mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 09:14:32 +03:00
Merge branch 'develop' of https://github.com/explosion/spaCy into develop
This commit is contained in:
commit
bdc23dd8c1
|
@ -245,6 +245,8 @@ class Errors(object):
|
|||
"the meta.json. Vector names are required to avoid issue #1660.")
|
||||
E093 = ("token.ent_iob values make invalid sequence: I without B\n{seq}")
|
||||
E094 = ("Error reading line {line_num} in vectors file {loc}.")
|
||||
E095 = ("Can't write to frozen dictionary. This is likely an internal "
|
||||
"error. Are you writing to a default function argument?")
|
||||
|
||||
|
||||
@add_codes
|
||||
|
|
|
@ -19,12 +19,10 @@ cdef struct WeightsC:
|
|||
const float* feat_bias
|
||||
const float* hidden_bias
|
||||
const float* hidden_weights
|
||||
const float* vectors
|
||||
|
||||
|
||||
cdef struct ActivationsC:
|
||||
int* token_ids
|
||||
float* vectors
|
||||
float* unmaxed
|
||||
float* scores
|
||||
float* hiddens
|
||||
|
|
|
@ -50,8 +50,6 @@ cdef WeightsC get_c_weights(model) except *:
|
|||
cdef np.ndarray vec2scores_b = model.vec2scores.b
|
||||
output.hidden_weights = <const float*>vec2scores_W.data
|
||||
output.hidden_bias = <const float*>vec2scores_b.data
|
||||
cdef np.ndarray tokvecs = model.tokvecs
|
||||
output.vectors = <float*>tokvecs.data
|
||||
return output
|
||||
|
||||
|
||||
|
@ -72,7 +70,6 @@ cdef void resize_activations(ActivationsC* A, SizesC n) nogil:
|
|||
return
|
||||
if A._max_size == 0:
|
||||
A.token_ids = <int*>calloc(n.states * n.feats, sizeof(A.token_ids[0]))
|
||||
A.vectors = <float*>calloc(n.states * n.embed_width, sizeof(A.vectors[0]))
|
||||
A.scores = <float*>calloc(n.states * n.classes, sizeof(A.scores[0]))
|
||||
A.unmaxed = <float*>calloc(n.states * n.hiddens * n.pieces, sizeof(A.unmaxed[0]))
|
||||
A.hiddens = <float*>calloc(n.states * n.hiddens, sizeof(A.hiddens[0]))
|
||||
|
@ -81,8 +78,6 @@ cdef void resize_activations(ActivationsC* A, SizesC n) nogil:
|
|||
else:
|
||||
A.token_ids = <int*>realloc(A.token_ids,
|
||||
n.states * n.feats * sizeof(A.token_ids[0]))
|
||||
A.vectors = <float*>realloc(A.vectors,
|
||||
n.states * n.embed_width * sizeof(A.vectors[0]))
|
||||
A.scores = <float*>realloc(A.scores,
|
||||
n.states * n.classes * sizeof(A.scores[0]))
|
||||
A.unmaxed = <float*>realloc(A.unmaxed,
|
||||
|
@ -242,7 +237,7 @@ class ParserStepModel(Model):
|
|||
def begin_update(self, states, drop=0.):
|
||||
token_ids = self.get_token_ids(states)
|
||||
vector, get_d_tokvecs = self.state2vec.begin_update(token_ids, drop=0.0)
|
||||
mask = self.ops.get_dropout_mask(vector.shape, drop)
|
||||
mask = self.vec2scores.ops.get_dropout_mask(vector.shape, drop)
|
||||
if mask is not None:
|
||||
vector *= mask
|
||||
scores, get_d_vector = self.vec2scores.begin_update(vector, drop=drop)
|
||||
|
@ -251,7 +246,7 @@ class ParserStepModel(Model):
|
|||
d_vector = get_d_vector(d_scores, sgd=sgd)
|
||||
if mask is not None:
|
||||
d_vector *= mask
|
||||
if isinstance(self.ops, CupyOps) \
|
||||
if isinstance(self.state2vec.ops, CupyOps) \
|
||||
and not isinstance(token_ids, self.state2vec.ops.xp.ndarray):
|
||||
# Move token_ids and d_vector to GPU, asynchronously
|
||||
self.backprops.append((
|
||||
|
|
|
@ -4,6 +4,7 @@ from __future__ import unicode_literals
|
|||
from ..util import get_doc
|
||||
from ...tokens import Doc
|
||||
from ...vocab import Vocab
|
||||
from ...attrs import LEMMA
|
||||
|
||||
import pytest
|
||||
import numpy
|
||||
|
@ -178,6 +179,26 @@ def test_doc_api_merge_hang(en_tokenizer):
|
|||
doc.merge(8, 32, tag='', lemma='', ent_type='ORG')
|
||||
|
||||
|
||||
def test_doc_api_retokenizer(en_tokenizer):
|
||||
doc = en_tokenizer("WKRO played songs by the beach boys all night")
|
||||
with doc.retokenize() as retokenizer:
|
||||
retokenizer.merge(doc[4:7])
|
||||
assert len(doc) == 7
|
||||
assert doc[4].text == 'the beach boys'
|
||||
|
||||
|
||||
def test_doc_api_retokenizer_attrs(en_tokenizer):
|
||||
doc = en_tokenizer("WKRO played songs by the beach boys all night")
|
||||
# test both string and integer attributes and values
|
||||
attrs = {LEMMA: 'boys', 'ENT_TYPE': doc.vocab.strings['ORG']}
|
||||
with doc.retokenize() as retokenizer:
|
||||
retokenizer.merge(doc[4:7], attrs=attrs)
|
||||
assert len(doc) == 7
|
||||
assert doc[4].text == 'the beach boys'
|
||||
assert doc[4].lemma_ == 'boys'
|
||||
assert doc[4].ent_type_ == 'ORG'
|
||||
|
||||
|
||||
def test_doc_api_sents_empty_string(en_tokenizer):
|
||||
doc = en_tokenizer("")
|
||||
doc.is_parsed = True
|
||||
|
|
|
@ -11,11 +11,13 @@ from .span cimport Span
|
|||
from .token cimport Token
|
||||
from ..lexeme cimport Lexeme, EMPTY_LEXEME
|
||||
from ..structs cimport LexemeC, TokenC
|
||||
from ..attrs cimport *
|
||||
from ..attrs cimport TAG
|
||||
from ..attrs import intify_attrs
|
||||
from ..util import SimpleFrozenDict
|
||||
|
||||
|
||||
cdef class Retokenizer:
|
||||
'''Helper class for doc.retokenize() context manager.'''
|
||||
"""Helper class for doc.retokenize() context manager."""
|
||||
cdef Doc doc
|
||||
cdef list merges
|
||||
cdef list splits
|
||||
|
@ -24,14 +26,18 @@ cdef class Retokenizer:
|
|||
self.merges = []
|
||||
self.splits = []
|
||||
|
||||
def merge(self, Span span, attrs=None):
|
||||
'''Mark a span for merging. The attrs will be applied to the resulting
|
||||
token.'''
|
||||
def merge(self, Span span, attrs=SimpleFrozenDict()):
|
||||
"""Mark a span for merging. The attrs will be applied to the resulting
|
||||
token.
|
||||
"""
|
||||
attrs = intify_attrs(attrs, strings_map=self.doc.vocab.strings)
|
||||
self.merges.append((span.start_char, span.end_char, attrs))
|
||||
|
||||
def split(self, Token token, orths, attrs=None):
|
||||
'''Mark a Token for splitting, into the specified orths. The attrs
|
||||
will be applied to each subtoken.'''
|
||||
def split(self, Token token, orths, attrs=SimpleFrozenDict()):
|
||||
"""Mark a Token for splitting, into the specified orths. The attrs
|
||||
will be applied to each subtoken.
|
||||
"""
|
||||
attrs = intify_attrs(attrs, strings_map=self.doc.vocab.strings)
|
||||
self.splits.append((token.start_char, orths, attrs))
|
||||
|
||||
def __enter__(self):
|
||||
|
@ -125,5 +131,3 @@ def _merge(Doc doc, int start, int end, attributes):
|
|||
# Clear the cached Python objects
|
||||
# Return the merged Python object
|
||||
return doc[start]
|
||||
|
||||
|
||||
|
|
|
@ -635,3 +635,18 @@ def use_gpu(gpu_id):
|
|||
def fix_random_seed(seed=0):
|
||||
random.seed(seed)
|
||||
numpy.random.seed(seed)
|
||||
|
||||
|
||||
class SimpleFrozenDict(dict):
|
||||
"""Simplified implementation of a frozen dict, mainly used as default
|
||||
function or method argument (for arguments that should default to empty
|
||||
dictionary). Will raise an error if user or spaCy attempts to add to dict.
|
||||
"""
|
||||
def __setitem__(self, key, value):
|
||||
raise NotImplementedError(Errors.E095)
|
||||
|
||||
def pop(self, key, default=None):
|
||||
raise NotImplementedError(Errors.E095)
|
||||
|
||||
def update(self, other):
|
||||
raise NotImplementedError(Errors.E095)
|
||||
|
|
Loading…
Reference in New Issue
Block a user