mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-25 09:26:27 +03:00
Mergery
This commit is contained in:
commit
bef89ef23d
|
@ -18,6 +18,8 @@ import spacy.attrs
|
|||
import io
|
||||
from thinc.neural.ops import CupyOps
|
||||
from thinc.neural import Model
|
||||
from spacy.es import Spanish
|
||||
from spacy.attrs import POS
|
||||
|
||||
try:
|
||||
import cupy
|
||||
|
@ -156,20 +158,15 @@ def main(lang_name, train_loc, dev_loc, model_dir, clusters_loc=None):
|
|||
for tag in tags:
|
||||
vocab.morphology.tag_map[tag] = {POS: tag.split('__', 1)[0]}
|
||||
tagger = Tagger(vocab)
|
||||
encoder = TokenVectorEncoder(vocab)
|
||||
encoder = TokenVectorEncoder(vocab, width=64)
|
||||
parser = DependencyParser(vocab, actions=actions, features=features, L1=0.0)
|
||||
|
||||
Xs, ys = organize_data(vocab, train_sents)
|
||||
dev_Xs, dev_ys = organize_data(vocab, dev_sents)
|
||||
#Xs = Xs[:1000]
|
||||
#ys = ys[:1000]
|
||||
#dev_Xs = dev_Xs[:1000]
|
||||
#dev_ys = dev_ys[:1000]
|
||||
with encoder.model.begin_training(Xs[:100], ys[:100]) as (trainer, optimizer):
|
||||
docs = list(Xs)
|
||||
for doc in docs:
|
||||
encoder(doc)
|
||||
parser.begin_training(docs, ys)
|
||||
nn_loss = [0.]
|
||||
def track_progress():
|
||||
with encoder.tagger.use_params(optimizer.averages):
|
||||
|
@ -191,11 +188,23 @@ def main(lang_name, train_loc, dev_loc, model_dir, clusters_loc=None):
|
|||
upd_tokvecs(d_tokvecs, sgd=optimizer)
|
||||
encoder.update(docs, golds, sgd=optimizer)
|
||||
nn_loss[-1] += loss
|
||||
nlp = LangClass(vocab=vocab, tagger=tagger, parser=parser)
|
||||
#nlp.end_training(model_dir)
|
||||
scorer = score_model(vocab, tagger, parser, read_conllx(dev_loc))
|
||||
nlp = LangClass(vocab=vocab, parser=parser)
|
||||
scorer = score_model(vocab, encoder, parser, read_conllx(dev_loc))
|
||||
print('%d:\t%.3f\t%.3f\t%.3f' % (itn, scorer.uas, scorer.las, scorer.tags_acc))
|
||||
#nlp.end_training(model_dir)
|
||||
#scorer = score_model(vocab, tagger, parser, read_conllx(dev_loc))
|
||||
#print('%d:\t%.3f\t%.3f\t%.3f' % (itn, scorer.uas, scorer.las, scorer.tags_acc))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
import cProfile
|
||||
import pstats
|
||||
if 1:
|
||||
plac.call(main)
|
||||
else:
|
||||
cProfile.runctx("plac.call(main)", globals(), locals(), "Profile.prof")
|
||||
s = pstats.Stats("Profile.prof")
|
||||
s.strip_dirs().sort_stats("time").print_stats()
|
||||
|
||||
|
||||
plac.call(main)
|
||||
|
|
331
spacy/_ml.py
331
spacy/_ml.py
|
@ -7,8 +7,125 @@ from thinc.neural._classes.static_vectors import StaticVectors
|
|||
from thinc.neural._classes.batchnorm import BatchNorm
|
||||
from thinc.neural._classes.resnet import Residual
|
||||
|
||||
from thinc import describe
|
||||
from thinc.describe import Dimension, Synapses, Biases, Gradient
|
||||
from thinc.neural._classes.affine import _set_dimensions_if_needed
|
||||
from .attrs import ID, LOWER, PREFIX, SUFFIX, SHAPE, TAG, DEP
|
||||
|
||||
import numpy
|
||||
|
||||
|
||||
@describe.on_data(_set_dimensions_if_needed)
|
||||
@describe.attributes(
|
||||
nI=Dimension("Input size"),
|
||||
nF=Dimension("Number of features"),
|
||||
nO=Dimension("Output size"),
|
||||
W=Synapses("Weights matrix",
|
||||
lambda obj: (obj.nO, obj.nF, obj.nI),
|
||||
lambda W, ops: ops.xavier_uniform_init(W)),
|
||||
b=Biases("Bias vector",
|
||||
lambda obj: (obj.nO,)),
|
||||
d_W=Gradient("W"),
|
||||
d_b=Gradient("b")
|
||||
)
|
||||
class PrecomputableAffine(Model):
|
||||
def __init__(self, nO=None, nI=None, nF=None, **kwargs):
|
||||
Model.__init__(self, **kwargs)
|
||||
self.nO = nO
|
||||
self.nI = nI
|
||||
self.nF = nF
|
||||
|
||||
def begin_update(self, X, drop=0.):
|
||||
# X: (b, i)
|
||||
# Xf: (b, f, i)
|
||||
# dY: (b, o)
|
||||
# dYf: (b, f, o)
|
||||
#Yf = numpy.einsum('bi,ofi->bfo', X, self.W)
|
||||
Yf = self.ops.xp.tensordot(
|
||||
X, self.W, axes=[[1], [2]]).transpose((0, 2, 1))
|
||||
Yf += self.b
|
||||
def backward(dY_ids, sgd=None):
|
||||
dY, ids = dY_ids
|
||||
Xf = X[ids]
|
||||
|
||||
#dW = numpy.einsum('bo,bfi->ofi', dY, Xf)
|
||||
dW = self.ops.xp.tensordot(dY, Xf, axes=[[0], [0]])
|
||||
db = dY.sum(axis=0)
|
||||
#dXf = numpy.einsum('bo,ofi->bfi', dY, self.W)
|
||||
dXf = self.ops.xp.tensordot(dY, self.W, axes=[[1], [0]])
|
||||
|
||||
self.d_W += dW
|
||||
self.d_b += db
|
||||
|
||||
if sgd is not None:
|
||||
sgd(self._mem.weights, self._mem.gradient, key=self.id)
|
||||
return dXf
|
||||
return Yf, backward
|
||||
|
||||
|
||||
@describe.on_data(_set_dimensions_if_needed)
|
||||
@describe.attributes(
|
||||
nI=Dimension("Input size"),
|
||||
nF=Dimension("Number of features"),
|
||||
nP=Dimension("Number of pieces"),
|
||||
nO=Dimension("Output size"),
|
||||
W=Synapses("Weights matrix",
|
||||
lambda obj: (obj.nF, obj.nO, obj.nP, obj.nI),
|
||||
lambda W, ops: ops.xavier_uniform_init(W)),
|
||||
b=Biases("Bias vector",
|
||||
lambda obj: (obj.nO, obj.nP)),
|
||||
d_W=Gradient("W"),
|
||||
d_b=Gradient("b")
|
||||
)
|
||||
class PrecomputableMaxouts(Model):
|
||||
def __init__(self, nO=None, nI=None, nF=None, pieces=2, **kwargs):
|
||||
Model.__init__(self, **kwargs)
|
||||
self.nO = nO
|
||||
self.nP = pieces
|
||||
self.nI = nI
|
||||
self.nF = nF
|
||||
|
||||
def begin_update(self, X, drop=0.):
|
||||
# X: (b, i)
|
||||
# Yfp: (f, b, o, p)
|
||||
# Yf: (f, b, o)
|
||||
# Xf: (b, f, i)
|
||||
# dY: (b, o)
|
||||
# dYp: (b, o, p)
|
||||
# W: (f, o, p, i)
|
||||
# b: (o, p)
|
||||
|
||||
# Yfp = numpy.einsum('bi,fopi->fbop', X, self.W)
|
||||
Yfp = self.ops.xp.tensordot(X, self.W,
|
||||
axes=[[1], [3]]).transpose((1, 0, 2, 3))
|
||||
Yfp = self.ops.xp.ascontiguousarray(Yfp)
|
||||
Yfp += self.b
|
||||
Yf = self.ops.allocate((self.nF, X.shape[0], self.nO))
|
||||
which = self.ops.allocate((self.nF, X.shape[0], self.nO), dtype='i')
|
||||
for i in range(self.nF):
|
||||
Yf[i], which[i] = self.ops.maxout(Yfp[i])
|
||||
def backward(dY_ids, sgd=None):
|
||||
dY, ids = dY_ids
|
||||
Xf = X[ids]
|
||||
dYp = self.ops.allocate((dY.shape[0], self.nO, self.nP))
|
||||
for i in range(self.nF):
|
||||
dYp += self.ops.backprop_maxout(dY, which[i], self.nP)
|
||||
|
||||
#dXf = numpy.einsum('bop,fopi->bfi', dYp, self.W)
|
||||
dXf = self.ops.xp.tensordot(dYp, self.W, axes=[[1,2], [1,2]])
|
||||
#dW = numpy.einsum('bfi,bop->fopi', Xf, dYp)
|
||||
dW = self.ops.xp.tensordot(Xf, dYp, axes=[[0], [0]])
|
||||
dW = dW.transpose((0, 2, 3, 1))
|
||||
db = dYp.sum(axis=0)
|
||||
|
||||
self.d_W += dW
|
||||
self.d_b += db
|
||||
|
||||
if sgd is not None:
|
||||
sgd(self._mem.weights, self._mem.gradient, key=self.id)
|
||||
return dXf
|
||||
return Yf, backward
|
||||
|
||||
|
||||
def get_col(idx):
|
||||
def forward(X, drop=0.):
|
||||
|
@ -22,55 +139,36 @@ def get_col(idx):
|
|||
return layerize(forward)
|
||||
|
||||
|
||||
def build_model(state2vec, width, depth, nr_class):
|
||||
with Model.define_operators({'>>': chain, '**': clone}):
|
||||
model = (
|
||||
state2vec
|
||||
>> Maxout(width, 1344)
|
||||
>> Maxout(width, width)
|
||||
>> Affine(nr_class, width)
|
||||
def build_tok2vec(lang, width, depth=2, embed_size=1000):
|
||||
cols = [ID, LOWER, PREFIX, SUFFIX, SHAPE]
|
||||
with Model.define_operators({'>>': chain, '|': concatenate, '**': clone}):
|
||||
#static = get_col(cols.index(ID)) >> StaticVectors(lang, width)
|
||||
lower = get_col(cols.index(LOWER)) >> HashEmbed(width, embed_size)
|
||||
prefix = get_col(cols.index(PREFIX)) >> HashEmbed(width//4, embed_size)
|
||||
suffix = get_col(cols.index(SUFFIX)) >> HashEmbed(width//4, embed_size)
|
||||
shape = get_col(cols.index(SHAPE)) >> HashEmbed(width//4, embed_size)
|
||||
tok2vec = (
|
||||
doc2feats(cols)
|
||||
>> with_flatten(
|
||||
#(static | prefix | suffix | shape)
|
||||
(lower | prefix | suffix | shape)
|
||||
>> Maxout(width)
|
||||
>> (ExtractWindow(nW=1) >> Maxout(width, width*3))
|
||||
>> (ExtractWindow(nW=1) >> Maxout(width, width*3))
|
||||
)
|
||||
)
|
||||
return model
|
||||
return tok2vec
|
||||
|
||||
|
||||
def build_debug_model(state2vec, width, depth, nr_class):
|
||||
with Model.define_operators({'>>': chain, '**': clone}):
|
||||
model = (
|
||||
state2vec
|
||||
#>> Maxout(width)
|
||||
>> Maxout(nr_class)
|
||||
)
|
||||
return model
|
||||
|
||||
|
||||
def build_debug_state2vec(width, nr_vector=1000, nF=1, nB=0, nS=1, nL=2, nR=2):
|
||||
ops = Model.ops
|
||||
def forward(tokens_attrs_vectors, drop=0.):
|
||||
tokens, attr_vals, tokvecs = tokens_attrs_vectors
|
||||
|
||||
orig_tokvecs_shape = tokvecs.shape
|
||||
tokvecs = tokvecs.reshape((tokvecs.shape[0], tokvecs.shape[1] *
|
||||
tokvecs.shape[2]))
|
||||
|
||||
vector = tokvecs
|
||||
|
||||
def backward(d_vector, sgd=None):
|
||||
d_tokvecs = vector.reshape(orig_tokvecs_shape)
|
||||
return (tokens, d_tokvecs)
|
||||
return vector, backward
|
||||
def doc2feats(cols):
|
||||
def forward(docs, drop=0.):
|
||||
feats = [doc.to_array(cols) for doc in docs]
|
||||
feats = [model.ops.asarray(f, dtype='uint64') for f in feats]
|
||||
return feats, None
|
||||
model = layerize(forward)
|
||||
return model
|
||||
|
||||
|
||||
def build_state2vec(nr_context_tokens, width, nr_vector=1000):
|
||||
ops = Model.ops
|
||||
with Model.define_operators({'|': concatenate, '+': add, '>>': chain}):
|
||||
#hiddens = [get_col(i) >> Maxout(width) for i in range(nr_context_tokens)]
|
||||
features = [get_col(i) for i in range(nr_context_tokens)]
|
||||
model = get_token_vectors >> concatenate(*features) >> ReLu(width)
|
||||
return model
|
||||
|
||||
|
||||
def print_shape(prefix):
|
||||
def forward(X, drop=0.):
|
||||
return X, lambda dX, **kwargs: dX
|
||||
|
@ -86,87 +184,6 @@ def get_token_vectors(tokens_attrs_vectors, drop=0.):
|
|||
return vectors, backward
|
||||
|
||||
|
||||
def build_parser_state2vec(width, nr_vector=1000, nF=1, nB=0, nS=1, nL=2, nR=2):
|
||||
embed_tags = _reshape(chain(get_col(0), HashEmbed(16, nr_vector)))
|
||||
embed_deps = _reshape(chain(get_col(1), HashEmbed(16, nr_vector)))
|
||||
ops = embed_tags.ops
|
||||
def forward(tokens_attrs_vectors, drop=0.):
|
||||
tokens, attr_vals, tokvecs = tokens_attrs_vectors
|
||||
tagvecs, bp_tagvecs = embed_deps.begin_update(attr_vals, drop=drop)
|
||||
depvecs, bp_depvecs = embed_tags.begin_update(attr_vals, drop=drop)
|
||||
orig_tokvecs_shape = tokvecs.shape
|
||||
tokvecs = tokvecs.reshape((tokvecs.shape[0], tokvecs.shape[1] *
|
||||
tokvecs.shape[2]))
|
||||
|
||||
shapes = (tagvecs.shape, depvecs.shape, tokvecs.shape)
|
||||
assert tagvecs.shape[0] == depvecs.shape[0] == tokvecs.shape[0], shapes
|
||||
vector = ops.xp.hstack((tagvecs, depvecs, tokvecs))
|
||||
|
||||
def backward(d_vector, sgd=None):
|
||||
d_tagvecs, d_depvecs, d_tokvecs = backprop_concatenate(d_vector, shapes)
|
||||
assert d_tagvecs.shape == shapes[0], (d_tagvecs.shape, shapes)
|
||||
assert d_depvecs.shape == shapes[1], (d_depvecs.shape, shapes)
|
||||
assert d_tokvecs.shape == shapes[2], (d_tokvecs.shape, shapes)
|
||||
bp_tagvecs(d_tagvecs)
|
||||
bp_depvecs(d_depvecs)
|
||||
d_tokvecs = d_tokvecs.reshape(orig_tokvecs_shape)
|
||||
|
||||
return (tokens, d_tokvecs)
|
||||
return vector, backward
|
||||
model = layerize(forward)
|
||||
model._layers = [embed_tags, embed_deps]
|
||||
return model
|
||||
|
||||
|
||||
def backprop_concatenate(gradient, shapes):
|
||||
grads = []
|
||||
start = 0
|
||||
for shape in shapes:
|
||||
end = start + shape[1]
|
||||
grads.append(gradient[:, start : end])
|
||||
start = end
|
||||
return grads
|
||||
|
||||
|
||||
def _reshape(layer):
|
||||
'''Transforms input with shape
|
||||
(states, tokens, features)
|
||||
into input with shape:
|
||||
(states * tokens, features)
|
||||
So that it can be used with a token-wise feature extraction layer, e.g.
|
||||
an embedding layer. The embedding layer outputs:
|
||||
(states * tokens, ndim)
|
||||
But we want to concatenate the vectors for the tokens, so we produce:
|
||||
(states, tokens * ndim)
|
||||
We then need to reverse the transforms to do the backward pass. Recall
|
||||
the simple rule here: each layer is a map:
|
||||
inputs -> (outputs, (d_outputs->d_inputs))
|
||||
So the shapes must match like this:
|
||||
shape of forward input == shape of backward output
|
||||
shape of backward input == shape of forward output
|
||||
'''
|
||||
def forward(X__bfm, drop=0.):
|
||||
b, f, m = X__bfm.shape
|
||||
B = b*f
|
||||
M = f*m
|
||||
X__Bm = X__bfm.reshape((B, m))
|
||||
y__Bn, bp_yBn = layer.begin_update(X__Bm, drop=drop)
|
||||
n = y__Bn.shape[1]
|
||||
N = f * n
|
||||
y__bN = y__Bn.reshape((b, N))
|
||||
def backward(dy__bN, sgd=None):
|
||||
dy__Bn = dy__bN.reshape((B, n))
|
||||
dX__Bm = bp_yBn(dy__Bn, sgd)
|
||||
if dX__Bm is None:
|
||||
return None
|
||||
else:
|
||||
return dX__Bm.reshape((b, f, m))
|
||||
return y__bN, backward
|
||||
model = layerize(forward)
|
||||
model._layers.append(layer)
|
||||
return model
|
||||
|
||||
|
||||
@layerize
|
||||
def flatten(seqs, drop=0.):
|
||||
ops = Model.ops
|
||||
|
@ -177,32 +194,44 @@ def flatten(seqs, drop=0.):
|
|||
return X, finish_update
|
||||
|
||||
|
||||
def build_tok2vec(lang, width, depth=2, embed_size=1000):
|
||||
cols = [ID, LOWER, PREFIX, SUFFIX, SHAPE, TAG]
|
||||
with Model.define_operators({'>>': chain, '|': concatenate, '**': clone}):
|
||||
#static = get_col(cols.index(ID)) >> StaticVectors(lang, width)
|
||||
lower = get_col(cols.index(LOWER)) >> HashEmbed(width, embed_size)
|
||||
prefix = get_col(cols.index(PREFIX)) >> HashEmbed(width, embed_size)
|
||||
suffix = get_col(cols.index(SUFFIX)) >> HashEmbed(width, embed_size)
|
||||
shape = get_col(cols.index(SHAPE)) >> HashEmbed(width, embed_size)
|
||||
tok2vec = (
|
||||
doc2feats(cols)
|
||||
>> with_flatten(
|
||||
#(static | prefix | suffix | shape)
|
||||
(lower | prefix | suffix | shape)
|
||||
>> Maxout(width, width*4)
|
||||
>> Residual((ExtractWindow(nW=1) >> Maxout(width, width*3)))
|
||||
>> Residual((ExtractWindow(nW=1) >> Maxout(width, width*3)))
|
||||
>> Residual((ExtractWindow(nW=1) >> Maxout(width, width*3)))
|
||||
)
|
||||
)
|
||||
return tok2vec
|
||||
#def build_feature_precomputer(model, feat_maps):
|
||||
# '''Allow a model to be "primed" by pre-computing input features in bulk.
|
||||
#
|
||||
# This is used for the parser, where we want to take a batch of documents,
|
||||
# and compute vectors for each (token, position) pair. These vectors can then
|
||||
# be reused, especially for beam-search.
|
||||
#
|
||||
# Let's say we're using 12 features for each state, e.g. word at start of
|
||||
# buffer, three words on stack, their children, etc. In the normal arc-eager
|
||||
# system, a document of length N is processed in 2*N states. This means we'll
|
||||
# create 2*N*12 feature vectors --- but if we pre-compute, we only need
|
||||
# N*12 vector computations. The saving for beam-search is much better:
|
||||
# if we have a beam of k, we'll normally make 2*N*12*K computations --
|
||||
# so we can save the factor k. This also gives a nice CPU/GPU division:
|
||||
# we can do all our hard maths up front, packed into large multiplications,
|
||||
# and do the hard-to-program parsing on the CPU.
|
||||
# '''
|
||||
# def precompute(input_vectors):
|
||||
# cached, backprops = zip(*[lyr.begin_update(input_vectors)
|
||||
# for lyr in feat_maps)
|
||||
# def forward(batch_token_ids, drop=0.):
|
||||
# output = ops.allocate((batch_size, output_width))
|
||||
# # i: batch index
|
||||
# # j: position index (i.e. N0, S0, etc
|
||||
# # tok_i: Index of the token within its document
|
||||
# for i, token_ids in enumerate(batch_token_ids):
|
||||
# for j, tok_i in enumerate(token_ids):
|
||||
# output[i] += cached[j][tok_i]
|
||||
# def backward(d_vector, sgd=None):
|
||||
# d_inputs = ops.allocate((batch_size, n_feat, vec_width))
|
||||
# for i, token_ids in enumerate(batch_token_ids):
|
||||
# for j in range(len(token_ids)):
|
||||
# d_inputs[i][j] = backprops[j](d_vector, sgd)
|
||||
# # Return the IDs, so caller can associate to correct token
|
||||
# return (batch_token_ids, d_inputs)
|
||||
# return vector, backward
|
||||
# return chain(layerize(forward), model)
|
||||
# return precompute
|
||||
#
|
||||
#
|
||||
|
||||
|
||||
def doc2feats(cols):
|
||||
def forward(docs, drop=0.):
|
||||
feats = [doc.to_array(cols) for doc in docs]
|
||||
feats = [model.ops.asarray(f, dtype='uint64') for f in feats]
|
||||
return feats, None
|
||||
model = layerize(forward)
|
||||
return model
|
||||
|
|
|
@ -23,7 +23,7 @@ class TokenVectorEncoder(object):
|
|||
'''Assign position-sensitive vectors to tokens, using a CNN or RNN.'''
|
||||
def __init__(self, vocab, **cfg):
|
||||
self.vocab = vocab
|
||||
self.model = build_tok2vec(vocab.lang, 64, **cfg)
|
||||
self.model = build_tok2vec(vocab.lang, **cfg)
|
||||
self.tagger = chain(
|
||||
self.model,
|
||||
flatten,
|
||||
|
|
|
@ -13,5 +13,6 @@ cdef class Parser:
|
|||
cdef readonly object model
|
||||
cdef readonly TransitionSystem moves
|
||||
cdef readonly object cfg
|
||||
cdef public object feature_maps
|
||||
|
||||
#cdef int parseC(self, TokenC* tokens, int length, int nr_feat) nogil
|
||||
|
|
|
@ -28,8 +28,11 @@ from murmurhash.mrmr cimport hash64
|
|||
from preshed.maps cimport MapStruct
|
||||
from preshed.maps cimport map_get
|
||||
|
||||
from numpy import exp
|
||||
|
||||
from thinc.api import layerize, chain
|
||||
from thinc.neural import Model, Maxout
|
||||
|
||||
from .._ml import PrecomputableAffine, PrecomputableMaxouts
|
||||
from . import _parse_features
|
||||
from ._parse_features cimport CONTEXT_SIZE
|
||||
from ._parse_features cimport fill_context
|
||||
|
@ -44,10 +47,9 @@ from ..strings cimport StringStore
|
|||
from ..gold cimport GoldParse
|
||||
from ..attrs cimport TAG, DEP
|
||||
|
||||
from .._ml import build_parser_state2vec, build_model
|
||||
from .._ml import build_state2vec, build_model
|
||||
from .._ml import build_debug_state2vec, build_debug_model
|
||||
|
||||
def get_templates(*args, **kwargs):
|
||||
return []
|
||||
|
||||
USE_FTRL = True
|
||||
DEBUG = False
|
||||
|
@ -56,8 +58,109 @@ def set_debug(val):
|
|||
DEBUG = val
|
||||
|
||||
|
||||
def get_templates(*args, **kwargs):
|
||||
return []
|
||||
def get_greedy_model_for_batch(tokvecs, TransitionSystem moves, upper_model, lower_model):
|
||||
cdef int[:, :] is_valid_
|
||||
cdef float[:, :] costs_
|
||||
lengths = [len(t) for t in tokvecs]
|
||||
tokvecs = upper_model.ops.flatten(tokvecs)
|
||||
is_valid = upper_model.ops.allocate((len(tokvecs), moves.n_moves), dtype='i')
|
||||
costs = upper_model.ops.allocate((len(tokvecs), moves.n_moves), dtype='f')
|
||||
token_ids = upper_model.ops.allocate((len(tokvecs), lower_model.nF), dtype='i')
|
||||
|
||||
cached, bp_features = lower_model.begin_update(tokvecs, drop=0.)
|
||||
|
||||
is_valid_ = is_valid
|
||||
costs_ = costs
|
||||
|
||||
def forward(states_offsets, drop=0.):
|
||||
nonlocal is_valid, costs, token_ids, moves
|
||||
states, offsets = states_offsets
|
||||
assert len(states) != 0
|
||||
is_valid = is_valid[:len(states)]
|
||||
costs = costs[:len(states)]
|
||||
token_ids = token_ids[:len(states)]
|
||||
is_valid = is_valid[:len(states)]
|
||||
cdef StateClass state
|
||||
cdef int i
|
||||
for i, (offset, state) in enumerate(zip(offsets, states)):
|
||||
state.set_context_tokens(token_ids[i])
|
||||
moves.set_valid(&is_valid_[i, 0], state.c)
|
||||
adjusted_ids = token_ids.copy()
|
||||
for i, offset in enumerate(offsets):
|
||||
adjusted_ids[i] *= token_ids[i] >= 0
|
||||
adjusted_ids[i] += offset
|
||||
features = upper_model.ops.allocate((len(states), lower_model.nO), dtype='f')
|
||||
for i in range(len(states)):
|
||||
for j, tok_i in enumerate(adjusted_ids[i]):
|
||||
if tok_i >= 0:
|
||||
features[i] += cached[j, tok_i]
|
||||
|
||||
scores, bp_scores = upper_model.begin_update(features, drop=drop)
|
||||
scores = upper_model.ops.relu(scores)
|
||||
softmaxed = upper_model.ops.softmax(scores)
|
||||
# Renormalize for invalid actions
|
||||
softmaxed *= is_valid
|
||||
totals = softmaxed.sum(axis=1)
|
||||
for total in totals:
|
||||
assert total > 0, (totals, scores, softmaxed)
|
||||
assert total <= 1.1, totals
|
||||
softmaxed /= softmaxed.sum(axis=1).reshape((softmaxed.shape[0], 1))
|
||||
|
||||
def backward(golds, sgd=None):
|
||||
nonlocal costs_, is_valid_, moves
|
||||
cdef int i
|
||||
for i, (state, gold) in enumerate(zip(states, golds)):
|
||||
moves.set_costs(&is_valid_[i, 0], &costs_[i, 0],
|
||||
state, gold)
|
||||
d_scores = scores.copy()
|
||||
d_scores.fill(0)
|
||||
set_log_loss(upper_model.ops, d_scores,
|
||||
scores, is_valid, costs)
|
||||
upper_model.ops.backprop_relu(d_scores, scores, inplace=True)
|
||||
d_features = bp_scores(d_scores, sgd)
|
||||
d_tokens = bp_features((d_features, adjusted_ids), sgd)
|
||||
return (token_ids, d_tokens)
|
||||
|
||||
return softmaxed, backward
|
||||
|
||||
return layerize(forward)
|
||||
|
||||
|
||||
def set_log_loss(ops, gradients, scores, is_valid, costs):
|
||||
"""Do multi-label log loss"""
|
||||
n = gradients.shape[0]
|
||||
scores = scores * is_valid
|
||||
g_scores = scores * is_valid * (costs <= 0.)
|
||||
exps = ops.xp.exp(scores - scores.max(axis=1).reshape((n, 1)))
|
||||
exps *= is_valid
|
||||
g_exps = ops.xp.exp(g_scores - g_scores.max(axis=1).reshape((n, 1)))
|
||||
g_exps *= costs <= 0.
|
||||
g_exps *= is_valid
|
||||
gradients[:] = exps / exps.sum(axis=1).reshape((n, 1))
|
||||
gradients -= g_exps / g_exps.sum(axis=1).reshape((n, 1))
|
||||
|
||||
|
||||
def transition_batch(TransitionSystem moves, states, scores):
|
||||
cdef StateClass state
|
||||
cdef int guess
|
||||
for state, guess in zip(states, scores.argmax(axis=1)):
|
||||
action = moves.c[guess]
|
||||
action.do(state.c, action.label)
|
||||
|
||||
|
||||
def init_states(TransitionSystem moves, docs):
|
||||
cdef Doc doc
|
||||
cdef StateClass state
|
||||
offsets = []
|
||||
states = []
|
||||
offset = 0
|
||||
for i, doc in enumerate(docs):
|
||||
state = StateClass.init(doc.c, doc.length)
|
||||
moves.initialize_state(state.c)
|
||||
states.append(state)
|
||||
offsets.append(offset)
|
||||
offset += len(doc)
|
||||
return states, offsets
|
||||
|
||||
|
||||
cdef class Parser:
|
||||
|
@ -107,8 +210,9 @@ cdef class Parser:
|
|||
cfg['actions'] = TransitionSystem.get_actions(**cfg)
|
||||
self.moves = TransitionSystem(vocab.strings, cfg['actions'])
|
||||
if model is None:
|
||||
model = self.build_model(**cfg)
|
||||
self.model = model
|
||||
self.model, self.feature_maps = self.build_model(**cfg)
|
||||
else:
|
||||
self.model, self.feature_maps = model
|
||||
self.cfg = cfg
|
||||
|
||||
def __reduce__(self):
|
||||
|
@ -116,10 +220,10 @@ cdef class Parser:
|
|||
|
||||
def build_model(self, width=128, nr_vector=1000, nF=1, nB=1, nS=1, nL=1, nR=1, **_):
|
||||
nr_context_tokens = StateClass.nr_context_tokens(nF, nB, nS, nL, nR)
|
||||
state2vec = build_state2vec(nr_context_tokens, width, nr_vector)
|
||||
#state2vec = build_debug_state2vec(width, nr_vector)
|
||||
model = build_debug_model(state2vec, width*2, 2, self.moves.n_moves)
|
||||
return model
|
||||
|
||||
upper = chain(Maxout(width, width), Maxout(self.moves.n_moves, width))
|
||||
lower = PrecomputableMaxouts(width, nF=nr_context_tokens, nI=width*2)
|
||||
return upper, lower
|
||||
|
||||
def __call__(self, Doc tokens):
|
||||
"""
|
||||
|
@ -131,7 +235,6 @@ cdef class Parser:
|
|||
None
|
||||
"""
|
||||
self.parse_batch([tokens])
|
||||
self.moves.finalize_doc(tokens)
|
||||
|
||||
def pipe(self, stream, int batch_size=1000, int n_threads=2):
|
||||
"""
|
||||
|
@ -167,169 +270,53 @@ cdef class Parser:
|
|||
yield doc
|
||||
|
||||
def parse_batch(self, docs):
|
||||
states = self._init_states(docs)
|
||||
nr_class = self.moves.n_moves
|
||||
cdef Doc doc
|
||||
cdef StateClass state
|
||||
cdef int guess
|
||||
tokvecs = [d.tensor for d in docs]
|
||||
model = get_greedy_model_for_batch([d.tensor for d in docs],
|
||||
self.moves, self.model, self.feature_maps)
|
||||
states, offsets = init_states(self.moves, docs)
|
||||
all_states = list(states)
|
||||
todo = zip(states, tokvecs)
|
||||
todo = list(zip(states, offsets))
|
||||
while todo:
|
||||
todo = filter(lambda sp: not sp[0].py_is_final(), todo)
|
||||
if not todo:
|
||||
break
|
||||
states, tokvecs = zip(*todo)
|
||||
scores, _ = self._begin_update(states, tokvecs)
|
||||
self._transition_batch(states, docs, scores)
|
||||
states, offsets = zip(*todo)
|
||||
scores = model((states, offsets))
|
||||
transition_batch(self.moves, states, scores)
|
||||
todo = [st for st in todo if not st[0].py_is_final()]
|
||||
for state, doc in zip(all_states, docs):
|
||||
self.moves.finalize_state(state.c)
|
||||
for i in range(doc.length):
|
||||
doc.c[i] = state.c._sent[i]
|
||||
|
||||
def begin_training(self, docs, golds):
|
||||
for gold in golds:
|
||||
self.moves.preprocess_gold(gold)
|
||||
states = self._init_states(docs)
|
||||
tokvecs = [d.tensor for d in docs]
|
||||
d_tokens = [self.model.ops.allocate(d.tensor.shape) for d in docs]
|
||||
nr_class = self.moves.n_moves
|
||||
costs = self.model.ops.allocate((len(docs), nr_class), dtype='f')
|
||||
gradients = self.model.ops.allocate((len(docs), nr_class), dtype='f')
|
||||
is_valid = self.model.ops.allocate((len(docs), nr_class), dtype='i')
|
||||
attr_names = numpy.zeros((2,), dtype='i')
|
||||
attr_names[0] = TAG
|
||||
attr_names[1] = DEP
|
||||
|
||||
features = self._get_features(states, tokvecs, attr_names)
|
||||
self.model.begin_training(features)
|
||||
for doc in docs:
|
||||
self.moves.finalize_doc(doc)
|
||||
|
||||
def update(self, docs, golds, drop=0., sgd=None):
|
||||
if isinstance(docs, Doc) and isinstance(golds, GoldParse):
|
||||
return self.update([docs], [golds], drop=drop)
|
||||
for gold in golds:
|
||||
self.moves.preprocess_gold(gold)
|
||||
states = self._init_states(docs)
|
||||
tokvecs = [d.tensor for d in docs]
|
||||
|
||||
model = get_greedy_model_for_batch([d.tensor for d in docs],
|
||||
self.moves, self.model, self.feature_maps)
|
||||
states, offsets = init_states(self.moves, docs)
|
||||
|
||||
d_tokens = [self.model.ops.allocate(d.tensor.shape) for d in docs]
|
||||
nr_class = self.moves.n_moves
|
||||
output = list(d_tokens)
|
||||
todo = zip(states, tokvecs, golds, d_tokens)
|
||||
assert len(states) == len(todo)
|
||||
losses = []
|
||||
todo = zip(states, offsets, golds, d_tokens)
|
||||
while todo:
|
||||
# Get unfinished states (and their matching gold and token gradients)
|
||||
todo = filter(lambda sp: not sp[0].py_is_final(), todo)
|
||||
if not todo:
|
||||
break
|
||||
states, tokvecs, golds, d_tokens = zip(*todo)
|
||||
scores, finish_update = self._begin_update(states, tokvecs)
|
||||
token_ids, batch_token_grads = finish_update(golds, sgd=sgd, losses=losses,
|
||||
force_gold=False)
|
||||
batch_token_grads *= (token_ids >= 0).reshape((token_ids.shape[0], token_ids.shape[1], 1))
|
||||
token_ids *= token_ids >= 0
|
||||
if hasattr(self.model.ops.xp, 'scatter_add'):
|
||||
for i, tok_ids in enumerate(token_ids):
|
||||
self.model.ops.xp.scatter_add(d_tokens[i],
|
||||
tok_ids, batch_token_grads[i])
|
||||
else:
|
||||
for i, tok_ids in enumerate(token_ids):
|
||||
self.model.ops.xp.add.at(d_tokens[i],
|
||||
tok_ids, batch_token_grads[i])
|
||||
self._transition_batch(states, docs, scores)
|
||||
return output, sum(losses)
|
||||
|
||||
def _begin_update(self, states, tokvecs, drop=0.):
|
||||
nr_class = self.moves.n_moves
|
||||
attr_names = numpy.zeros((2,), dtype='i')
|
||||
attr_names[0] = TAG
|
||||
attr_names[1] = DEP
|
||||
|
||||
features = self._get_features(states, tokvecs, attr_names)
|
||||
scores, finish_update = self.model.begin_update(features, drop=drop)
|
||||
assert scores.shape[0] == len(states), (len(states), scores.shape)
|
||||
assert len(scores.shape) == 2
|
||||
is_valid = self.model.ops.allocate((len(states), nr_class), dtype='i')
|
||||
self._validate_batch(is_valid, states)
|
||||
softmaxed = self.model.ops.softmax(scores)
|
||||
softmaxed *= is_valid
|
||||
softmaxed /= softmaxed.sum(axis=1).reshape((softmaxed.shape[0], 1))
|
||||
def backward(golds, sgd=None, losses=[], force_gold=False):
|
||||
nonlocal softmaxed
|
||||
costs = self.model.ops.allocate((len(states), nr_class), dtype='f')
|
||||
d_scores = self.model.ops.allocate((len(states), nr_class), dtype='f')
|
||||
|
||||
self._cost_batch(costs, is_valid, states, golds)
|
||||
self._set_gradient(d_scores, scores, is_valid, costs)
|
||||
losses.append(self.model.ops.xp.abs(d_scores).sum())
|
||||
if force_gold:
|
||||
softmaxed *= costs <= 0
|
||||
return finish_update(d_scores, sgd=sgd)
|
||||
return softmaxed, backward
|
||||
|
||||
def _init_states(self, docs):
|
||||
states = []
|
||||
cdef Doc doc
|
||||
cdef StateClass state
|
||||
for i, doc in enumerate(docs):
|
||||
state = StateClass.init(doc.c, doc.length)
|
||||
self.moves.initialize_state(state.c)
|
||||
states.append(state)
|
||||
return states
|
||||
|
||||
def _get_features(self, states, all_tokvecs, attr_names,
|
||||
nF=1, nB=0, nS=2, nL=2, nR=2):
|
||||
n_tokens = states[0].nr_context_tokens(nF, nB, nS, nL, nR)
|
||||
vector_length = all_tokvecs[0].shape[1]
|
||||
cpu_tokens = numpy.zeros((len(states), n_tokens), dtype='int32')
|
||||
features = numpy.zeros((len(states), n_tokens, attr_names.shape[0]), dtype='uint64')
|
||||
tokvecs = self.model.ops.allocate((len(states), n_tokens, vector_length), dtype='f')
|
||||
for i, state in enumerate(states):
|
||||
state.set_context_tokens(cpu_tokens[i], nF, nB, nS, nL, nR)
|
||||
for i in range(len(states)):
|
||||
for j, tok_i in enumerate(cpu_tokens[i]):
|
||||
if tok_i >= 0:
|
||||
tokvecs[i, j] = all_tokvecs[i][tok_i]
|
||||
return (cpu_tokens, self.model.ops.asarray(features), tokvecs)
|
||||
|
||||
def _validate_batch(self, int[:, ::1] is_valid, states):
|
||||
cdef StateClass state
|
||||
cdef int i
|
||||
for i, state in enumerate(states):
|
||||
self.moves.set_valid(&is_valid[i, 0], state.c)
|
||||
|
||||
def _cost_batch(self, float[:, ::1] costs, int[:, ::1] is_valid,
|
||||
states, golds):
|
||||
cdef int i
|
||||
cdef StateClass state
|
||||
cdef GoldParse gold
|
||||
for i, (state, gold) in enumerate(zip(states, golds)):
|
||||
self.moves.set_costs(&is_valid[i, 0], &costs[i, 0], state, gold)
|
||||
|
||||
def _transition_batch(self, states, docs, scores):
|
||||
cdef StateClass state
|
||||
cdef int guess
|
||||
for state, doc, guess in zip(states, docs, scores.argmax(axis=1)):
|
||||
action = self.moves.c[guess]
|
||||
orths = [t.lex.orth for t in state.c._sent[:state.c.length]]
|
||||
words = [doc.vocab.strings[w] for w in orths]
|
||||
if not action.is_valid(state.c, action.label):
|
||||
ValueError("Invalid action", scores)
|
||||
action.do(state.c, action.label)
|
||||
|
||||
def _set_gradient(self, gradients, scores, is_valid, costs):
|
||||
"""Do multi-label log loss"""
|
||||
cdef double Z, gZ, max_, g_max
|
||||
n = gradients.shape[0]
|
||||
scores = scores * is_valid
|
||||
g_scores = scores * is_valid * (costs <= 0.)
|
||||
exps = self.model.ops.xp.exp(scores - scores.max(axis=1).reshape((n, 1)))
|
||||
exps *= is_valid
|
||||
g_exps = self.model.ops.xp.exp(g_scores - g_scores.max(axis=1).reshape((n, 1)))
|
||||
g_exps *= costs <= 0.
|
||||
g_exps *= is_valid
|
||||
gradients[:] = exps / exps.sum(axis=1).reshape((n, 1))
|
||||
gradients -= g_exps / g_exps.sum(axis=1).reshape((n, 1))
|
||||
states, offsets, golds, d_tokens = zip(*todo)
|
||||
scores, finish_update = model.begin_update((states, offsets))
|
||||
(token_ids, d_state_features) = finish_update(golds, sgd=sgd)
|
||||
for i, token_ids in enumerate(token_ids):
|
||||
d_tokens[i][token_ids] += d_state_features[i]
|
||||
transition_batch(self.moves, states, scores)
|
||||
return output
|
||||
|
||||
def step_through(self, Doc doc, GoldParse gold=None):
|
||||
"""
|
||||
|
@ -366,6 +353,50 @@ cdef class Parser:
|
|||
self.cfg.setdefault('extra_labels', []).append(label)
|
||||
|
||||
|
||||
def _begin_update(self, model, states, tokvecs, drop=0.):
|
||||
nr_class = self.moves.n_moves
|
||||
attr_names = self.model.ops.allocate((2,), dtype='i')
|
||||
attr_names[0] = TAG
|
||||
attr_names[1] = DEP
|
||||
|
||||
features = self._get_features(states, tokvecs, attr_names)
|
||||
scores, finish_update = self.model.begin_update(features, drop=drop)
|
||||
assert scores.shape[0] == len(states), (len(states), scores.shape)
|
||||
assert len(scores.shape) == 2
|
||||
is_valid = self.model.ops.allocate((len(states), nr_class), dtype='i')
|
||||
self._validate_batch(is_valid, states)
|
||||
softmaxed = self.model.ops.softmax(scores)
|
||||
softmaxed *= is_valid
|
||||
softmaxed /= softmaxed.sum(axis=1).reshape((softmaxed.shape[0], 1))
|
||||
def backward(golds, sgd=None, losses=[], force_gold=False):
|
||||
nonlocal softmaxed
|
||||
costs = self.model.ops.allocate((len(states), nr_class), dtype='f')
|
||||
d_scores = self.model.ops.allocate((len(states), nr_class), dtype='f')
|
||||
|
||||
self._cost_batch(costs, is_valid, states, golds)
|
||||
self._set_gradient(d_scores, scores, is_valid, costs)
|
||||
losses.append(numpy.abs(d_scores).sum())
|
||||
if force_gold:
|
||||
softmaxed *= costs <= 0
|
||||
return finish_update(d_scores, sgd=sgd)
|
||||
return softmaxed, backward
|
||||
|
||||
|
||||
def _get_features(self, states, all_tokvecs, attr_names,
|
||||
nF=1, nB=0, nS=2, nL=2, nR=2):
|
||||
n_tokens = states[0].nr_context_tokens(nF, nB, nS, nL, nR)
|
||||
vector_length = all_tokvecs[0].shape[1]
|
||||
tokens = self.model.ops.allocate((len(states), n_tokens), dtype='int32')
|
||||
features = self.model.ops.allocate((len(states), n_tokens, attr_names.shape[0]), dtype='uint64')
|
||||
tokvecs = self.model.ops.allocate((len(states), n_tokens, vector_length), dtype='f')
|
||||
for i, state in enumerate(states):
|
||||
state.set_context_tokens(tokens[i], nF, nB, nS, nL, nR)
|
||||
state.set_attributes(features[i], tokens[i], attr_names)
|
||||
state.set_token_vectors(tokvecs[i], all_tokvecs[i], tokens[i])
|
||||
return (tokens, features, tokvecs)
|
||||
|
||||
|
||||
|
||||
cdef int dropout(FeatureC* feats, int nr_feat, float prob) except -1:
|
||||
if prob <= 0 or prob >= 1.:
|
||||
return 0
|
||||
|
|
Loading…
Reference in New Issue
Block a user