeter sørvestover under jordskjelvet, som vart målt til 7,8.",
|
||||
[
|
||||
"Ifølgje", "China", "Daily", "vart", "det", "8.848", "meter", "høge", "fjellet", "flytta", "3", "centimeter", "sørvestover", "under", "jordskjelvet", ",", "som", "vart", "målt", "til", "7,8", ".",
|
||||
],
|
||||
),
|
||||
(
|
||||
"Brukssesongen er frå nov. til mai, med ein topp i mars.",
|
||||
[
|
||||
"Brukssesongen", "er", "frå", "nov.", "til", "mai", ",", "med", "ein", "topp", "i", "mars", ".",
|
||||
],
|
||||
),
|
||||
]
|
||||
# fmt: on
|
||||
|
||||
|
||||
@pytest.mark.parametrize("text,expected_tokens", NN_TOKEN_EXCEPTION_TESTS)
|
||||
def test_nn_tokenizer_handles_exception_cases(nn_tokenizer, text, expected_tokens):
|
||||
tokens = nn_tokenizer(text)
|
||||
token_list = [token.text for token in tokens if not token.is_space]
|
||||
assert expected_tokens == token_list
|
|
@ -216,6 +216,11 @@ def test_dependency_matcher_pattern_validation(en_vocab):
|
|||
pattern2 = copy.deepcopy(pattern)
|
||||
pattern2[1]["RIGHT_ID"] = "fox"
|
||||
matcher.add("FOUNDED", [pattern2])
|
||||
# invalid key
|
||||
with pytest.warns(UserWarning):
|
||||
pattern2 = copy.deepcopy(pattern)
|
||||
pattern2[1]["FOO"] = "BAR"
|
||||
matcher.add("FOUNDED", [pattern2])
|
||||
|
||||
|
||||
def test_dependency_matcher_callback(en_vocab, doc):
|
||||
|
|
|
@ -5,6 +5,7 @@ from pathlib import Path
|
|||
def test_build_dependencies():
|
||||
# Check that library requirements are pinned exactly the same across different setup files.
|
||||
libs_ignore_requirements = [
|
||||
"numpy",
|
||||
"pytest",
|
||||
"pytest-timeout",
|
||||
"mock",
|
||||
|
@ -22,6 +23,7 @@ def test_build_dependencies():
|
|||
]
|
||||
# ignore language-specific packages that shouldn't be installed by all
|
||||
libs_ignore_setup = [
|
||||
"numpy",
|
||||
"fugashi",
|
||||
"mecab-ko",
|
||||
"pythainlp",
|
||||
|
@ -65,26 +67,28 @@ def test_build_dependencies():
|
|||
"{} and {} respectively".format(lib, v, req_v)
|
||||
)
|
||||
setup_keys.add(lib)
|
||||
assert sorted(setup_keys) == sorted(
|
||||
req_dict.keys()
|
||||
) # if fail: requirements.txt contains a lib not in setup.cfg
|
||||
|
||||
# check pyproject.toml and compare the versions of the libs to requirements.txt
|
||||
# does not fail when there are missing or additional libs
|
||||
toml_file = root_dir / "pyproject.toml"
|
||||
with toml_file.open() as f:
|
||||
lines = f.readlines()
|
||||
pyproject_keys = set()
|
||||
for line in lines:
|
||||
line = line.strip().strip(",").strip('"')
|
||||
if not line.startswith("#"):
|
||||
lib, v = _parse_req(line)
|
||||
if lib and lib not in libs_ignore_requirements:
|
||||
pyproject_keys.add(lib)
|
||||
req_v = req_dict.get(lib, None)
|
||||
assert (lib + v) == (lib + req_v), (
|
||||
"{} has different version in pyproject.toml and in requirements.txt: "
|
||||
"{} and {} respectively".format(lib, v, req_v)
|
||||
)
|
||||
|
||||
# if fail: requirements.txt contains a lib not in setup.cfg or pyproject.toml
|
||||
assert set(setup_keys).union(set(pyproject_keys)) == set(req_dict.keys())
|
||||
|
||||
|
||||
def _parse_req(line):
|
||||
lib = re.match(r"^[a-z0-9\-]*", line).group(0)
|
||||
|
|
|
@ -12,7 +12,7 @@ from ..conftest import cytest
|
|||
cdef struct TestState:
|
||||
int length
|
||||
int x
|
||||
Py_UNICODE* string
|
||||
char *string
|
||||
|
||||
|
||||
cdef int transition(void* dest, void* src, class_t clas, void* extra_args) except -1:
|
||||
|
@ -22,7 +22,7 @@ cdef int transition(void* dest, void* src, class_t clas, void* extra_args) excep
|
|||
dest_state.x = src_state.x
|
||||
dest_state.x += clas
|
||||
if extra_args != NULL:
|
||||
dest_state.string = <Py_UNICODE*>extra_args
|
||||
dest_state.string = <char *>extra_args
|
||||
else:
|
||||
dest_state.string = src_state.string
|
||||
|
||||
|
@ -32,9 +32,9 @@ cdef void* initialize(Pool mem, int n, void* extra_args) except NULL:
|
|||
state.length = n
|
||||
state.x = 1
|
||||
if extra_args == NULL:
|
||||
state.string = u'default'
|
||||
state.string = 'default'
|
||||
else:
|
||||
state.string = <Py_UNICODE*>extra_args
|
||||
state.string = <char *>extra_args
|
||||
return state
|
||||
|
||||
|
||||
|
@ -77,7 +77,7 @@ def test_initialize(nr_class, beam_width, length):
|
|||
for i in range(b.width):
|
||||
s = <TestState*>b.at(i)
|
||||
assert s.length == length, s.length
|
||||
assert s.string == 'default'
|
||||
assert s.string.decode('utf8') == 'default'
|
||||
|
||||
|
||||
@cytest
|
||||
|
@ -88,11 +88,12 @@ def test_initialize(nr_class, beam_width, length):
|
|||
]
|
||||
)
|
||||
def test_initialize_extra(nr_class, beam_width, length, extra):
|
||||
extra = extra.encode("utf-8") if extra is not None else None
|
||||
b = Beam(nr_class, beam_width)
|
||||
if extra is None:
|
||||
b.initialize(initialize, destroy, length, NULL)
|
||||
else:
|
||||
b.initialize(initialize, destroy, length, <void*><Py_UNICODE*>extra)
|
||||
b.initialize(initialize, destroy, length, <void*><char*>extra)
|
||||
for i in range(b.width):
|
||||
s = <TestState*>b.at(i)
|
||||
assert s.length == length
|
||||
|
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user