It works!

Was missing the serialization-related code from biaffine.
This commit is contained in:
Paul O'Leary McCann 2022-07-06 18:58:22 +09:00
parent ba1bf8ae72
commit bd17c38b74
2 changed files with 59 additions and 3 deletions

View File

@ -44,8 +44,9 @@ def build_wl_coref_model(
},
)
coref_model = tok2vec >> coref_clusterer
return coref_model
model = tok2vec >> coref_clusterer
model.set_ref("coref_clusterer", coref_clusterer)
return model
def coref_init(model: Model, X=None, Y=None):

View File

@ -6,6 +6,7 @@ from thinc.api import Model, Config, Optimizer
from thinc.api import set_dropout_rate, to_categorical
from itertools import islice
from statistics import mean
import srsly
from .trainable_pipe import TrainablePipe
from ..language import Language
@ -13,7 +14,7 @@ from ..training import Example, validate_examples, validate_get_examples
from ..errors import Errors
from ..tokens import Doc
from ..vocab import Vocab
from ..util import registry
from ..util import registry, from_disk, from_bytes
from ..ml.models.coref_util import (
create_gold_scores,
@ -316,3 +317,57 @@ class CoreferenceResolver(TrainablePipe):
assert len(X) > 0, Errors.E923.format(name=self.name)
self.model.initialize(X=X, Y=Y)
# Store the input dimensionality. nI and nO are not stored explicitly
# for PyTorch models. This makes it tricky to reconstruct the model
# during deserialization. So, besides storing the labels, we also
# store the number of inputs.
coref_clusterer = self.model.get_ref("coref_clusterer")
self.cfg["nI"] = coref_clusterer.get_dim("nI")
def from_bytes(self, bytes_data, *, exclude=tuple()):
deserializers = {
"cfg": lambda b: self.cfg.update(srsly.json_loads(b)),
"vocab": lambda b: self.vocab.from_bytes(b, exclude=exclude),
}
from_bytes(bytes_data, deserializers, exclude)
self._initialize_from_disk()
model_deserializers = {
"model": lambda b: self.model.from_bytes(b),
}
from_bytes(bytes_data, model_deserializers, exclude)
return self
def from_disk(self, path, exclude=tuple()):
def load_model(p):
try:
with open(p, "rb") as mfile:
self.model.from_bytes(mfile.read())
except AttributeError:
raise ValueError(Errors.E149) from None
deserializers = {
"cfg": lambda p: self.cfg.update(srsly.read_json(p)),
"vocab": lambda p: self.vocab.from_disk(p, exclude=exclude),
}
from_disk(path, deserializers, exclude)
self._initialize_from_disk()
model_deserializers = {
"model": load_model,
}
from_disk(path, model_deserializers, exclude)
return self
def _initialize_from_disk(self):
# The PyTorch model is constructed lazily, so we need to
# explicitly initialize the model before deserialization.
model = self.model.get_ref("coref_clusterer")
if model.has_dim("nI") is None:
model.set_dim("nI", self.cfg["nI"])
self.model.initialize()