Merge pull request #6249 from svlandeg/feature/batch-tests

This commit is contained in:
Ines Montani 2020-10-15 08:57:56 +02:00 committed by GitHub
commit bc85b12e6d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 211 additions and 0 deletions

View File

@ -1,4 +1,7 @@
import pytest import pytest
from numpy.testing import assert_equal
from spacy.attrs import ENT_IOB
from spacy import util from spacy import util
from spacy.lang.en import English from spacy.lang.en import English
from spacy.language import Language from spacy.language import Language
@ -332,6 +335,19 @@ def test_overfitting_IO():
assert ents2[0].text == "London" assert ents2[0].text == "London"
assert ents2[0].label_ == "LOC" assert ents2[0].label_ == "LOC"
# Make sure that running pipe twice, or comparing to call, always amounts to the same predictions
texts = [
"Just a sentence.",
"Then one more sentence about London.",
"Here is another one.",
"I like London.",
]
batch_deps_1 = [doc.to_array([ENT_IOB]) for doc in nlp.pipe(texts)]
batch_deps_2 = [doc.to_array([ENT_IOB]) for doc in nlp.pipe(texts)]
no_batch_deps = [doc.to_array([ENT_IOB]) for doc in [nlp(text) for text in texts]]
assert_equal(batch_deps_1, batch_deps_2)
assert_equal(batch_deps_1, no_batch_deps)
def test_ner_warns_no_lookups(caplog): def test_ner_warns_no_lookups(caplog):
nlp = English() nlp = English()

View File

@ -1,4 +1,7 @@
import pytest import pytest
from numpy.testing import assert_equal
from spacy.attrs import DEP
from spacy.lang.en import English from spacy.lang.en import English
from spacy.training import Example from spacy.training import Example
from spacy.tokens import Doc from spacy.tokens import Doc
@ -210,3 +213,16 @@ def test_overfitting_IO():
assert doc2[0].dep_ == "nsubj" assert doc2[0].dep_ == "nsubj"
assert doc2[2].dep_ == "dobj" assert doc2[2].dep_ == "dobj"
assert doc2[3].dep_ == "punct" assert doc2[3].dep_ == "punct"
# Make sure that running pipe twice, or comparing to call, always amounts to the same predictions
texts = [
"Just a sentence.",
"Then one more sentence about London.",
"Here is another one.",
"I like London.",
]
batch_deps_1 = [doc.to_array([DEP]) for doc in nlp.pipe(texts)]
batch_deps_2 = [doc.to_array([DEP]) for doc in nlp.pipe(texts)]
no_batch_deps = [doc.to_array([DEP]) for doc in [nlp(text) for text in texts]]
assert_equal(batch_deps_1, batch_deps_2)
assert_equal(batch_deps_1, no_batch_deps)

View File

@ -1,5 +1,7 @@
from typing import Callable, Iterable from typing import Callable, Iterable
import pytest import pytest
from numpy.testing import assert_equal
from spacy.attrs import ENT_KB_ID
from spacy.kb import KnowledgeBase, get_candidates, Candidate from spacy.kb import KnowledgeBase, get_candidates, Candidate
from spacy.vocab import Vocab from spacy.vocab import Vocab
@ -496,6 +498,19 @@ def test_overfitting_IO():
predictions.append(ent.kb_id_) predictions.append(ent.kb_id_)
assert predictions == GOLD_entities assert predictions == GOLD_entities
# Make sure that running pipe twice, or comparing to call, always amounts to the same predictions
texts = [
"Russ Cochran captured his first major title with his son as caddie.",
"Russ Cochran his reprints include EC Comics.",
"Russ Cochran has been publishing comic art.",
"Russ Cochran was a member of University of Kentucky's golf team.",
]
batch_deps_1 = [doc.to_array([ENT_KB_ID]) for doc in nlp.pipe(texts)]
batch_deps_2 = [doc.to_array([ENT_KB_ID]) for doc in nlp.pipe(texts)]
no_batch_deps = [doc.to_array([ENT_KB_ID]) for doc in [nlp(text) for text in texts]]
assert_equal(batch_deps_1, batch_deps_2)
assert_equal(batch_deps_1, no_batch_deps)
def test_kb_serialization(): def test_kb_serialization():
# Test that the KB can be used in a pipeline with a different vocab # Test that the KB can be used in a pipeline with a different vocab

View File

@ -0,0 +1,107 @@
from typing import List
import numpy
import pytest
from numpy.testing import assert_almost_equal
from spacy.vocab import Vocab
from thinc.api import NumpyOps, Model, data_validation
from thinc.types import Array2d, Ragged
from spacy.lang.en import English
from spacy.ml import FeatureExtractor, StaticVectors
from spacy.ml._character_embed import CharacterEmbed
from spacy.tokens import Doc
OPS = NumpyOps()
texts = ["These are 4 words", "Here just three"]
l0 = [[1, 2], [3, 4], [5, 6], [7, 8]]
l1 = [[9, 8], [7, 6], [5, 4]]
list_floats = [OPS.xp.asarray(l0, dtype="f"), OPS.xp.asarray(l1, dtype="f")]
list_ints = [OPS.xp.asarray(l0, dtype="i"), OPS.xp.asarray(l1, dtype="i")]
array = OPS.xp.asarray(l1, dtype="f")
ragged = Ragged(array, OPS.xp.asarray([2, 1], dtype="i"))
def get_docs():
vocab = Vocab()
for t in texts:
for word in t.split():
hash_id = vocab.strings.add(word)
vector = numpy.random.uniform(-1, 1, (7,))
vocab.set_vector(hash_id, vector)
docs = [English(vocab)(t) for t in texts]
return docs
# Test components with a model of type Model[List[Doc], List[Floats2d]]
@pytest.mark.parametrize("name", ["tagger", "tok2vec", "morphologizer", "senter"])
def test_components_batching_list(name):
nlp = English()
proc = nlp.create_pipe(name)
util_batch_unbatch_docs_list(proc.model, get_docs(), list_floats)
# Test components with a model of type Model[List[Doc], Floats2d]
@pytest.mark.parametrize("name", ["textcat"])
def test_components_batching_array(name):
nlp = English()
proc = nlp.create_pipe(name)
util_batch_unbatch_docs_array(proc.model, get_docs(), array)
LAYERS = [
(CharacterEmbed(nM=5, nC=3), get_docs(), list_floats),
(FeatureExtractor([100, 200]), get_docs(), list_ints),
(StaticVectors(), get_docs(), ragged),
]
@pytest.mark.parametrize("model,in_data,out_data", LAYERS)
def test_layers_batching_all(model, in_data, out_data):
# In = List[Doc]
if isinstance(in_data, list) and isinstance(in_data[0], Doc):
if isinstance(out_data, OPS.xp.ndarray) and out_data.ndim == 2:
util_batch_unbatch_docs_array(model, in_data, out_data)
elif (
isinstance(out_data, list)
and isinstance(out_data[0], OPS.xp.ndarray)
and out_data[0].ndim == 2
):
util_batch_unbatch_docs_list(model, in_data, out_data)
elif isinstance(out_data, Ragged):
util_batch_unbatch_docs_ragged(model, in_data, out_data)
def util_batch_unbatch_docs_list(
model: Model[List[Doc], List[Array2d]], in_data: List[Doc], out_data: List[Array2d]
):
with data_validation(True):
model.initialize(in_data, out_data)
Y_batched = model.predict(in_data)
Y_not_batched = [model.predict([u])[0] for u in in_data]
for i in range(len(Y_batched)):
assert_almost_equal(Y_batched[i], Y_not_batched[i], decimal=4)
def util_batch_unbatch_docs_array(
model: Model[List[Doc], Array2d], in_data: List[Doc], out_data: Array2d
):
with data_validation(True):
model.initialize(in_data, out_data)
Y_batched = model.predict(in_data).tolist()
Y_not_batched = [model.predict([u])[0] for u in in_data]
assert_almost_equal(Y_batched, Y_not_batched, decimal=4)
def util_batch_unbatch_docs_ragged(
model: Model[List[Doc], Ragged], in_data: List[Doc], out_data: Ragged
):
with data_validation(True):
model.initialize(in_data, out_data)
Y_batched = model.predict(in_data)
Y_not_batched = []
for u in in_data:
Y_not_batched.extend(model.predict([u]).data.tolist())
assert_almost_equal(Y_batched.data, Y_not_batched, decimal=4)

View File

@ -1,4 +1,5 @@
import pytest import pytest
from numpy.testing import assert_equal
from spacy import util from spacy import util
from spacy.training import Example from spacy.training import Example
@ -6,6 +7,7 @@ from spacy.lang.en import English
from spacy.language import Language from spacy.language import Language
from spacy.tests.util import make_tempdir from spacy.tests.util import make_tempdir
from spacy.morphology import Morphology from spacy.morphology import Morphology
from spacy.attrs import MORPH
def test_label_types(): def test_label_types():
@ -101,3 +103,16 @@ def test_overfitting_IO():
doc2 = nlp2(test_text) doc2 = nlp2(test_text)
assert [str(t.morph) for t in doc2] == gold_morphs assert [str(t.morph) for t in doc2] == gold_morphs
assert [t.pos_ for t in doc2] == gold_pos_tags assert [t.pos_ for t in doc2] == gold_pos_tags
# Make sure that running pipe twice, or comparing to call, always amounts to the same predictions
texts = [
"Just a sentence.",
"Then one more sentence about London.",
"Here is another one.",
"I like London.",
]
batch_deps_1 = [doc.to_array([MORPH]) for doc in nlp.pipe(texts)]
batch_deps_2 = [doc.to_array([MORPH]) for doc in nlp.pipe(texts)]
no_batch_deps = [doc.to_array([MORPH]) for doc in [nlp(text) for text in texts]]
assert_equal(batch_deps_1, batch_deps_2)
assert_equal(batch_deps_1, no_batch_deps)

View File

@ -1,4 +1,6 @@
import pytest import pytest
from numpy.testing import assert_equal
from spacy.attrs import SENT_START
from spacy import util from spacy import util
from spacy.training import Example from spacy.training import Example
@ -80,3 +82,18 @@ def test_overfitting_IO():
nlp2 = util.load_model_from_path(tmp_dir) nlp2 = util.load_model_from_path(tmp_dir)
doc2 = nlp2(test_text) doc2 = nlp2(test_text)
assert [int(t.is_sent_start) for t in doc2] == gold_sent_starts assert [int(t.is_sent_start) for t in doc2] == gold_sent_starts
# Make sure that running pipe twice, or comparing to call, always amounts to the same predictions
texts = [
"Just a sentence.",
"Then one more sentence about London.",
"Here is another one.",
"I like London.",
]
batch_deps_1 = [doc.to_array([SENT_START]) for doc in nlp.pipe(texts)]
batch_deps_2 = [doc.to_array([SENT_START]) for doc in nlp.pipe(texts)]
no_batch_deps = [
doc.to_array([SENT_START]) for doc in [nlp(text) for text in texts]
]
assert_equal(batch_deps_1, batch_deps_2)
assert_equal(batch_deps_1, no_batch_deps)

View File

@ -1,4 +1,7 @@
import pytest import pytest
from numpy.testing import assert_equal
from spacy.attrs import TAG
from spacy import util from spacy import util
from spacy.training import Example from spacy.training import Example
from spacy.lang.en import English from spacy.lang.en import English
@ -117,6 +120,19 @@ def test_overfitting_IO():
assert doc2[2].tag_ is "J" assert doc2[2].tag_ is "J"
assert doc2[3].tag_ is "N" assert doc2[3].tag_ is "N"
# Make sure that running pipe twice, or comparing to call, always amounts to the same predictions
texts = [
"Just a sentence.",
"I like green eggs.",
"Here is another one.",
"I eat ham.",
]
batch_deps_1 = [doc.to_array([TAG]) for doc in nlp.pipe(texts)]
batch_deps_2 = [doc.to_array([TAG]) for doc in nlp.pipe(texts)]
no_batch_deps = [doc.to_array([TAG]) for doc in [nlp(text) for text in texts]]
assert_equal(batch_deps_1, batch_deps_2)
assert_equal(batch_deps_1, no_batch_deps)
def test_tagger_requires_labels(): def test_tagger_requires_labels():
nlp = English() nlp = English()

View File

@ -1,6 +1,7 @@
import pytest import pytest
import random import random
import numpy.random import numpy.random
from numpy.testing import assert_equal
from thinc.api import fix_random_seed from thinc.api import fix_random_seed
from spacy import util from spacy import util
from spacy.lang.en import English from spacy.lang.en import English
@ -174,6 +175,14 @@ def test_overfitting_IO():
assert scores["cats_score"] == 1.0 assert scores["cats_score"] == 1.0
assert "cats_score_desc" in scores assert "cats_score_desc" in scores
# Make sure that running pipe twice, or comparing to call, always amounts to the same predictions
texts = ["Just a sentence.", "I like green eggs.", "I am happy.", "I eat ham."]
batch_deps_1 = [doc.cats for doc in nlp.pipe(texts)]
batch_deps_2 = [doc.cats for doc in nlp.pipe(texts)]
no_batch_deps = [doc.cats for doc in [nlp(text) for text in texts]]
assert_equal(batch_deps_1, batch_deps_2)
assert_equal(batch_deps_1, no_batch_deps)
# fmt: off # fmt: off
@pytest.mark.parametrize( @pytest.mark.parametrize(