mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-25 17:36:30 +03:00
Clean up parser multi-threading
This commit is contained in:
parent
f018f2030c
commit
bbfd7d8d5d
|
@ -15,8 +15,6 @@ cdef class Parser:
|
|||
cdef readonly object cfg
|
||||
cdef public object _multitasks
|
||||
|
||||
cdef void _parse_step(self, StateC* state,
|
||||
cdef void _parseC(self, StateC* state,
|
||||
const float* feat_weights, const float* hW, const float* hb,
|
||||
int nr_class, int nr_hidden, int nr_feat, int nr_piece) nogil
|
||||
|
||||
#cdef int parseC(self, TokenC* tokens, int length, int nr_feat) nogil
|
||||
|
|
|
@ -395,7 +395,7 @@ cdef class Parser:
|
|||
for batch in cytoolz.partition_all(batch_size, docs):
|
||||
batch = list(batch)
|
||||
by_length = sorted(list(batch), key=lambda doc: len(doc))
|
||||
for subbatch in cytoolz.partition_all(32, by_length):
|
||||
for subbatch in cytoolz.partition_all(8, by_length):
|
||||
subbatch = list(subbatch)
|
||||
if beam_width == 1:
|
||||
parse_states = self.parse_batch(subbatch)
|
||||
|
@ -412,57 +412,80 @@ cdef class Parser:
|
|||
def parse_batch(self, docs):
|
||||
cdef:
|
||||
precompute_hiddens state2vec
|
||||
StateClass state
|
||||
StateClass stcls
|
||||
Pool mem
|
||||
const float* feat_weights
|
||||
StateC* st
|
||||
vector[StateC*] next_step, this_step
|
||||
int nr_class, nr_feat, nr_piece, nr_dim, nr_state
|
||||
vector[StateC*] states
|
||||
int guess, nr_class, nr_feat, nr_piece, nr_dim, nr_state, nr_step
|
||||
int j
|
||||
if isinstance(docs, Doc):
|
||||
docs = [docs]
|
||||
|
||||
cuda_stream = get_cuda_stream()
|
||||
(tokvecs, bp_tokvecs), state2vec, vec2scores = self.get_batch_model(docs, cuda_stream,
|
||||
0.0)
|
||||
|
||||
nr_state = len(docs)
|
||||
nr_class = self.moves.n_moves
|
||||
nr_dim = tokvecs.shape[1]
|
||||
nr_feat = self.nr_feature
|
||||
nr_piece = state2vec.nP
|
||||
|
||||
states = self.moves.init_batch(docs)
|
||||
for state in states:
|
||||
if not state.c.is_final():
|
||||
next_step.push_back(state.c)
|
||||
|
||||
state_objs = self.moves.init_batch(docs)
|
||||
for stcls in state_objs:
|
||||
if not stcls.c.is_final():
|
||||
states.push_back(stcls.c)
|
||||
|
||||
feat_weights = state2vec.get_feat_weights()
|
||||
cdef int i
|
||||
cdef np.ndarray token_ids = numpy.zeros((nr_state, nr_feat), dtype='i')
|
||||
cdef np.ndarray is_valid = numpy.zeros((nr_state, nr_class), dtype='i')
|
||||
cdef np.ndarray scores
|
||||
cdef np.ndarray hidden_weights = numpy.ascontiguousarray(vec2scores._layers[-1].W.T)
|
||||
cdef np.ndarray hidden_bias = vec2scores._layers[-1].b
|
||||
|
||||
hW = <float*>hidden_weights.data
|
||||
hb = <float*>hidden_bias.data
|
||||
cdef int nr_hidden = hidden_weights.shape[0]
|
||||
c_token_ids = <int*>token_ids.data
|
||||
c_is_valid = <int*>is_valid.data
|
||||
cdef int has_hidden = not getattr(vec2scores, 'is_noop', False)
|
||||
cdef int nr_step
|
||||
while not next_step.empty():
|
||||
nr_step = next_step.size()
|
||||
for i in cython.parallel.prange(nr_step, num_threads=3,
|
||||
nogil=True):
|
||||
self._parse_step(next_step[i],
|
||||
feat_weights, hW, hb, nr_class, nr_hidden, nr_feat, nr_piece)
|
||||
this_step, next_step = next_step, this_step
|
||||
next_step.clear()
|
||||
for st in this_step:
|
||||
if not st.is_final():
|
||||
next_step.push_back(st)
|
||||
return states
|
||||
|
||||
with nogil:
|
||||
for i in cython.parallel.prange(states.size(), num_threads=2,
|
||||
schedule='guided'):
|
||||
self._parseC(states[i],
|
||||
feat_weights, hW, hb,
|
||||
nr_class, nr_hidden, nr_feat, nr_piece)
|
||||
return state_objs
|
||||
|
||||
cdef void _parseC(self, StateC* state,
|
||||
const float* feat_weights, const float* hW, const float* hb,
|
||||
int nr_class, int nr_hidden, int nr_feat, int nr_piece) nogil:
|
||||
token_ids = <int*>calloc(nr_feat, sizeof(int))
|
||||
is_valid = <int*>calloc(nr_class, sizeof(int))
|
||||
vectors = <float*>calloc(nr_hidden * nr_piece, sizeof(float))
|
||||
scores = <float*>calloc(nr_class, sizeof(float))
|
||||
|
||||
while not state.is_final():
|
||||
state.set_context_tokens(token_ids, nr_feat)
|
||||
memset(vectors, 0, nr_hidden * nr_piece * sizeof(float))
|
||||
memset(scores, 0, nr_class * sizeof(float))
|
||||
sum_state_features(vectors,
|
||||
feat_weights, token_ids, 1, nr_feat, nr_hidden * nr_piece)
|
||||
V = vectors
|
||||
W = hW
|
||||
for i in range(nr_hidden):
|
||||
feature = V[0] if V[0] >= V[1] else V[1]
|
||||
for j in range(nr_class):
|
||||
scores[j] += feature * W[j]
|
||||
W += nr_class
|
||||
V += nr_piece
|
||||
for i in range(nr_class):
|
||||
scores[i] += hb[i]
|
||||
self.moves.set_valid(is_valid, state)
|
||||
guess = arg_max_if_valid(scores, is_valid, nr_class)
|
||||
action = self.moves.c[guess]
|
||||
action.do(state, action.label)
|
||||
state.push_hist(guess)
|
||||
free(token_ids)
|
||||
free(is_valid)
|
||||
free(vectors)
|
||||
free(scores)
|
||||
|
||||
def beam_parse(self, docs, int beam_width=3, float beam_density=0.001):
|
||||
cdef Beam beam
|
||||
|
@ -515,36 +538,6 @@ cdef class Parser:
|
|||
beams.append(beam)
|
||||
return beams
|
||||
|
||||
cdef void _parse_step(self, StateC* state,
|
||||
const float* feat_weights, const float* hW, const float* hb,
|
||||
int nr_class, int nr_hidden, int nr_feat, int nr_piece) nogil:
|
||||
'''This only works with no hidden layers -- fast but inaccurate'''
|
||||
token_ids = <int*>calloc(nr_feat, sizeof(int))
|
||||
vector = <float*>calloc(nr_hidden * nr_piece, sizeof(float))
|
||||
scores = <float*>calloc(nr_class, sizeof(float))
|
||||
is_valid = <int*>calloc(nr_class, sizeof(int))
|
||||
|
||||
state.set_context_tokens(token_ids, nr_feat)
|
||||
sum_state_features(vector,
|
||||
feat_weights, token_ids, 1, nr_feat, nr_hidden * nr_piece)
|
||||
for i in range(nr_hidden):
|
||||
feature = Vec.max(&vector[i*nr_piece], nr_piece)
|
||||
for j in range(nr_class):
|
||||
scores[j] += feature * hW[j]
|
||||
hW += nr_class
|
||||
for i in range(nr_class):
|
||||
scores[i] += hb[i]
|
||||
self.moves.set_valid(is_valid, state)
|
||||
guess = arg_max_if_valid(scores, is_valid, nr_class)
|
||||
action = self.moves.c[guess]
|
||||
action.do(state, action.label)
|
||||
state.push_hist(guess)
|
||||
|
||||
free(is_valid)
|
||||
free(scores)
|
||||
free(vector)
|
||||
free(token_ids)
|
||||
|
||||
def update(self, docs, golds, drop=0., sgd=None, losses=None):
|
||||
if not any(self.moves.has_gold(gold) for gold in golds):
|
||||
return None
|
||||
|
|
Loading…
Reference in New Issue
Block a user