From bc089b693c69b43d0c8197b6bf5aa49739edeb33 Mon Sep 17 00:00:00 2001 From: Ines Montani Date: Fri, 29 Jan 2021 19:38:09 +1100 Subject: [PATCH] Update tests --- spacy/tests/pipeline/test_tok2vec.py | 110 +++++++++++++++++++++++++-- 1 file changed, 105 insertions(+), 5 deletions(-) diff --git a/spacy/tests/pipeline/test_tok2vec.py b/spacy/tests/pipeline/test_tok2vec.py index 56037e4b8..c6ac42dd2 100644 --- a/spacy/tests/pipeline/test_tok2vec.py +++ b/spacy/tests/pipeline/test_tok2vec.py @@ -6,12 +6,13 @@ from spacy.pipeline.tok2vec import Tok2Vec, Tok2VecListener from spacy.vocab import Vocab from spacy.tokens import Doc from spacy.training import Example +from spacy.training.initialize import init_nlp from spacy import util from spacy.lang.en import English from thinc.api import Config from numpy.testing import assert_equal -from ..util import get_batch +from ..util import get_batch, make_tempdir def test_empty_doc(): @@ -55,17 +56,17 @@ def test_tok2vec_batch_sizes(batch_size, width, embed_size): assert doc_vec.shape == (len(doc), width) -# fmt: off @pytest.mark.parametrize( "width,embed_arch,embed_config,encode_arch,encode_config", + # fmt: off [ (8, MultiHashEmbed, {"rows": [100, 100], "attrs": ["SHAPE", "LOWER"], "include_static_vectors": False}, MaxoutWindowEncoder, {"window_size": 1, "maxout_pieces": 3, "depth": 2}), (8, MultiHashEmbed, {"rows": [100, 20], "attrs": ["ORTH", "PREFIX"], "include_static_vectors": False}, MishWindowEncoder, {"window_size": 1, "depth": 6}), (8, CharacterEmbed, {"rows": 100, "nM": 64, "nC": 8, "include_static_vectors": False}, MaxoutWindowEncoder, {"window_size": 1, "maxout_pieces": 3, "depth": 3}), (8, CharacterEmbed, {"rows": 100, "nM": 16, "nC": 2, "include_static_vectors": False}, MishWindowEncoder, {"window_size": 1, "depth": 3}), ], + # fmt: on ) -# fmt: on def test_tok2vec_configs(width, embed_arch, embed_config, encode_arch, encode_config): embed_config["width"] = width encode_config["width"] = width @@ -196,8 +197,14 @@ def test_replace_listeners(): tagger = nlp.get_pipe("tagger") assert isinstance(tagger.model.layers[0], Tok2VecListener) assert tok2vec.listener_map["tagger"][0] == tagger.model.layers[0] - assert nlp.config["components"]["tok2vec"]["model"]["@architectures"] == "spacy.Tok2Vec.v2" - assert nlp.config["components"]["tagger"]["model"]["tok2vec"]["@architectures"] == "spacy.Tok2VecListener.v1" + assert ( + nlp.config["components"]["tok2vec"]["model"]["@architectures"] + == "spacy.Tok2Vec.v2" + ) + assert ( + nlp.config["components"]["tagger"]["model"]["tok2vec"]["@architectures"] + == "spacy.Tok2VecListener.v1" + ) nlp.replace_listeners("tok2vec", "tagger", ["model.tok2vec"]) assert not isinstance(tagger.model.layers[0], Tok2VecListener) t2v_cfg = nlp.config["components"]["tok2vec"]["model"] @@ -211,3 +218,96 @@ def test_replace_listeners(): nlp.replace_listeners("tok2vec", "tagger", ["model.yolo"]) with pytest.raises(ValueError): nlp.replace_listeners("tok2vec", "tagger", ["model.tok2vec", "model.yolo"]) + + +cfg_string_multi = """ + [nlp] + lang = "en" + pipeline = ["tok2vec","tagger", "ner"] + + [components] + + [components.tagger] + factory = "tagger" + + [components.tagger.model] + @architectures = "spacy.Tagger.v1" + nO = null + + [components.tagger.model.tok2vec] + @architectures = "spacy.Tok2VecListener.v1" + width = ${components.tok2vec.model.encode.width} + + [components.ner] + factory = "ner" + + [components.ner.model] + @architectures = "spacy.TransitionBasedParser.v2" + + [components.ner.model.tok2vec] + @architectures = "spacy.Tok2VecListener.v1" + width = ${components.tok2vec.model.encode.width} + + [components.tok2vec] + factory = "tok2vec" + + [components.tok2vec.model] + @architectures = "spacy.Tok2Vec.v2" + + [components.tok2vec.model.embed] + @architectures = "spacy.MultiHashEmbed.v1" + width = ${components.tok2vec.model.encode.width} + rows = [2000, 1000, 1000, 1000] + attrs = ["NORM", "PREFIX", "SUFFIX", "SHAPE"] + include_static_vectors = false + + [components.tok2vec.model.encode] + @architectures = "spacy.MaxoutWindowEncoder.v2" + width = 96 + depth = 4 + window_size = 1 + maxout_pieces = 3 + """ + + +def test_replace_listeners_from_config(): + orig_config = Config().from_str(cfg_string_multi) + nlp = util.load_model_from_config(orig_config, auto_fill=True) + annots = {"tags": ["V", "Z"], "entities": [(0, 1, "A"), (1, 2, "B")]} + examples = [Example.from_dict(nlp.make_doc("x y"), annots)] + nlp.initialize(lambda: examples) + tok2vec = nlp.get_pipe("tok2vec") + tagger = nlp.get_pipe("tagger") + ner = nlp.get_pipe("ner") + assert tok2vec.listening_components == ["tagger", "ner"] + assert any(isinstance(node, Tok2VecListener) for node in ner.model.walk()) + assert any(isinstance(node, Tok2VecListener) for node in tagger.model.walk()) + with make_tempdir() as dir_path: + nlp.to_disk(dir_path) + base_model = str(dir_path) + new_config = { + "nlp": {"lang": "en", "pipeline": ["tok2vec", "tagger", "ner"]}, + "components": { + "tok2vec": {"source": base_model}, + "tagger": { + "source": base_model, + "replace_listeners": ["model.tok2vec"], + }, + "ner": {"source": base_model}, + }, + } + new_nlp = util.load_model_from_config(new_config, auto_fill=True) + new_nlp.initialize(lambda: examples) + tok2vec = new_nlp.get_pipe("tok2vec") + tagger = new_nlp.get_pipe("tagger") + ner = new_nlp.get_pipe("ner") + assert tok2vec.listening_components == ["ner"] + assert any(isinstance(node, Tok2VecListener) for node in ner.model.walk()) + assert not any(isinstance(node, Tok2VecListener) for node in tagger.model.walk()) + t2v_cfg = new_nlp.config["components"]["tok2vec"]["model"] + assert t2v_cfg["@architectures"] == "spacy.Tok2Vec.v2" + assert new_nlp.config["components"]["tagger"]["model"]["tok2vec"] == t2v_cfg + assert ( + new_nlp.config["components"]["ner"]["model"]["tok2vec"]["@architectures"] + == "spacy.Tok2VecListener.v1" + )