mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-25 17:36:30 +03:00
Remove "needs model" and add info about models (see #1471)
This commit is contained in:
parent
5af6c8b746
commit
be5b635388
|
@ -88,80 +88,94 @@ p
|
|||
| while others are related to more general machine learning
|
||||
| functionality.
|
||||
|
||||
+aside
|
||||
| If one of spaCy's functionalities #[strong needs a model], it means
|
||||
| that you need to have one of the available
|
||||
| #[+a("/models") statistical models] installed. Models are used
|
||||
| to #[strong predict] linguistic annotations – for example, if a word
|
||||
| is a verb or a noun.
|
||||
|
||||
+table(["Name", "Description", "Needs model"])
|
||||
+table(["Name", "Description"])
|
||||
+row
|
||||
+cell #[strong Tokenization]
|
||||
+cell Segmenting text into words, punctuations marks etc.
|
||||
+cell #[+procon("no", "no", true)]
|
||||
|
||||
+row
|
||||
+cell #[strong Part-of-speech] (POS) #[strong Tagging]
|
||||
+cell Assigning word types to tokens, like verb or noun.
|
||||
+cell #[+procon("yes", "yes", true)]
|
||||
|
||||
+row
|
||||
+cell #[strong Dependency Parsing]
|
||||
+cell
|
||||
| Assigning syntactic dependency labels, describing the
|
||||
| relations between individual tokens, like subject or object.
|
||||
+cell #[+procon("yes", "yes", true)]
|
||||
|
||||
+row
|
||||
+cell #[strong Lemmatization]
|
||||
+cell
|
||||
| Assigning the base forms of words. For example, the lemma of
|
||||
| "was" is "be", and the lemma of "rats" is "rat".
|
||||
+cell #[+procon("no", "no", true)]
|
||||
|
||||
+row
|
||||
+cell #[strong Sentence Boundary Detection] (SBD)
|
||||
+cell Finding and segmenting individual sentences.
|
||||
+cell #[+procon("yes", "yes", true)]
|
||||
|
||||
+row
|
||||
+cell #[strong Named Entity Recongition] (NER)
|
||||
+cell
|
||||
| Labelling named "real-world" objects, like persons, companies
|
||||
| or locations.
|
||||
+cell #[+procon("yes", "yes", true)]
|
||||
|
||||
+row
|
||||
+cell #[strong Similarity]
|
||||
+cell
|
||||
| Comparing words, text spans and documents and how similar
|
||||
| they are to each other.
|
||||
+cell #[+procon("yes", "yes", true)]
|
||||
|
||||
+row
|
||||
+cell #[strong Text Classification]
|
||||
+cell
|
||||
| Assigning categories or labels to a whole document, or parts
|
||||
| of a document.
|
||||
+cell #[+procon("yes", "yes", true)]
|
||||
|
||||
+row
|
||||
+cell #[strong Rule-based Matching]
|
||||
+cell
|
||||
| Finding sequences of tokens based on their texts and
|
||||
| linguistic annotations, similar to regular expressions.
|
||||
+cell #[+procon("no", "no", true)]
|
||||
|
||||
+row
|
||||
+cell #[strong Training]
|
||||
+cell Updating and improving a statistical model's predictions.
|
||||
+cell #[+procon("no", "no", true)]
|
||||
|
||||
+row
|
||||
+cell #[strong Serialization]
|
||||
+cell Saving objects to files or byte strings.
|
||||
+cell #[+procon("no", "no", true)]
|
||||
|
||||
+h(3, "statistical-models") Statistical models
|
||||
|
||||
p
|
||||
| While some of spaCy's features work independently, others require
|
||||
| #[+a("/models") statistical models] to be loaded, which enable spaCy
|
||||
| to #[strong predict] linguistic annotations – for example,
|
||||
| whether a word is a verb or a noun. spaCy currently offers statistical
|
||||
| models for #[strong #{MODEL_LANG_COUNT} languages], which can be
|
||||
| installed as individual Python modules. Models can differ in size,
|
||||
| speed, memory usage, accuracy and the data they include. The model
|
||||
| you choose always depends on your use case and the texts you're
|
||||
| working with. For a general-purpose use case, the small, default
|
||||
| models are always a good start. They typically include the following
|
||||
| components:
|
||||
|
||||
+list
|
||||
+item
|
||||
| #[strong Binary weights] for the part-of-speech tagger,
|
||||
| dependency parser and named entity recognizer to predict those
|
||||
| annotations in context.
|
||||
+item
|
||||
| #[strong Lexical entries] in the vocabulary, i.e. words and their
|
||||
| context-independent attributes like the shape or spelling.
|
||||
+item
|
||||
| #[strong Word vectors], i.e. multi-dimensional meaning
|
||||
| representations of words that let you determine how similar they
|
||||
| are to each other.
|
||||
+item
|
||||
| #[strong Configuration] options, like the language and
|
||||
| processing pipeline settings, to put spaCy in the correct state
|
||||
| when you load in the model.
|
||||
|
||||
+h(2, "annotations") Linguistic annotations
|
||||
|
||||
|
@ -174,8 +188,13 @@ p
|
|||
| or the object – or whether "google" is used as a verb, or refers to
|
||||
| the website or company in a specific context.
|
||||
|
||||
+aside-code("Loading models", "bash", "$").
|
||||
spacy download en
|
||||
>>> import spacy
|
||||
>>> nlp = spacy.load('en')
|
||||
|
||||
p
|
||||
| Once you've downloaded and installed a #[+a("/usage/models") model],
|
||||
| Once you've #[+a("/usage/models") downloaded and installed] a model,
|
||||
| you can load it via #[+api("spacy#load") #[code spacy.load()]]. This will
|
||||
| return a #[code Language] object contaning all components and data needed
|
||||
| to process text. We usually call it #[code nlp]. Calling the #[code nlp]
|
||||
|
|
Loading…
Reference in New Issue
Block a user