mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-10 19:57:17 +03:00
* Tmp commit
This commit is contained in:
parent
20f1d868a3
commit
bfeb29ebd1
|
@ -26,8 +26,21 @@ from spacy.syntax.conll import GoldParse
|
|||
from spacy.scorer import Scorer
|
||||
|
||||
|
||||
def add_noise(c, noise_level):
|
||||
if random.random() >= noise_level:
|
||||
return c
|
||||
elif c == ' ':
|
||||
return '\n'
|
||||
elif c == '\n':
|
||||
return ' '
|
||||
elif c in ['.', "'", "!", "?"]:
|
||||
return ''
|
||||
else:
|
||||
return c.lower()
|
||||
|
||||
|
||||
def train(Language, gold_tuples, model_dir, n_iter=15, feat_set=u'basic', seed=0,
|
||||
gold_preproc=False, n_sents=0):
|
||||
gold_preproc=False, n_sents=0, corruption_level=0):
|
||||
dep_model_dir = path.join(model_dir, 'deps')
|
||||
pos_model_dir = path.join(model_dir, 'pos')
|
||||
ner_model_dir = path.join(model_dir, 'ner')
|
||||
|
@ -55,15 +68,13 @@ def train(Language, gold_tuples, model_dir, n_iter=15, feat_set=u'basic', seed=0
|
|||
print "Itn.\tUAS\tNER F.\tTag %\tToken %"
|
||||
for itn in range(n_iter):
|
||||
scorer = Scorer()
|
||||
for raw_text, segmented_text, annot_tuples, ctnt in gold_tuples:
|
||||
for raw_text, annot_tuples, ctnt in gold_tuples:
|
||||
raw_text = ''.join(add_noise(c, corruption_level) for c in raw_text)
|
||||
tokens = nlp(raw_text, merge_mwes=False)
|
||||
gold = GoldParse(tokens, annot_tuples)
|
||||
scorer.score(tokens, gold, verbose=False)
|
||||
|
||||
if gold_preproc:
|
||||
sents = [nlp.tokenizer.tokens_from_list(s) for s in segmented_text]
|
||||
else:
|
||||
sents = [nlp.tokenizer(raw_text)]
|
||||
assert not gold_preproc
|
||||
sents = [nlp.tokenizer(raw_text)]
|
||||
for tokens in sents:
|
||||
gold = GoldParse(tokens, annot_tuples)
|
||||
nlp.tagger(tokens)
|
||||
|
@ -90,7 +101,7 @@ def evaluate(Language, gold_tuples, model_dir, gold_preproc=False, verbose=True)
|
|||
assert not gold_preproc
|
||||
nlp = Language(data_dir=model_dir)
|
||||
scorer = Scorer()
|
||||
for raw_text, segmented_text, annot_tuples, brackets in gold_tuples:
|
||||
for raw_text, annot_tuples, brackets in gold_tuples:
|
||||
tokens = nlp(raw_text, merge_mwes=False)
|
||||
gold = GoldParse(tokens, annot_tuples)
|
||||
scorer.score(tokens, gold, verbose=verbose)
|
||||
|
@ -111,7 +122,7 @@ def write_parses(Language, dev_loc, model_dir, out_loc):
|
|||
return scorer
|
||||
|
||||
|
||||
def get_sents(json_dir, section):
|
||||
def get_sents(json_loc):
|
||||
if path.exists(path.join(json_dir, section + '.json')):
|
||||
for sent in read_json_file(path.join(json_dir, section + '.json')):
|
||||
yield sent
|
||||
|
@ -131,21 +142,24 @@ def get_sents(json_dir, section):
|
|||
|
||||
|
||||
@plac.annotations(
|
||||
json_dir=("Annotated JSON files directory",),
|
||||
train_loc=("Location of training json file"),
|
||||
dev_loc=("Location of development json file"),
|
||||
corruption_level=("Amount of noise to add to training data", "option", "c", float),
|
||||
model_dir=("Location of output model directory",),
|
||||
out_loc=("Out location", "option", "o", str),
|
||||
n_sents=("Number of training sentences", "option", "n", int),
|
||||
verbose=("Verbose error reporting", "flag", "v", bool),
|
||||
debug=("Debug mode", "flag", "d", bool)
|
||||
)
|
||||
def main(json_dir, model_dir, n_sents=0, out_loc="", verbose=False,
|
||||
debug=False):
|
||||
train(English, list(get_sents(json_dir, 'train')), model_dir,
|
||||
def main(train_loc, dev_loc, model_dir, n_sents=0, out_loc="", verbose=False,
|
||||
debug=False, corruption_level=0.0):
|
||||
train(English, read_json_file(train_loc), model_dir,
|
||||
feat_set='basic' if not debug else 'debug',
|
||||
gold_preproc=False, n_sents=n_sents)
|
||||
gold_preproc=False, n_sents=n_sents,
|
||||
corruption_level=corruption_level)
|
||||
if out_loc:
|
||||
write_parses(English, dev_loc, model_dir, out_loc)
|
||||
scorer = evaluate(English, list(get_sents(json_dir, 'dev')),
|
||||
scorer = evaluate(English, read_json_file(dev_loc),
|
||||
model_dir, gold_preproc=False, verbose=verbose)
|
||||
print 'TOK', 100-scorer.token_acc
|
||||
print 'POS', scorer.tags_acc
|
||||
|
|
|
@ -34,44 +34,30 @@ def _iter_raw_files(raw_loc):
|
|||
yield f
|
||||
|
||||
|
||||
def _get_word_indices(raw_sent, word_idx, offset):
|
||||
indices = {}
|
||||
for piece in raw_sent.split('<SEP>'):
|
||||
for match in re.finditer(r'\S+', piece):
|
||||
indices[word_idx] = offset + match.start()
|
||||
word_idx += 1
|
||||
offset += len(piece)
|
||||
return indices, word_idx, offset + 1
|
||||
|
||||
|
||||
def format_doc(section, filename, raw_paras, ptb_loc, dep_loc):
|
||||
ptb_sents = read_ptb.split(open(ptb_loc).read())
|
||||
dep_sents = read_conll.split(open(dep_loc).read())
|
||||
|
||||
assert len(ptb_sents) == len(dep_sents)
|
||||
|
||||
word_idx = 0
|
||||
i = 0
|
||||
doc = {'id': filename, 'paragraphs': []}
|
||||
for raw_sents in raw_paras:
|
||||
para = {'raw': ' '.join(sent.replace('<SEP>', '') for sent in raw_sents),
|
||||
'segmented': '<SENT>'.join(raw_sents),
|
||||
'sents': [],
|
||||
'tokens': [],
|
||||
'brackets': []}
|
||||
para = {
|
||||
'raw': ' '.join(sent.replace('<SEP>', '') for sent in raw_sents),
|
||||
'sents': [],
|
||||
'tokens': [],
|
||||
'brackets': []}
|
||||
offset = 0
|
||||
for raw_sent in raw_sents:
|
||||
words = raw_sent.replace('<SEP>', ' ').split()
|
||||
para['sents'].append(offset)
|
||||
_, brackets = read_ptb.parse(ptb_sents[i], strip_bad_periods=True)
|
||||
_, annot = read_conll.parse(dep_sents[i], strip_bad_periods=True)
|
||||
indices, word_idx, offset = _get_word_indices(raw_sent, 0, offset)
|
||||
for j, token in enumerate(annot):
|
||||
for token_id, token in enumerate(annot):
|
||||
try:
|
||||
head = indices[token['head']] if token['head'] != -1 else -1
|
||||
head = (token['head'] + offset) if token['head'] != -1 else -1
|
||||
para['tokens'].append({
|
||||
'start': indices[token['id']],
|
||||
'orth': words[j],
|
||||
'id': offset + token_id,
|
||||
'orth': token['word'],
|
||||
'tag': token['tag'],
|
||||
'head': head,
|
||||
'dep': token['dep']})
|
||||
|
@ -80,9 +66,11 @@ def format_doc(section, filename, raw_paras, ptb_loc, dep_loc):
|
|||
for label, start, end in brackets:
|
||||
if start != end:
|
||||
para['brackets'].append({'label': label,
|
||||
'start': indices[start],
|
||||
'end': indices[end-1]})
|
||||
'start': start + offset,
|
||||
'end': (end-1) + offset})
|
||||
i += 1
|
||||
offset += len(annot)
|
||||
para['sents'].append(offset)
|
||||
doc['paragraphs'].append(para)
|
||||
return doc
|
||||
|
||||
|
|
2
setup.py
2
setup.py
|
@ -147,7 +147,7 @@ def main(modules, is_pypy):
|
|||
|
||||
MOD_NAMES = ['spacy.parts_of_speech', 'spacy.strings',
|
||||
'spacy.lexeme', 'spacy.vocab', 'spacy.tokens', 'spacy.spans',
|
||||
'spacy.morphology',
|
||||
'spacy.morphology', 'spacy.munge.alignment',
|
||||
'spacy._ml', 'spacy.tokenizer', 'spacy.en.attrs',
|
||||
'spacy.en.pos', 'spacy.syntax.parser', 'spacy.syntax._state',
|
||||
'spacy.syntax.transition_system',
|
||||
|
|
Loading…
Reference in New Issue
Block a user