mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-11 04:08:09 +03:00
* Implement HastyModel
This commit is contained in:
parent
e361f18ce9
commit
bcd038e7b6
|
@ -13,6 +13,7 @@ from .tokens cimport Tokens
|
|||
|
||||
|
||||
cdef class Model:
|
||||
cdef weight_t* score(self, atom_t* context) except NULL
|
||||
cdef class_t predict(self, atom_t* context) except *
|
||||
cdef class_t predict_among(self, atom_t* context, bint* valid) except *
|
||||
cdef class_t predict_and_update(self, atom_t* context, const bint* valid,
|
||||
|
@ -23,12 +24,13 @@ cdef class Model:
|
|||
cdef LinearModel _model
|
||||
|
||||
|
||||
"""
|
||||
cdef class HastyModel:
|
||||
cdef class_t predict(self, const atom_t* context, object golds=*) except *
|
||||
|
||||
cdef Model _model1
|
||||
cdef Model _model2
|
||||
|
||||
c
|
||||
"""
|
||||
cdef class_t predict(self, atom_t* context) except *
|
||||
cdef class_t predict_among(self, atom_t* context, bint* valid) except *
|
||||
cdef class_t predict_and_update(self, atom_t* context, const bint* valid,
|
||||
const int* costs) except *
|
||||
|
||||
cdef weight_t confidence
|
||||
cdef int n_classes
|
||||
cdef Model _hasty
|
||||
cdef Model _full
|
||||
|
|
|
@ -27,25 +27,28 @@ def setup_model_dir(tag_names, tag_map, templates, model_dir):
|
|||
|
||||
|
||||
cdef class Model:
|
||||
def __init__(self, n_classes, templates, model_dir=None):
|
||||
def __init__(self, n_classes, templates, model_loc=None):
|
||||
self._extractor = Extractor(templates)
|
||||
self._model = LinearModel(n_classes, self._extractor.n_templ)
|
||||
self.model_loc = path.join(model_dir, 'model') if model_dir else None
|
||||
self.model_loc = model_loc
|
||||
if self.model_loc and path.exists(self.model_loc):
|
||||
self._model.load(self.model_loc, freq_thresh=0)
|
||||
|
||||
cdef class_t predict(self, atom_t* context) except *:
|
||||
cdef const weight_t* score(self, atom_t* context) except NULL:
|
||||
cdef int n_feats
|
||||
cdef const Feature* feats = self._extractor.get_feats(context, &n_feats)
|
||||
cdef const weight_t* scores = self._model.get_scores(feats, n_feats)
|
||||
guess = _arg_max(scores, self._model.nr_class)
|
||||
return self._model.get_scores(feats, n_feats)
|
||||
|
||||
cdef class_t predict(self, atom_t* context) except *:
|
||||
cdef weight_t _
|
||||
scores = self.score(context)
|
||||
guess = _arg_max(scores, self._model.nr_class, &_)
|
||||
return guess
|
||||
|
||||
cdef class_t predict_among(self, atom_t* context, const bint* valid) except *:
|
||||
cdef int n_feats
|
||||
cdef const Feature* feats = self._extractor.get_feats(context, &n_feats)
|
||||
cdef const weight_t* scores = self._model.get_scores(feats, n_feats)
|
||||
return _arg_max_among(scores, valid, self._model.nr_class)
|
||||
cdef weight_t _
|
||||
scores = self.score(context)
|
||||
return _arg_max_among(scores, valid, self._model.nr_class, &_)
|
||||
|
||||
cdef class_t predict_and_update(self, atom_t* context, const bint* valid,
|
||||
const int* costs) except *:
|
||||
|
@ -59,10 +62,11 @@ cdef class Model:
|
|||
int cost
|
||||
int i
|
||||
weight_t score
|
||||
weight_t _
|
||||
|
||||
feats = self._extractor.get_feats(context, &n_feats)
|
||||
scores = self._model.get_scores(feats, n_feats)
|
||||
guess = _arg_max_among(scores, valid, self._model.nr_class)
|
||||
guess = _arg_max_among(scores, valid, self._model.nr_class, &_)
|
||||
cost = costs[guess]
|
||||
if cost == 0:
|
||||
self._model.update({})
|
||||
|
@ -89,50 +93,74 @@ cdef class Model:
|
|||
self._model.dump(self.model_loc, freq_thresh=0)
|
||||
|
||||
|
||||
"""
|
||||
cdef class HastyModel:
|
||||
def __init__(self, model_dir):
|
||||
cfg = json.load(open(path.join(model_dir, 'config.json')))
|
||||
templates = cfg['templates']
|
||||
univ_counts = {}
|
||||
cdef unicode tag
|
||||
cdef unicode univ_tag
|
||||
tag_names = cfg['tag_names']
|
||||
self.extractor = Extractor(templates)
|
||||
self.model = LinearModel(len(tag_names) + 1, self.extractor.n_templ+2) # TODO
|
||||
if path.exists(path.join(model_dir, 'model')):
|
||||
self.model.load(path.join(model_dir, 'model'))
|
||||
def __init__(self, n_classes, hasty_templates, full_templates, model_dir,
|
||||
weight_t confidence=0.1):
|
||||
self.n_classes = n_classes
|
||||
self.confidence = confidence
|
||||
self._hasty = Model(n_classes, hasty_templates, path.join(model_dir, 'hasty_model'))
|
||||
self._full = Model(n_classes, full_templates, path.join(model_dir, 'full_model'))
|
||||
|
||||
cdef class_t predict(self, atom_t* context) except *:
|
||||
pass
|
||||
cdef weight_t ratio
|
||||
scores = self._hasty.score(context)
|
||||
guess = _arg_max(scores, self.n_classes, &ratio)
|
||||
if ratio < self.confidence:
|
||||
return guess
|
||||
else:
|
||||
return self._full.predict(context)
|
||||
|
||||
cdef class_t predict_among(self, atom_t* context, bint* valid) except *:
|
||||
pass
|
||||
cdef weight_t ratio
|
||||
scores = self._hasty.score(context)
|
||||
guess = _arg_max_among(scores, valid, self.n_classes, &ratio)
|
||||
if ratio < self.confidence:
|
||||
return guess
|
||||
else:
|
||||
return self._full.predict(context)
|
||||
|
||||
cdef class_t predict_and_update(self, atom_t* context, int* costs) except *:
|
||||
pass
|
||||
cdef class_t predict_and_update(self, atom_t* context, bint* valid, int* costs) except *:
|
||||
cdef weight_t ratio
|
||||
scores = self._hasty.score(context)
|
||||
_arg_max_among(scores, valid, self.n_classes, &ratio)
|
||||
hasty_guess = self._hasty.predict_and_update(context, valid, costs)
|
||||
full_guess = self._full.predict_and_update(context, valid, costs)
|
||||
if ratio < self.confidence:
|
||||
return hasty_guess
|
||||
else:
|
||||
return full_guess
|
||||
|
||||
def dump(self, model_dir):
|
||||
pass
|
||||
"""
|
||||
def end_training(self):
|
||||
self._hasty.end_training()
|
||||
self._full.end_training()
|
||||
|
||||
cdef int _arg_max(const weight_t* scores, int n_classes) except -1:
|
||||
|
||||
@cython.cdivision(True)
|
||||
cdef int _arg_max(const weight_t* scores, int n_classes, weight_t* ratio) except -1:
|
||||
cdef int best = 0
|
||||
cdef weight_t score = scores[best]
|
||||
cdef int i
|
||||
ratio[0] = 0.0
|
||||
for i in range(1, n_classes):
|
||||
if scores[i] >= score:
|
||||
if score > 0:
|
||||
ratio[0] = score / scores[i]
|
||||
score = scores[i]
|
||||
best = i
|
||||
return best
|
||||
|
||||
|
||||
cdef int _arg_max_among(const weight_t* scores, const bint* valid, int n_classes) except -1:
|
||||
@cython.cdivision(True)
|
||||
cdef int _arg_max_among(const weight_t* scores, const bint* valid, int n_classes,
|
||||
weight_t* ratio) except -1:
|
||||
cdef int clas
|
||||
cdef weight_t score = 0
|
||||
cdef int best = -1
|
||||
ratio[0] = 0
|
||||
for clas in range(n_classes):
|
||||
if valid[clas] and (best == -1 or scores[clas] > score):
|
||||
if score > 0:
|
||||
ratio[0] = score / scores[clas]
|
||||
score = scores[clas]
|
||||
best = clas
|
||||
return best
|
||||
|
|
Loading…
Reference in New Issue
Block a user