mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-25 00:34:20 +03:00
Add support for fiddly hyper-parameters to train func
This commit is contained in:
parent
80e19a2399
commit
bc2294d7f1
|
@ -7,6 +7,7 @@ import cytoolz
|
|||
from pathlib import Path
|
||||
import dill
|
||||
import tqdm
|
||||
from thinc.neural.optimizers import linear_decay
|
||||
|
||||
from ..tokens.doc import Doc
|
||||
from ..scorer import Scorer
|
||||
|
@ -40,24 +41,35 @@ def train(lang_id, output_dir, train_data, dev_data, n_iter, n_sents,
|
|||
corpus = GoldCorpus(train_path, dev_path)
|
||||
|
||||
dropout = util.env_opt('dropout', 0.0)
|
||||
dropout_decay = util.env_opt('dropout_decay', 0.0)
|
||||
|
||||
optimizer = nlp.begin_training(lambda: corpus.train_tuples, use_gpu=use_gpu)
|
||||
n_train_docs = corpus.count_train()
|
||||
batch_size = float(util.env_opt('min_batch_size', 4))
|
||||
max_batch_size = util.env_opt('max_batch_size', 64)
|
||||
batch_accel = util.env_opt('batch_accel', 1.001)
|
||||
print("Itn.\tDep. Loss\tUAS\tNER F.\tTag %\tToken %")
|
||||
for i in range(n_iter):
|
||||
with tqdm.tqdm(total=n_train_docs) as pbar:
|
||||
train_docs = corpus.train_docs(nlp, shuffle=i, projectivize=True)
|
||||
for batch in cytoolz.partition_all(20, train_docs):
|
||||
idx = 0
|
||||
while idx < n_train_docs:
|
||||
batch = list(cytoolz.take(int(batch_size), train_docs))
|
||||
if not batch:
|
||||
break
|
||||
docs, golds = zip(*batch)
|
||||
docs = list(docs)
|
||||
golds = list(golds)
|
||||
nlp.update(docs, golds, drop=dropout, sgd=optimizer)
|
||||
pbar.update(len(docs))
|
||||
idx += len(docs)
|
||||
batch_size *= batch_accel
|
||||
batch_size = min(int(batch_size), max_batch_size)
|
||||
dropout = linear_decay(dropout, dropout_decay, i*n_train_docs+idx)
|
||||
with nlp.use_params(optimizer.averages):
|
||||
scorer = nlp.evaluate(corpus.dev_docs(nlp))
|
||||
print_progress(i, {}, scorer.scores)
|
||||
with (output_path / 'model.bin').open('wb') as file_:
|
||||
dill.dump(nlp, file_, -1)
|
||||
with nlp.use_params(optimizer.averages):
|
||||
dill.dump(nlp, file_, -1)
|
||||
|
||||
|
||||
def _render_parses(i, to_render):
|
||||
|
|
Loading…
Reference in New Issue
Block a user