Add support for floret vectors (#8909)

* Add support for fasttext-bloom hash-only vectors

Overview:

* Extend `Vectors` to have two modes: `default` and `ngram`
  * `default` is the default mode and equivalent to the current
    `Vectors`
  * `ngram` supports the hash-only ngram tables from `fasttext-bloom`
* Extend `spacy.StaticVectors.v2` to handle both modes with no changes
  for `default` vectors
* Extend `spacy init vectors` to support ngram tables

The `ngram` mode **only** supports vector tables produced by this
fork of fastText, which adds an option to represent all vectors using
only the ngram buckets table and which uses the exact same ngram
generation algorithm and hash function (`MurmurHash3_x64_128`).
`fasttext-bloom` produces an additional `.hashvec` table, which can be
loaded by `spacy init vectors --fasttext-bloom-vectors`.

https://github.com/adrianeboyd/fastText/tree/feature/bloom

Implementation details:

* `Vectors` now includes the `StringStore` as `Vectors.strings` so that
  the API can stay consistent for both `default` (which can look up from
  `str` or `int`) and `ngram` (which requires `str` to calculate the
  ngrams).

* In ngram mode `Vectors` uses a default `Vectors` object as a cache
  since the ngram vectors lookups are relatively expensive.

  * The default cache size is the same size as the provided ngram vector
    table.

  * Once the cache is full, no more entries are added. The user is
    responsible for managing the cache in cases where the initial
    documents are not representative of the texts.

  * The cache can be resized by setting `Vectors.ngram_cache_size` or
    cleared with `vectors._ngram_cache.clear()`.

* The API ends up a bit split between methods for `default` and for
  `ngram`, so functions that only make sense for `default` or `ngram`
  include warnings with custom messages suggesting alternatives where
  possible.

* `Vocab.vectors` becomes a property so that the string stores can be
  synced when assigning vectors to a vocab.

* `Vectors` serializes its own config settings as `vectors.cfg`.

* The `Vectors` serialization methods have added support for `exclude`
  so that the `Vocab` can exclude the `Vectors` strings while serializing.

Removed:

* The `minn` and `maxn` options and related code from
  `Vocab.get_vector`, which does not work in a meaningful way for default
  vector tables.

* The unused `GlobalRegistry` in `Vectors`.

* Refactor to use reduce_mean

Refactor to use reduce_mean and remove the ngram vectors cache.

* Rename to floret

* Rename to floret in error messages

* Use --vectors-mode in CLI, vector init

* Fix vectors mode in init

* Remove unused var

* Minor API and docstrings adjustments

* Rename `--vectors-mode` to `--mode` in `init vectors` CLI
* Rename `Vectors.get_floret_vectors` to `Vectors.get_batch` and support
  both modes.
* Minor updates to Vectors docstrings.

* Update API docs for Vectors and init vectors CLI

* Update types for StaticVectors
This commit is contained in:
Adriane Boyd 2021-10-27 14:08:31 +02:00 committed by GitHub
parent 0c97ed2746
commit c053f158c5
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
14 changed files with 644 additions and 202 deletions

View File

@ -20,6 +20,7 @@ def init_vectors_cli(
output_dir: Path = Arg(..., help="Pipeline output directory"), output_dir: Path = Arg(..., help="Pipeline output directory"),
prune: int = Opt(-1, "--prune", "-p", help="Optional number of vectors to prune to"), prune: int = Opt(-1, "--prune", "-p", help="Optional number of vectors to prune to"),
truncate: int = Opt(0, "--truncate", "-t", help="Optional number of vectors to truncate to when reading in vectors file"), truncate: int = Opt(0, "--truncate", "-t", help="Optional number of vectors to truncate to when reading in vectors file"),
mode: str = Opt("default", "--mode", "-m", help="Vectors mode: default or floret"),
name: Optional[str] = Opt(None, "--name", "-n", help="Optional name for the word vectors, e.g. en_core_web_lg.vectors"), name: Optional[str] = Opt(None, "--name", "-n", help="Optional name for the word vectors, e.g. en_core_web_lg.vectors"),
verbose: bool = Opt(False, "--verbose", "-V", "-VV", help="Display more information for debugging purposes"), verbose: bool = Opt(False, "--verbose", "-V", "-VV", help="Display more information for debugging purposes"),
jsonl_loc: Optional[Path] = Opt(None, "--lexemes-jsonl", "-j", help="Location of JSONL-formatted attributes file", hidden=True), jsonl_loc: Optional[Path] = Opt(None, "--lexemes-jsonl", "-j", help="Location of JSONL-formatted attributes file", hidden=True),
@ -34,7 +35,14 @@ def init_vectors_cli(
nlp = util.get_lang_class(lang)() nlp = util.get_lang_class(lang)()
if jsonl_loc is not None: if jsonl_loc is not None:
update_lexemes(nlp, jsonl_loc) update_lexemes(nlp, jsonl_loc)
convert_vectors(nlp, vectors_loc, truncate=truncate, prune=prune, name=name) convert_vectors(
nlp,
vectors_loc,
truncate=truncate,
prune=prune,
name=name,
mode=mode,
)
msg.good(f"Successfully converted {len(nlp.vocab.vectors)} vectors") msg.good(f"Successfully converted {len(nlp.vocab.vectors)} vectors")
nlp.to_disk(output_dir) nlp.to_disk(output_dir)
msg.good( msg.good(

View File

@ -27,6 +27,9 @@ def setup_default_warnings():
# warn once about lemmatizer without required POS # warn once about lemmatizer without required POS
filter_warning("once", error_msg=Warnings.W108) filter_warning("once", error_msg=Warnings.W108)
# floret vector table cannot be modified
filter_warning("once", error_msg="[W114]")
def filter_warning(action: str, error_msg: str): def filter_warning(action: str, error_msg: str):
"""Customize how spaCy should handle a certain warning. """Customize how spaCy should handle a certain warning.
@ -192,6 +195,8 @@ class Warnings:
"vectors are not identical to current pipeline vectors.") "vectors are not identical to current pipeline vectors.")
W114 = ("Using multiprocessing with GPU models is not recommended and may " W114 = ("Using multiprocessing with GPU models is not recommended and may "
"lead to errors.") "lead to errors.")
W115 = ("Skipping {method}: the floret vector table cannot be modified. "
"Vectors are calculated from character ngrams.")
@add_codes @add_codes
@ -518,9 +523,19 @@ class Errors:
E199 = ("Unable to merge 0-length span at `doc[{start}:{end}]`.") E199 = ("Unable to merge 0-length span at `doc[{start}:{end}]`.")
E200 = ("Can't yet set {attr} from Span. Vote for this feature on the " E200 = ("Can't yet set {attr} from Span. Vote for this feature on the "
"issue tracker: http://github.com/explosion/spaCy/issues") "issue tracker: http://github.com/explosion/spaCy/issues")
E202 = ("Unsupported alignment mode '{mode}'. Supported modes: {modes}.") E202 = ("Unsupported {name} mode '{mode}'. Supported modes: {modes}.")
# New errors added in v3.x # New errors added in v3.x
E858 = ("The {mode} vector table does not support this operation. "
"{alternative}")
E859 = ("The floret vector table cannot be modified.")
E860 = ("Can't truncate fasttext-bloom vectors.")
E861 = ("No 'keys' should be provided when initializing floret vectors "
"with 'minn' and 'maxn'.")
E862 = ("'hash_count' must be between 1-4 for floret vectors.")
E863 = ("'maxn' must be greater than or equal to 'minn'.")
E864 = ("The complete vector table 'data' is required to initialize floret "
"vectors.")
E865 = ("A SpanGroup is not functional after the corresponding Doc has " E865 = ("A SpanGroup is not functional after the corresponding Doc has "
"been garbage collected. To keep using the spans, make sure that " "been garbage collected. To keep using the spans, make sure that "
"the corresponding Doc object is still available in the scope of " "the corresponding Doc object is still available in the scope of "

View File

@ -228,6 +228,7 @@ class Language:
"vectors": len(self.vocab.vectors), "vectors": len(self.vocab.vectors),
"keys": self.vocab.vectors.n_keys, "keys": self.vocab.vectors.n_keys,
"name": self.vocab.vectors.name, "name": self.vocab.vectors.name,
"mode": self.vocab.vectors.mode,
} }
self._meta["labels"] = dict(self.pipe_labels) self._meta["labels"] = dict(self.pipe_labels)
# TODO: Adding this back to prevent breaking people's code etc., but # TODO: Adding this back to prevent breaking people's code etc., but

View File

@ -1,11 +1,13 @@
from typing import List, Tuple, Callable, Optional, cast from typing import List, Tuple, Callable, Optional, Sequence, cast
from thinc.initializers import glorot_uniform_init from thinc.initializers import glorot_uniform_init
from thinc.util import partial from thinc.util import partial
from thinc.types import Ragged, Floats2d, Floats1d from thinc.types import Ragged, Floats2d, Floats1d, Ints1d
from thinc.api import Model, Ops, registry from thinc.api import Model, Ops, registry
from ..tokens import Doc from ..tokens import Doc
from ..errors import Errors from ..errors import Errors
from ..vectors import Mode
from ..vocab import Vocab
@registry.layers("spacy.StaticVectors.v2") @registry.layers("spacy.StaticVectors.v2")
@ -34,20 +36,32 @@ def StaticVectors(
def forward( def forward(
model: Model[List[Doc], Ragged], docs: List[Doc], is_train: bool model: Model[List[Doc], Ragged], docs: List[Doc], is_train: bool
) -> Tuple[Ragged, Callable]: ) -> Tuple[Ragged, Callable]:
if not sum(len(doc) for doc in docs): token_count = sum(len(doc) for doc in docs)
if not token_count:
return _handle_empty(model.ops, model.get_dim("nO")) return _handle_empty(model.ops, model.get_dim("nO"))
key_attr = model.attrs["key_attr"] key_attr: int = model.attrs["key_attr"]
W = cast(Floats2d, model.ops.as_contig(model.get_param("W"))) keys: Ints1d = model.ops.flatten(
V = cast(Floats2d, model.ops.asarray(docs[0].vocab.vectors.data)) cast(Sequence, [doc.to_array(key_attr) for doc in docs])
rows = model.ops.flatten(
[doc.vocab.vectors.find(keys=doc.to_array(key_attr)) for doc in docs]
) )
vocab: Vocab = docs[0].vocab
W = cast(Floats2d, model.ops.as_contig(model.get_param("W")))
if vocab.vectors.mode == Mode.default:
V = cast(Floats2d, model.ops.asarray(vocab.vectors.data))
rows = vocab.vectors.find(keys=keys)
V = model.ops.as_contig(V[rows])
elif vocab.vectors.mode == Mode.floret:
V = cast(Floats2d, vocab.vectors.get_batch(keys))
V = model.ops.as_contig(V)
else:
raise RuntimeError(Errors.E896)
try: try:
vectors_data = model.ops.gemm(model.ops.as_contig(V[rows]), W, trans2=True) vectors_data = model.ops.gemm(V, W, trans2=True)
except ValueError: except ValueError:
raise RuntimeError(Errors.E896) raise RuntimeError(Errors.E896)
# Convert negative indices to 0-vectors (TODO: more options for UNK tokens) if vocab.vectors.mode == Mode.default:
vectors_data[rows < 0] = 0 # Convert negative indices to 0-vectors
# TODO: more options for UNK tokens
vectors_data[rows < 0] = 0
output = Ragged( output = Ragged(
vectors_data, model.ops.asarray([len(doc) for doc in docs], dtype="i") # type: ignore vectors_data, model.ops.asarray([len(doc) for doc in docs], dtype="i") # type: ignore
) )

View File

@ -1,7 +1,9 @@
import pytest import pytest
import pickle import pickle
from thinc.api import get_current_ops
from spacy.vocab import Vocab from spacy.vocab import Vocab
from spacy.strings import StringStore from spacy.strings import StringStore
from spacy.vectors import Vectors
from ..util import make_tempdir from ..util import make_tempdir
@ -129,7 +131,11 @@ def test_serialize_stringstore_roundtrip_disk(strings1, strings2):
@pytest.mark.parametrize("strings,lex_attr", test_strings_attrs) @pytest.mark.parametrize("strings,lex_attr", test_strings_attrs)
def test_pickle_vocab(strings, lex_attr): def test_pickle_vocab(strings, lex_attr):
vocab = Vocab(strings=strings) vocab = Vocab(strings=strings)
ops = get_current_ops()
vectors = Vectors(data=ops.xp.zeros((10, 10)), mode="floret", hash_count=1)
vocab.vectors = vectors
vocab[strings[0]].norm_ = lex_attr vocab[strings[0]].norm_ = lex_attr
vocab_pickled = pickle.dumps(vocab) vocab_pickled = pickle.dumps(vocab)
vocab_unpickled = pickle.loads(vocab_pickled) vocab_unpickled = pickle.loads(vocab_pickled)
assert vocab.to_bytes() == vocab_unpickled.to_bytes() assert vocab.to_bytes() == vocab_unpickled.to_bytes()
assert vocab_unpickled.vectors.mode == "floret"

View File

@ -1,12 +1,14 @@
import pytest import pytest
import numpy import numpy
from numpy.testing import assert_allclose, assert_equal from numpy.testing import assert_allclose, assert_equal, assert_almost_equal
from thinc.api import get_current_ops from thinc.api import get_current_ops
from spacy.lang.en import English
from spacy.vocab import Vocab from spacy.vocab import Vocab
from spacy.vectors import Vectors from spacy.vectors import Vectors
from spacy.tokenizer import Tokenizer from spacy.tokenizer import Tokenizer
from spacy.strings import hash_string # type: ignore from spacy.strings import hash_string # type: ignore
from spacy.tokens import Doc from spacy.tokens import Doc
from spacy.training.initialize import convert_vectors
from ..util import add_vecs_to_vocab, get_cosine, make_tempdir from ..util import add_vecs_to_vocab, get_cosine, make_tempdir
@ -29,22 +31,6 @@ def vectors():
] ]
@pytest.fixture
def ngrams_vectors():
return [
("apple", OPS.asarray([1, 2, 3])),
("app", OPS.asarray([-0.1, -0.2, -0.3])),
("ppl", OPS.asarray([-0.2, -0.3, -0.4])),
("pl", OPS.asarray([0.7, 0.8, 0.9])),
]
@pytest.fixture()
def ngrams_vocab(en_vocab, ngrams_vectors):
add_vecs_to_vocab(en_vocab, ngrams_vectors)
return en_vocab
@pytest.fixture @pytest.fixture
def data(): def data():
return numpy.asarray([[0.0, 1.0, 2.0], [3.0, -2.0, 4.0]], dtype="f") return numpy.asarray([[0.0, 1.0, 2.0], [3.0, -2.0, 4.0]], dtype="f")
@ -125,6 +111,7 @@ def test_init_vectors_with_data(strings, data):
def test_init_vectors_with_shape(strings): def test_init_vectors_with_shape(strings):
v = Vectors(shape=(len(strings), 3)) v = Vectors(shape=(len(strings), 3))
assert v.shape == (len(strings), 3) assert v.shape == (len(strings), 3)
assert v.is_full is False
def test_get_vector(strings, data): def test_get_vector(strings, data):
@ -180,30 +167,6 @@ def test_vectors_token_vector(tokenizer_v, vectors, text):
assert all([a == b for a, b in zip(vectors[1][1], doc[2].vector)]) assert all([a == b for a, b in zip(vectors[1][1], doc[2].vector)])
@pytest.mark.parametrize("text", ["apple"])
def test_vectors__ngrams_word(ngrams_vocab, ngrams_vectors, text):
assert list(ngrams_vocab.get_vector(text)) == list(ngrams_vectors[0][1])
@pytest.mark.parametrize("text", ["applpie"])
def test_vectors__ngrams_subword(ngrams_vocab, ngrams_vectors, text):
truth = list(ngrams_vocab.get_vector(text, 1, 6))
test = list(
[
(
ngrams_vectors[1][1][i]
+ ngrams_vectors[2][1][i]
+ ngrams_vectors[3][1][i]
)
/ 3
for i in range(len(ngrams_vectors[1][1]))
]
)
eps = [abs(truth[i] - test[i]) for i in range(len(truth))]
for i in eps:
assert i < 1e-6
@pytest.mark.parametrize("text", ["apple", "orange"]) @pytest.mark.parametrize("text", ["apple", "orange"])
def test_vectors_lexeme_vector(vocab, text): def test_vectors_lexeme_vector(vocab, text):
lex = vocab[text] lex = vocab[text]
@ -379,3 +342,178 @@ def test_vector_is_oov():
assert vocab["cat"].is_oov is False assert vocab["cat"].is_oov is False
assert vocab["dog"].is_oov is False assert vocab["dog"].is_oov is False
assert vocab["hamster"].is_oov is True assert vocab["hamster"].is_oov is True
def test_init_vectors_unset():
v = Vectors(shape=(10, 10))
assert v.is_full is False
assert v.data.shape == (10, 10)
with pytest.raises(ValueError):
v = Vectors(shape=(10, 10), mode="floret")
v = Vectors(data=OPS.xp.zeros((10, 10)), mode="floret", hash_count=1)
assert v.is_full is True
def test_vectors_clear():
data = OPS.asarray([[4, 2, 2, 2], [4, 2, 2, 2], [1, 1, 1, 1]], dtype="f")
v = Vectors(data=data, keys=["A", "B", "C"])
assert v.is_full is True
assert hash_string("A") in v
v.clear()
# no keys
assert v.key2row == {}
assert list(v) == []
assert v.is_full is False
assert "A" not in v
with pytest.raises(KeyError):
v["A"]
def test_vectors_get_batch():
data = OPS.asarray([[4, 2, 2, 2], [4, 2, 2, 2], [1, 1, 1, 1]], dtype="f")
v = Vectors(data=data, keys=["A", "B", "C"])
# check with mixed int/str keys
words = ["C", "B", "A", v.strings["B"]]
rows = v.find(keys=words)
vecs = OPS.as_contig(v.data[rows])
assert_equal(OPS.to_numpy(vecs), OPS.to_numpy(v.get_batch(words)))
@pytest.fixture()
def floret_vectors_hashvec_str():
"""The full hashvec table from floret with the settings:
bucket 10, dim 10, minn 2, maxn 3, hash count 2, hash seed 2166136261,
bow <, eow >"""
return """10 10 2 3 2 2166136261 < >
0 -2.2611 3.9302 2.6676 -11.233 0.093715 -10.52 -9.6463 -0.11853 2.101 -0.10145
1 -3.12 -1.7981 10.7 -6.171 4.4527 10.967 9.073 6.2056 -6.1199 -2.0402
2 9.5689 5.6721 -8.4832 -1.2249 2.1871 -3.0264 -2.391 -5.3308 -3.2847 -4.0382
3 3.6268 4.2759 -1.7007 1.5002 5.5266 1.8716 -12.063 0.26314 2.7645 2.4929
4 -11.683 -7.7068 2.1102 2.214 7.2202 0.69799 3.2173 -5.382 -2.0838 5.0314
5 -4.3024 8.0241 2.0714 -1.0174 -0.28369 1.7622 7.8797 -1.7795 6.7541 5.6703
6 8.3574 -5.225 8.6529 8.5605 -8.9465 3.767 -5.4636 -1.4635 -0.98947 -0.58025
7 -10.01 3.3894 -4.4487 1.1669 -11.904 6.5158 4.3681 0.79913 -6.9131 -8.687
8 -5.4576 7.1019 -8.8259 1.7189 4.955 -8.9157 -3.8905 -0.60086 -2.1233 5.892
9 8.0678 -4.4142 3.6236 4.5889 -2.7611 2.4455 0.67096 -4.2822 2.0875 4.6274
"""
@pytest.fixture()
def floret_vectors_vec_str():
"""The top 10 rows from floret with the settings above, to verify
that the spacy floret vectors are equivalent to the fasttext static
vectors."""
return """10 10
, -5.7814 2.6918 0.57029 -3.6985 -2.7079 1.4406 1.0084 1.7463 -3.8625 -3.0565
. 3.8016 -1.759 0.59118 3.3044 -0.72975 0.45221 -2.1412 -3.8933 -2.1238 -0.47409
der 0.08224 2.6601 -1.173 1.1549 -0.42821 -0.097268 -2.5589 -1.609 -0.16968 0.84687
die -2.8781 0.082576 1.9286 -0.33279 0.79488 3.36 3.5609 -0.64328 -2.4152 0.17266
und 2.1558 1.8606 -1.382 0.45424 -0.65889 1.2706 0.5929 -2.0592 -2.6949 -1.6015
" -1.1242 1.4588 -1.6263 1.0382 -2.7609 -0.99794 -0.83478 -1.5711 -1.2137 1.0239
in -0.87635 2.0958 4.0018 -2.2473 -1.2429 2.3474 1.8846 0.46521 -0.506 -0.26653
von -0.10589 1.196 1.1143 -0.40907 -1.0848 -0.054756 -2.5016 -1.0381 -0.41598 0.36982
( 0.59263 2.1856 0.67346 1.0769 1.0701 1.2151 1.718 -3.0441 2.7291 3.719
) 0.13812 3.3267 1.657 0.34729 -3.5459 0.72372 0.63034 -1.6145 1.2733 0.37798
"""
def test_floret_vectors(floret_vectors_vec_str, floret_vectors_hashvec_str):
nlp = English()
nlp_plain = English()
# load both vec and hashvec tables
with make_tempdir() as tmpdir:
p = tmpdir / "test.hashvec"
with open(p, "w") as fileh:
fileh.write(floret_vectors_hashvec_str)
convert_vectors(nlp, p, truncate=0, prune=-1, mode="floret")
p = tmpdir / "test.vec"
with open(p, "w") as fileh:
fileh.write(floret_vectors_vec_str)
convert_vectors(nlp_plain, p, truncate=0, prune=-1)
word = "der"
# ngrams: full padded word + padded 2-grams + padded 3-grams
ngrams = nlp.vocab.vectors._get_ngrams(word)
assert ngrams == ["<der>", "<d", "de", "er", "r>", "<de", "der", "er>"]
# rows: 2 rows per ngram
rows = OPS.xp.asarray(
[
h % nlp.vocab.vectors.data.shape[0]
for ngram in ngrams
for h in nlp.vocab.vectors._get_ngram_hashes(ngram)
],
dtype="uint32",
)
assert_equal(
OPS.to_numpy(rows),
numpy.asarray([5, 6, 7, 5, 8, 2, 8, 9, 3, 3, 4, 6, 7, 3, 0, 2]),
)
assert len(rows) == len(ngrams) * nlp.vocab.vectors.hash_count
# all vectors are equivalent for plain static table vs. hash ngrams
for word in nlp_plain.vocab.vectors:
word = nlp_plain.vocab.strings.as_string(word)
assert_almost_equal(
nlp.vocab[word].vector, nlp_plain.vocab[word].vector, decimal=3
)
# every word has a vector
assert nlp.vocab[word * 5].has_vector
# check that single and batched vector lookups are identical
words = [s for s in nlp_plain.vocab.vectors]
single_vecs = OPS.to_numpy(OPS.asarray([nlp.vocab[word].vector for word in words]))
batch_vecs = OPS.to_numpy(nlp.vocab.vectors.get_batch(words))
assert_equal(single_vecs, batch_vecs)
# an empty key returns 0s
assert_equal(
OPS.to_numpy(nlp.vocab[""].vector),
numpy.zeros((nlp.vocab.vectors.data.shape[0],)),
)
# an empty batch returns 0s
assert_equal(
OPS.to_numpy(nlp.vocab.vectors.get_batch([""])),
numpy.zeros((1, nlp.vocab.vectors.data.shape[0])),
)
# an empty key within a batch returns 0s
assert_equal(
OPS.to_numpy(nlp.vocab.vectors.get_batch(["a", "", "b"])[1]),
numpy.zeros((nlp.vocab.vectors.data.shape[0],)),
)
# the loaded ngram vector table cannot be modified
# except for clear: warning, then return without modifications
vector = list(range(nlp.vocab.vectors.shape[1]))
orig_bytes = nlp.vocab.vectors.to_bytes(exclude=["strings"])
with pytest.warns(UserWarning):
nlp.vocab.set_vector("the", vector)
assert orig_bytes == nlp.vocab.vectors.to_bytes(exclude=["strings"])
with pytest.warns(UserWarning):
nlp.vocab[word].vector = vector
assert orig_bytes == nlp.vocab.vectors.to_bytes(exclude=["strings"])
with pytest.warns(UserWarning):
nlp.vocab.vectors.add("the", row=6)
assert orig_bytes == nlp.vocab.vectors.to_bytes(exclude=["strings"])
with pytest.warns(UserWarning):
nlp.vocab.vectors.resize(shape=(100, 10))
assert orig_bytes == nlp.vocab.vectors.to_bytes(exclude=["strings"])
with pytest.raises(ValueError):
nlp.vocab.vectors.clear()
# data and settings are serialized correctly
with make_tempdir() as d:
nlp.vocab.to_disk(d)
vocab_r = Vocab()
vocab_r.from_disk(d)
assert nlp.vocab.vectors.to_bytes() == vocab_r.vectors.to_bytes()
assert_equal(
OPS.to_numpy(nlp.vocab.vectors.data), OPS.to_numpy(vocab_r.vectors.data)
)
assert_equal(nlp.vocab.vectors._get_cfg(), vocab_r.vectors._get_cfg())
assert_almost_equal(
OPS.to_numpy(nlp.vocab[word].vector),
OPS.to_numpy(vocab_r[word].vector),
decimal=6,
)

View File

@ -138,8 +138,8 @@ class Doc:
def count_by( def count_by(
self, attr_id: int, exclude: Optional[Any] = ..., counts: Optional[Any] = ... self, attr_id: int, exclude: Optional[Any] = ..., counts: Optional[Any] = ...
) -> Dict[Any, int]: ... ) -> Dict[Any, int]: ...
def from_array(self, attrs: List[int], array: Ints2d) -> Doc: ... def from_array(self, attrs: Union[int, str, List[Union[int, str]]], array: Ints2d) -> Doc: ...
def to_array(self, py_attr_ids: List[int]) -> numpy.ndarray: ... def to_array(self, py_attr_ids: Union[int, str, List[Union[int, str]]]) -> numpy.ndarray: ...
@staticmethod @staticmethod
def from_docs( def from_docs(
docs: List[Doc], docs: List[Doc],

View File

@ -534,7 +534,13 @@ cdef class Doc:
kb_id = self.vocab.strings.add(kb_id) kb_id = self.vocab.strings.add(kb_id)
alignment_modes = ("strict", "contract", "expand") alignment_modes = ("strict", "contract", "expand")
if alignment_mode not in alignment_modes: if alignment_mode not in alignment_modes:
raise ValueError(Errors.E202.format(mode=alignment_mode, modes=", ".join(alignment_modes))) raise ValueError(
Errors.E202.format(
name="alignment",
mode=alignment_mode,
modes=", ".join(alignment_modes),
)
)
cdef int start = token_by_char(self.c, self.length, start_idx) cdef int start = token_by_char(self.c, self.length, start_idx)
if start < 0 or (alignment_mode == "strict" and start_idx != self[start].idx): if start < 0 or (alignment_mode == "strict" and start_idx != self[start].idx):
return None return None

View File

@ -13,7 +13,7 @@ import warnings
from .pretrain import get_tok2vec_ref from .pretrain import get_tok2vec_ref
from ..lookups import Lookups from ..lookups import Lookups
from ..vectors import Vectors from ..vectors import Vectors, Mode as VectorsMode
from ..errors import Errors, Warnings from ..errors import Errors, Warnings
from ..schemas import ConfigSchemaTraining from ..schemas import ConfigSchemaTraining
from ..util import registry, load_model_from_config, resolve_dot_names, logger from ..util import registry, load_model_from_config, resolve_dot_names, logger
@ -160,7 +160,13 @@ def load_vectors_into_model(
err = ConfigValidationError.from_error(e, title=title, desc=desc) err = ConfigValidationError.from_error(e, title=title, desc=desc)
raise err from None raise err from None
if len(vectors_nlp.vocab.vectors.keys()) == 0: if (
len(vectors_nlp.vocab.vectors.keys()) == 0
and vectors_nlp.vocab.vectors.mode != VectorsMode.floret
) or (
vectors_nlp.vocab.vectors.data.shape[0] == 0
and vectors_nlp.vocab.vectors.mode == VectorsMode.floret
):
logger.warning(Warnings.W112.format(name=name)) logger.warning(Warnings.W112.format(name=name))
for lex in nlp.vocab: for lex in nlp.vocab:
@ -197,41 +203,80 @@ def convert_vectors(
truncate: int, truncate: int,
prune: int, prune: int,
name: Optional[str] = None, name: Optional[str] = None,
mode: str = VectorsMode.default,
) -> None: ) -> None:
vectors_loc = ensure_path(vectors_loc) vectors_loc = ensure_path(vectors_loc)
if vectors_loc and vectors_loc.parts[-1].endswith(".npz"): if vectors_loc and vectors_loc.parts[-1].endswith(".npz"):
nlp.vocab.vectors = Vectors(data=numpy.load(vectors_loc.open("rb"))) nlp.vocab.vectors = Vectors(
strings=nlp.vocab.strings, data=numpy.load(vectors_loc.open("rb"))
)
for lex in nlp.vocab: for lex in nlp.vocab:
if lex.rank and lex.rank != OOV_RANK: if lex.rank and lex.rank != OOV_RANK:
nlp.vocab.vectors.add(lex.orth, row=lex.rank) # type: ignore[attr-defined] nlp.vocab.vectors.add(lex.orth, row=lex.rank) # type: ignore[attr-defined]
else: else:
if vectors_loc: if vectors_loc:
logger.info(f"Reading vectors from {vectors_loc}") logger.info(f"Reading vectors from {vectors_loc}")
vectors_data, vector_keys = read_vectors(vectors_loc, truncate) vectors_data, vector_keys, floret_settings = read_vectors(
vectors_loc,
truncate,
mode=mode,
)
logger.info(f"Loaded vectors from {vectors_loc}") logger.info(f"Loaded vectors from {vectors_loc}")
else: else:
vectors_data, vector_keys = (None, None) vectors_data, vector_keys = (None, None)
if vector_keys is not None: if vector_keys is not None and mode != VectorsMode.floret:
for word in vector_keys: for word in vector_keys:
if word not in nlp.vocab: if word not in nlp.vocab:
nlp.vocab[word] nlp.vocab[word]
if vectors_data is not None: if vectors_data is not None:
nlp.vocab.vectors = Vectors(data=vectors_data, keys=vector_keys) if mode == VectorsMode.floret:
nlp.vocab.vectors = Vectors(
strings=nlp.vocab.strings,
data=vectors_data,
**floret_settings,
)
else:
nlp.vocab.vectors = Vectors(
strings=nlp.vocab.strings, data=vectors_data, keys=vector_keys
)
if name is None: if name is None:
# TODO: Is this correct? Does this matter? # TODO: Is this correct? Does this matter?
nlp.vocab.vectors.name = f"{nlp.meta['lang']}_{nlp.meta['name']}.vectors" nlp.vocab.vectors.name = f"{nlp.meta['lang']}_{nlp.meta['name']}.vectors"
else: else:
nlp.vocab.vectors.name = name nlp.vocab.vectors.name = name
nlp.meta["vectors"]["name"] = nlp.vocab.vectors.name nlp.meta["vectors"]["name"] = nlp.vocab.vectors.name
if prune >= 1: if prune >= 1 and mode != VectorsMode.floret:
nlp.vocab.prune_vectors(prune) nlp.vocab.prune_vectors(prune)
def read_vectors(vectors_loc: Path, truncate_vectors: int): def read_vectors(
vectors_loc: Path, truncate_vectors: int, *, mode: str = VectorsMode.default
):
f = ensure_shape(vectors_loc) f = ensure_shape(vectors_loc)
shape = tuple(int(size) for size in next(f).split()) header_parts = next(f).split()
if truncate_vectors >= 1: shape = tuple(int(size) for size in header_parts[:2])
shape = (truncate_vectors, shape[1]) floret_settings = {}
if mode == VectorsMode.floret:
if len(header_parts) != 8:
raise ValueError(
"Invalid header for floret vectors. "
"Expected: bucket dim minn maxn hash_count hash_seed BOW EOW"
)
floret_settings = {
"mode": "floret",
"minn": int(header_parts[2]),
"maxn": int(header_parts[3]),
"hash_count": int(header_parts[4]),
"hash_seed": int(header_parts[5]),
"bow": header_parts[6],
"eow": header_parts[7],
}
if truncate_vectors >= 1:
raise ValueError(Errors.E860)
else:
assert len(header_parts) == 2
if truncate_vectors >= 1:
shape = (truncate_vectors, shape[1])
vectors_data = numpy.zeros(shape=shape, dtype="f") vectors_data = numpy.zeros(shape=shape, dtype="f")
vectors_keys = [] vectors_keys = []
for i, line in enumerate(tqdm.tqdm(f)): for i, line in enumerate(tqdm.tqdm(f)):
@ -244,7 +289,7 @@ def read_vectors(vectors_loc: Path, truncate_vectors: int):
vectors_keys.append(word) vectors_keys.append(word)
if i == truncate_vectors - 1: if i == truncate_vectors - 1:
break break
return vectors_data, vectors_keys return vectors_data, vectors_keys, floret_settings
def open_file(loc: Union[str, Path]) -> IO: def open_file(loc: Union[str, Path]) -> IO:
@ -271,7 +316,7 @@ def ensure_shape(vectors_loc):
lines = open_file(vectors_loc) lines = open_file(vectors_loc)
first_line = next(lines) first_line = next(lines)
try: try:
shape = tuple(int(size) for size in first_line.split()) shape = tuple(int(size) for size in first_line.split()[:2])
except ValueError: except ValueError:
shape = None shape = None
if shape is not None: if shape is not None:

View File

@ -1,16 +1,23 @@
cimport numpy as np cimport numpy as np
from libc.stdint cimport uint32_t
from cython.operator cimport dereference as deref from cython.operator cimport dereference as deref
from libcpp.set cimport set as cppset from libcpp.set cimport set as cppset
from murmurhash.mrmr cimport hash128_x64
import functools import functools
import numpy import numpy
from typing import cast
import warnings
from enum import Enum
import srsly import srsly
from thinc.api import get_array_module, get_current_ops from thinc.api import get_array_module, get_current_ops
from thinc.backends import get_array_ops
from thinc.types import Floats2d
from .strings cimport StringStore from .strings cimport StringStore
from .strings import get_string_id from .strings import get_string_id
from .errors import Errors from .errors import Errors, Warnings
from . import util from . import util
@ -18,18 +25,13 @@ def unpickle_vectors(bytes_data):
return Vectors().from_bytes(bytes_data) return Vectors().from_bytes(bytes_data)
class GlobalRegistry: class Mode(str, Enum):
"""Global store of vectors, to avoid repeatedly loading the data.""" default = "default"
data = {} floret = "floret"
@classmethod @classmethod
def register(cls, name, data): def values(cls):
cls.data[name] = data return list(cls.__members__.keys())
return functools.partial(cls.get, name)
@classmethod
def get(cls, name):
return cls.data[name]
cdef class Vectors: cdef class Vectors:
@ -37,45 +39,93 @@ cdef class Vectors:
Vectors data is kept in the vectors.data attribute, which should be an Vectors data is kept in the vectors.data attribute, which should be an
instance of numpy.ndarray (for CPU vectors) or cupy.ndarray instance of numpy.ndarray (for CPU vectors) or cupy.ndarray
(for GPU vectors). `vectors.key2row` is a dictionary mapping word hashes to (for GPU vectors).
rows in the vectors.data table.
Multiple keys can be mapped to the same vector, and not all of the rows in In the default mode, `vectors.key2row` is a dictionary mapping word hashes
the table need to be assigned - so len(list(vectors.keys())) may be to rows in the vectors.data table. Multiple keys can be mapped to the same
greater or smaller than vectors.shape[0]. vector, and not all of the rows in the table need to be assigned - so
len(list(vectors.keys())) may be greater or smaller than vectors.shape[0].
In floret mode, the floret settings (minn, maxn, etc.) are used to
calculate the vector from the rows corresponding to the key's ngrams.
DOCS: https://spacy.io/api/vectors DOCS: https://spacy.io/api/vectors
""" """
cdef public object strings
cdef public object name cdef public object name
cdef readonly object mode
cdef public object data cdef public object data
cdef public object key2row cdef public object key2row
cdef cppset[int] _unset cdef cppset[int] _unset
cdef readonly uint32_t minn
cdef readonly uint32_t maxn
cdef readonly uint32_t hash_count
cdef readonly uint32_t hash_seed
cdef readonly unicode bow
cdef readonly unicode eow
def __init__(self, *, shape=None, data=None, keys=None, name=None): def __init__(self, *, strings=None, shape=None, data=None, keys=None, name=None, mode=Mode.default, minn=0, maxn=0, hash_count=1, hash_seed=0, bow="<", eow=">"):
"""Create a new vector store. """Create a new vector store.
strings (StringStore): The string store.
shape (tuple): Size of the table, as (# entries, # columns) shape (tuple): Size of the table, as (# entries, # columns)
data (numpy.ndarray or cupy.ndarray): The vector data. data (numpy.ndarray or cupy.ndarray): The vector data.
keys (iterable): A sequence of keys, aligned with the data. keys (iterable): A sequence of keys, aligned with the data.
name (str): A name to identify the vectors table. name (str): A name to identify the vectors table.
mode (str): Vectors mode: "default" or "floret" (default: "default").
minn (int): The floret char ngram minn (default: 0).
maxn (int): The floret char ngram maxn (default: 0).
hash_count (int): The floret hash count (1-4, default: 1).
hash_seed (int): The floret hash seed (default: 0).
bow (str): The floret BOW string (default: "<").
eow (str): The floret EOW string (default: ">").
DOCS: https://spacy.io/api/vectors#init DOCS: https://spacy.io/api/vectors#init
""" """
self.strings = strings
if self.strings is None:
self.strings = StringStore()
self.name = name self.name = name
if data is None: if mode not in Mode.values():
if shape is None: raise ValueError(
shape = (0,0) Errors.E202.format(
ops = get_current_ops() name="vectors",
data = ops.xp.zeros(shape, dtype="f") mode=mode,
self.data = data modes=str(Mode.values())
)
)
self.mode = Mode(mode).value
self.key2row = {} self.key2row = {}
if self.data is not None: self.minn = minn
self._unset = cppset[int]({i for i in range(self.data.shape[0])}) self.maxn = maxn
else: self.hash_count = hash_count
self.hash_seed = hash_seed
self.bow = bow
self.eow = eow
if self.mode == Mode.default:
if data is None:
if shape is None:
shape = (0,0)
ops = get_current_ops()
data = ops.xp.zeros(shape, dtype="f")
self._unset = cppset[int]({i for i in range(data.shape[0])})
else:
self._unset = cppset[int]()
self.data = data
if keys is not None:
for i, key in enumerate(keys):
self.add(key, row=i)
elif self.mode == Mode.floret:
if maxn < minn:
raise ValueError(Errors.E863)
if hash_count < 1 or hash_count >= 5:
raise ValueError(Errors.E862)
if data is None:
raise ValueError(Errors.E864)
if keys is not None:
raise ValueError(Errors.E861)
self.data = data
self._unset = cppset[int]() self._unset = cppset[int]()
if keys is not None:
for i, key in enumerate(keys):
self.add(key, row=i)
@property @property
def shape(self): def shape(self):
@ -106,6 +156,8 @@ cdef class Vectors:
DOCS: https://spacy.io/api/vectors#is_full DOCS: https://spacy.io/api/vectors#is_full
""" """
if self.mode == Mode.floret:
return True
return self._unset.size() == 0 return self._unset.size() == 0
@property @property
@ -113,7 +165,8 @@ cdef class Vectors:
"""Get the number of keys in the table. Note that this is the number """Get the number of keys in the table. Note that this is the number
of all keys, not just unique vectors. of all keys, not just unique vectors.
RETURNS (int): The number of keys in the table. RETURNS (int): The number of keys in the table for default vectors.
For floret vectors, return -1.
DOCS: https://spacy.io/api/vectors#n_keys DOCS: https://spacy.io/api/vectors#n_keys
""" """
@ -125,25 +178,33 @@ cdef class Vectors:
def __getitem__(self, key): def __getitem__(self, key):
"""Get a vector by key. If the key is not found, a KeyError is raised. """Get a vector by key. If the key is not found, a KeyError is raised.
key (int): The key to get the vector for. key (str/int): The key to get the vector for.
RETURNS (ndarray): The vector for the key. RETURNS (ndarray): The vector for the key.
DOCS: https://spacy.io/api/vectors#getitem DOCS: https://spacy.io/api/vectors#getitem
""" """
i = self.key2row[key] if self.mode == Mode.default:
if i is None: i = self.key2row.get(get_string_id(key), None)
raise KeyError(Errors.E058.format(key=key)) if i is None:
else: raise KeyError(Errors.E058.format(key=key))
return self.data[i] else:
return self.data[i]
elif self.mode == Mode.floret:
return self.get_batch([key])[0]
raise KeyError(Errors.E058.format(key=key))
def __setitem__(self, key, vector): def __setitem__(self, key, vector):
"""Set a vector for the given key. """Set a vector for the given key.
key (int): The key to set the vector for. key (str/int): The key to set the vector for.
vector (ndarray): The vector to set. vector (ndarray): The vector to set.
DOCS: https://spacy.io/api/vectors#setitem DOCS: https://spacy.io/api/vectors#setitem
""" """
if self.mode == Mode.floret:
warnings.warn(Warnings.W115.format(method="Vectors.__setitem__"))
return
key = get_string_id(key)
i = self.key2row[key] i = self.key2row[key]
self.data[i] = vector self.data[i] = vector
if self._unset.count(i): if self._unset.count(i):
@ -175,7 +236,10 @@ cdef class Vectors:
DOCS: https://spacy.io/api/vectors#contains DOCS: https://spacy.io/api/vectors#contains
""" """
return key in self.key2row if self.mode == Mode.floret:
return True
else:
return key in self.key2row
def resize(self, shape, inplace=False): def resize(self, shape, inplace=False):
"""Resize the underlying vectors array. If inplace=True, the memory """Resize the underlying vectors array. If inplace=True, the memory
@ -192,6 +256,9 @@ cdef class Vectors:
DOCS: https://spacy.io/api/vectors#resize DOCS: https://spacy.io/api/vectors#resize
""" """
if self.mode == Mode.floret:
warnings.warn(Warnings.W115.format(method="Vectors.resize"))
return -1
xp = get_array_module(self.data) xp = get_array_module(self.data)
if inplace: if inplace:
if shape[1] != self.data.shape[1]: if shape[1] != self.data.shape[1]:
@ -244,16 +311,23 @@ cdef class Vectors:
def find(self, *, key=None, keys=None, row=None, rows=None): def find(self, *, key=None, keys=None, row=None, rows=None):
"""Look up one or more keys by row, or vice versa. """Look up one or more keys by row, or vice versa.
key (str / int): Find the row that the given key points to. key (Union[int, str]): Find the row that the given key points to.
Returns int, -1 if missing. Returns int, -1 if missing.
keys (iterable): Find rows that the keys point to. keys (Iterable[Union[int, str]]): Find rows that the keys point to.
Returns ndarray. Returns ndarray.
row (int): Find the first key that points to the row. row (int): Find the first key that points to the row.
Returns int. Returns int.
rows (iterable): Find the keys that point to the rows. rows (Iterable[int]): Find the keys that point to the rows.
Returns ndarray. Returns ndarray.
RETURNS: The requested key, keys, row or rows. RETURNS: The requested key, keys, row or rows.
""" """
if self.mode == Mode.floret:
raise ValueError(
Errors.E858.format(
mode=self.mode,
alternative="Use Vectors[key] instead.",
)
)
if sum(arg is None for arg in (key, keys, row, rows)) != 3: if sum(arg is None for arg in (key, keys, row, rows)) != 3:
bad_kwargs = {"key": key, "keys": keys, "row": row, "rows": rows} bad_kwargs = {"key": key, "keys": keys, "row": row, "rows": rows}
raise ValueError(Errors.E059.format(kwargs=bad_kwargs)) raise ValueError(Errors.E059.format(kwargs=bad_kwargs))
@ -273,6 +347,67 @@ cdef class Vectors:
results = [row2key[row] for row in rows] results = [row2key[row] for row in rows]
return xp.asarray(results, dtype="uint64") return xp.asarray(results, dtype="uint64")
def _get_ngram_hashes(self, unicode s):
"""Calculate up to 4 32-bit hash values with MurmurHash3_x64_128 using
the floret hash settings.
key (str): The string key.
RETURNS: A list of the integer hashes.
"""
cdef uint32_t[4] out
chars = s.encode("utf8")
cdef char* utf8_string = chars
hash128_x64(utf8_string, len(chars), self.hash_seed, &out)
rows = [out[i] for i in range(min(self.hash_count, 4))]
return rows
def _get_ngrams(self, unicode key):
"""Get all padded ngram strings using the ngram settings.
key (str): The string key.
RETURNS: A list of the ngram strings for the padded key.
"""
key = self.bow + key + self.eow
ngrams = [key] + [
key[start:start+ngram_size]
for ngram_size in range(self.minn, self.maxn + 1)
for start in range(0, len(key) - ngram_size + 1)
]
return ngrams
def get_batch(self, keys):
"""Get the vectors for the provided keys efficiently as a batch.
keys (Iterable[Union[int, str]]): The keys.
RETURNS: The requested vectors from the vector table.
"""
ops = get_array_ops(self.data)
if self.mode == Mode.default:
rows = self.find(keys=keys)
vecs = self.data[rows]
elif self.mode == Mode.floret:
keys = [self.strings.as_string(key) for key in keys]
if sum(len(key) for key in keys) == 0:
return ops.xp.zeros((len(keys), self.data.shape[1]))
unique_keys = tuple(set(keys))
row_index = {key: i for i, key in enumerate(unique_keys)}
rows = [row_index[key] for key in keys]
indices = []
lengths = []
for key in unique_keys:
if key == "":
ngram_rows = []
else:
ngram_rows = [
h % self.data.shape[0]
for ngram in self._get_ngrams(key)
for h in self._get_ngram_hashes(ngram)
]
indices.extend(ngram_rows)
lengths.append(len(ngram_rows))
indices = ops.asarray(indices, dtype="int32")
lengths = ops.asarray(lengths, dtype="int32")
vecs = ops.reduce_mean(cast(Floats2d, self.data[indices]), lengths)
vecs = vecs[rows]
return ops.as_contig(vecs)
def add(self, key, *, vector=None, row=None): def add(self, key, *, vector=None, row=None):
"""Add a key to the table. Keys can be mapped to an existing vector """Add a key to the table. Keys can be mapped to an existing vector
by setting `row`, or a new vector can be added. by setting `row`, or a new vector can be added.
@ -284,6 +419,9 @@ cdef class Vectors:
DOCS: https://spacy.io/api/vectors#add DOCS: https://spacy.io/api/vectors#add
""" """
if self.mode == Mode.floret:
warnings.warn(Warnings.W115.format(method="Vectors.add"))
return -1
# use int for all keys and rows in key2row for more efficient access # use int for all keys and rows in key2row for more efficient access
# and serialization # and serialization
key = int(get_string_id(key)) key = int(get_string_id(key))
@ -324,6 +462,11 @@ cdef class Vectors:
RETURNS (tuple): The most similar entries as a `(keys, best_rows, scores)` RETURNS (tuple): The most similar entries as a `(keys, best_rows, scores)`
tuple. tuple.
""" """
if self.mode == Mode.floret:
raise ValueError(Errors.E858.format(
mode=self.mode,
alternative="",
))
xp = get_array_module(self.data) xp = get_array_module(self.data)
filled = sorted(list({row for row in self.key2row.values()})) filled = sorted(list({row for row in self.key2row.values()}))
if len(filled) < n: if len(filled) < n:
@ -368,7 +511,32 @@ cdef class Vectors:
for i in range(len(queries)) ], dtype="uint64") for i in range(len(queries)) ], dtype="uint64")
return (keys, best_rows, scores) return (keys, best_rows, scores)
def to_disk(self, path, **kwargs): def _get_cfg(self):
if self.mode == Mode.default:
return {
"mode": Mode(self.mode).value,
}
elif self.mode == Mode.floret:
return {
"mode": Mode(self.mode).value,
"minn": self.minn,
"maxn": self.maxn,
"hash_count": self.hash_count,
"hash_seed": self.hash_seed,
"bow": self.bow,
"eow": self.eow,
}
def _set_cfg(self, cfg):
self.mode = Mode(cfg.get("mode", Mode.default)).value
self.minn = cfg.get("minn", 0)
self.maxn = cfg.get("maxn", 0)
self.hash_count = cfg.get("hash_count", 0)
self.hash_seed = cfg.get("hash_seed", 0)
self.bow = cfg.get("bow", "<")
self.eow = cfg.get("eow", ">")
def to_disk(self, path, *, exclude=tuple()):
"""Save the current state to a directory. """Save the current state to a directory.
path (str / Path): A path to a directory, which will be created if path (str / Path): A path to a directory, which will be created if
@ -390,12 +558,14 @@ cdef class Vectors:
save_array(self.data, _file) save_array(self.data, _file)
serializers = { serializers = {
"strings": lambda p: self.strings.to_disk(p.with_suffix(".json")),
"vectors": lambda p: save_vectors(p), "vectors": lambda p: save_vectors(p),
"key2row": lambda p: srsly.write_msgpack(p, self.key2row) "key2row": lambda p: srsly.write_msgpack(p, self.key2row),
"vectors.cfg": lambda p: srsly.write_json(p, self._get_cfg()),
} }
return util.to_disk(path, serializers, []) return util.to_disk(path, serializers, exclude)
def from_disk(self, path, **kwargs): def from_disk(self, path, *, exclude=tuple()):
"""Loads state from a directory. Modifies the object in place and """Loads state from a directory. Modifies the object in place and
returns it. returns it.
@ -422,17 +592,23 @@ cdef class Vectors:
if path.exists(): if path.exists():
self.data = ops.xp.load(str(path)) self.data = ops.xp.load(str(path))
def load_settings(path):
if path.exists():
self._set_cfg(srsly.read_json(path))
serializers = { serializers = {
"strings": lambda p: self.strings.from_disk(p.with_suffix(".json")),
"vectors": load_vectors, "vectors": load_vectors,
"keys": load_keys, "keys": load_keys,
"key2row": load_key2row, "key2row": load_key2row,
"vectors.cfg": load_settings,
} }
util.from_disk(path, serializers, []) util.from_disk(path, serializers, exclude)
self._sync_unset() self._sync_unset()
return self return self
def to_bytes(self, **kwargs): def to_bytes(self, *, exclude=tuple()):
"""Serialize the current state to a binary string. """Serialize the current state to a binary string.
exclude (list): String names of serialization fields to exclude. exclude (list): String names of serialization fields to exclude.
@ -447,12 +623,14 @@ cdef class Vectors:
return srsly.msgpack_dumps(self.data) return srsly.msgpack_dumps(self.data)
serializers = { serializers = {
"strings": lambda: self.strings.to_bytes(),
"key2row": lambda: srsly.msgpack_dumps(self.key2row), "key2row": lambda: srsly.msgpack_dumps(self.key2row),
"vectors": serialize_weights "vectors": serialize_weights,
"vectors.cfg": lambda: srsly.json_dumps(self._get_cfg()),
} }
return util.to_bytes(serializers, []) return util.to_bytes(serializers, exclude)
def from_bytes(self, data, **kwargs): def from_bytes(self, data, *, exclude=tuple()):
"""Load state from a binary string. """Load state from a binary string.
data (bytes): The data to load from. data (bytes): The data to load from.
@ -469,13 +647,25 @@ cdef class Vectors:
self.data = xp.asarray(srsly.msgpack_loads(b)) self.data = xp.asarray(srsly.msgpack_loads(b))
deserializers = { deserializers = {
"strings": lambda b: self.strings.from_bytes(b),
"key2row": lambda b: self.key2row.update(srsly.msgpack_loads(b)), "key2row": lambda b: self.key2row.update(srsly.msgpack_loads(b)),
"vectors": deserialize_weights "vectors": deserialize_weights,
"vectors.cfg": lambda b: self._set_cfg(srsly.json_loads(b))
} }
util.from_bytes(data, deserializers, []) util.from_bytes(data, deserializers, exclude)
self._sync_unset() self._sync_unset()
return self return self
def clear(self):
"""Clear all entries in the vector table.
DOCS: https://spacy.io/api/vectors#clear
"""
if self.mode == Mode.floret:
raise ValueError(Errors.E859)
self.key2row = {}
self._sync_unset()
def _sync_unset(self): def _sync_unset(self):
filled = {row for row in self.key2row.values()} filled = {row for row in self.key2row.values()}
self._unset = cppset[int]({row for row in range(self.data.shape[0]) if row not in filled}) self._unset = cppset[int]({row for row in range(self.data.shape[0]) if row not in filled})

View File

@ -27,7 +27,7 @@ cdef class Vocab:
cdef Pool mem cdef Pool mem
cdef readonly StringStore strings cdef readonly StringStore strings
cdef public Morphology morphology cdef public Morphology morphology
cdef public object vectors cdef public object _vectors
cdef public object _lookups cdef public object _lookups
cdef public object writing_system cdef public object writing_system
cdef public object get_noun_chunks cdef public object get_noun_chunks

View File

@ -14,7 +14,7 @@ from .attrs cimport LANG, ORTH
from .compat import copy_reg from .compat import copy_reg
from .errors import Errors from .errors import Errors
from .attrs import intify_attrs, NORM, IS_STOP from .attrs import intify_attrs, NORM, IS_STOP
from .vectors import Vectors from .vectors import Vectors, Mode as VectorsMode
from .util import registry from .util import registry
from .lookups import Lookups from .lookups import Lookups
from . import util from . import util
@ -77,11 +77,21 @@ cdef class Vocab:
_ = self[string] _ = self[string]
self.lex_attr_getters = lex_attr_getters self.lex_attr_getters = lex_attr_getters
self.morphology = Morphology(self.strings) self.morphology = Morphology(self.strings)
self.vectors = Vectors(name=vectors_name) self.vectors = Vectors(strings=self.strings, name=vectors_name)
self.lookups = lookups self.lookups = lookups
self.writing_system = writing_system self.writing_system = writing_system
self.get_noun_chunks = get_noun_chunks self.get_noun_chunks = get_noun_chunks
property vectors:
def __get__(self):
return self._vectors
def __set__(self, vectors):
for s in vectors.strings:
self.strings.add(s)
self._vectors = vectors
self._vectors.strings = self.strings
@property @property
def lang(self): def lang(self):
langfunc = None langfunc = None
@ -282,10 +292,10 @@ cdef class Vocab:
if width is not None and shape is not None: if width is not None and shape is not None:
raise ValueError(Errors.E065.format(width=width, shape=shape)) raise ValueError(Errors.E065.format(width=width, shape=shape))
elif shape is not None: elif shape is not None:
self.vectors = Vectors(shape=shape) self.vectors = Vectors(strings=self.strings, shape=shape)
else: else:
width = width if width is not None else self.vectors.data.shape[1] width = width if width is not None else self.vectors.data.shape[1]
self.vectors = Vectors(shape=(self.vectors.shape[0], width)) self.vectors = Vectors(strings=self.strings, shape=(self.vectors.shape[0], width))
def prune_vectors(self, nr_row, batch_size=1024): def prune_vectors(self, nr_row, batch_size=1024):
"""Reduce the current vector table to `nr_row` unique entries. Words """Reduce the current vector table to `nr_row` unique entries. Words
@ -314,6 +324,8 @@ cdef class Vocab:
DOCS: https://spacy.io/api/vocab#prune_vectors DOCS: https://spacy.io/api/vocab#prune_vectors
""" """
if self.vectors.mode != VectorsMode.default:
raise ValueError(Errors.E866)
ops = get_current_ops() ops = get_current_ops()
xp = get_array_module(self.vectors.data) xp = get_array_module(self.vectors.data)
# Make sure all vectors are in the vocab # Make sure all vectors are in the vocab
@ -328,7 +340,7 @@ cdef class Vocab:
keys = xp.asarray([key for (prob, i, key) in priority], dtype="uint64") keys = xp.asarray([key for (prob, i, key) in priority], dtype="uint64")
keep = xp.ascontiguousarray(self.vectors.data[indices[:nr_row]]) keep = xp.ascontiguousarray(self.vectors.data[indices[:nr_row]])
toss = xp.ascontiguousarray(self.vectors.data[indices[nr_row:]]) toss = xp.ascontiguousarray(self.vectors.data[indices[nr_row:]])
self.vectors = Vectors(data=keep, keys=keys[:nr_row], name=self.vectors.name) self.vectors = Vectors(strings=self.strings, data=keep, keys=keys[:nr_row], name=self.vectors.name)
syn_keys, syn_rows, scores = self.vectors.most_similar(toss, batch_size=batch_size) syn_keys, syn_rows, scores = self.vectors.most_similar(toss, batch_size=batch_size)
syn_keys = ops.to_numpy(syn_keys) syn_keys = ops.to_numpy(syn_keys)
remap = {} remap = {}
@ -340,19 +352,12 @@ cdef class Vocab:
remap[word] = (synonym, score) remap[word] = (synonym, score)
return remap return remap
def get_vector(self, orth, minn=None, maxn=None): def get_vector(self, orth):
"""Retrieve a vector for a word in the vocabulary. Words can be looked """Retrieve a vector for a word in the vocabulary. Words can be looked
up by string or int ID. If no vectors data is loaded, ValueError is up by string or int ID. If no vectors data is loaded, ValueError is
raised. raised.
If `minn` is defined, then the resulting vector uses Fasttext's orth (int / unicode): The hash value of a word, or its unicode string.
subword features by average over ngrams of `orth`.
orth (int / str): The hash value of a word, or its unicode string.
minn (int): Minimum n-gram length used for Fasttext's ngram computation.
Defaults to the length of `orth`.
maxn (int): Maximum n-gram length used for Fasttext's ngram computation.
Defaults to the length of `orth`.
RETURNS (numpy.ndarray or cupy.ndarray): A word vector. Size RETURNS (numpy.ndarray or cupy.ndarray): A word vector. Size
and shape determined by the `vocab.vectors` instance. Usually, a and shape determined by the `vocab.vectors` instance. Usually, a
numpy ndarray of shape (300,) and dtype float32. numpy ndarray of shape (300,) and dtype float32.
@ -361,40 +366,10 @@ cdef class Vocab:
""" """
if isinstance(orth, str): if isinstance(orth, str):
orth = self.strings.add(orth) orth = self.strings.add(orth)
word = self[orth].orth_ if self.has_vector(orth):
if orth in self.vectors.key2row:
return self.vectors[orth] return self.vectors[orth]
xp = get_array_module(self.vectors.data) xp = get_array_module(self.vectors.data)
vectors = xp.zeros((self.vectors_length,), dtype="f") vectors = xp.zeros((self.vectors_length,), dtype="f")
if minn is None:
return vectors
# Fasttext's ngram computation taken from
# https://github.com/facebookresearch/fastText
# Assign default ngram limit to maxn which is the length of the word.
if maxn is None:
maxn = len(word)
ngrams_size = 0;
for i in range(len(word)):
ngram = ""
if (word[i] and 0xC0) == 0x80:
continue
n = 1
j = i
while (j < len(word) and n <= maxn):
if n > maxn:
break
ngram += word[j]
j = j + 1
while (j < len(word) and (word[j] and 0xC0) == 0x80):
ngram += word[j]
j = j + 1
if (n >= minn and not (n == 1 and (i == 0 or j == len(word)))):
if self.strings[ngram] in self.vectors.key2row:
vectors = xp.add(self.vectors[self.strings[ngram]], vectors)
ngrams_size += 1
n = n + 1
if ngrams_size > 0:
vectors = vectors * (1.0/ngrams_size)
return vectors return vectors
def set_vector(self, orth, vector): def set_vector(self, orth, vector):
@ -417,7 +392,8 @@ cdef class Vocab:
self.vectors.resize((new_rows, width)) self.vectors.resize((new_rows, width))
lex = self[orth] # Add word to vocab if necessary lex = self[orth] # Add word to vocab if necessary
row = self.vectors.add(orth, vector=vector) row = self.vectors.add(orth, vector=vector)
lex.rank = row if row >= 0:
lex.rank = row
def has_vector(self, orth): def has_vector(self, orth):
"""Check whether a word has a vector. Returns False if no vectors have """Check whether a word has a vector. Returns False if no vectors have
@ -461,7 +437,7 @@ cdef class Vocab:
if "strings" not in exclude: if "strings" not in exclude:
self.strings.to_disk(path / "strings.json") self.strings.to_disk(path / "strings.json")
if "vectors" not in "exclude": if "vectors" not in "exclude":
self.vectors.to_disk(path) self.vectors.to_disk(path, exclude=["strings"])
if "lookups" not in "exclude": if "lookups" not in "exclude":
self.lookups.to_disk(path) self.lookups.to_disk(path)
@ -504,7 +480,7 @@ cdef class Vocab:
if self.vectors is None: if self.vectors is None:
return None return None
else: else:
return self.vectors.to_bytes() return self.vectors.to_bytes(exclude=["strings"])
getters = { getters = {
"strings": lambda: self.strings.to_bytes(), "strings": lambda: self.strings.to_bytes(),
@ -526,7 +502,7 @@ cdef class Vocab:
if self.vectors is None: if self.vectors is None:
return None return None
else: else:
return self.vectors.from_bytes(b) return self.vectors.from_bytes(b, exclude=["strings"])
setters = { setters = {
"strings": lambda b: self.strings.from_bytes(b), "strings": lambda b: self.strings.from_bytes(b),

View File

@ -208,6 +208,7 @@ $ python -m spacy init vectors [lang] [vectors_loc] [output_dir] [--prune] [--tr
| `output_dir` | Pipeline output directory. Will be created if it doesn't exist. ~~Path (positional)~~ | | `output_dir` | Pipeline output directory. Will be created if it doesn't exist. ~~Path (positional)~~ |
| `--truncate`, `-t` | Number of vectors to truncate to when reading in vectors file. Defaults to `0` for no truncation. ~~int (option)~~ | | `--truncate`, `-t` | Number of vectors to truncate to when reading in vectors file. Defaults to `0` for no truncation. ~~int (option)~~ |
| `--prune`, `-p` | Number of vectors to prune the vocabulary to. Defaults to `-1` for no pruning. ~~int (option)~~ | | `--prune`, `-p` | Number of vectors to prune the vocabulary to. Defaults to `-1` for no pruning. ~~int (option)~~ |
| `--mode`, `-m` | Vectors mode: `default` or [`floret`](https://github.com/explosion/floret). Defaults to `default`. ~~Optional[str] \(option)~~ |
| `--name`, `-n` | Name to assign to the word vectors in the `meta.json`, e.g. `en_core_web_md.vectors`. ~~Optional[str] \(option)~~ | | `--name`, `-n` | Name to assign to the word vectors in the `meta.json`, e.g. `en_core_web_md.vectors`. ~~Optional[str] \(option)~~ |
| `--verbose`, `-V` | Print additional information and explanations. ~~bool (flag)~~ | | `--verbose`, `-V` | Print additional information and explanations. ~~bool (flag)~~ |
| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ | | `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |

View File

@ -8,15 +8,30 @@ new: 2
Vectors data is kept in the `Vectors.data` attribute, which should be an Vectors data is kept in the `Vectors.data` attribute, which should be an
instance of `numpy.ndarray` (for CPU vectors) or `cupy.ndarray` (for GPU instance of `numpy.ndarray` (for CPU vectors) or `cupy.ndarray` (for GPU
vectors). Multiple keys can be mapped to the same vector, and not all of the vectors).
rows in the table need to be assigned so `vectors.n_keys` may be greater or
smaller than `vectors.shape[0]`. As of spaCy v3.2, `Vectors` supports two types of vector tables:
- `default`: A standard vector table (as in spaCy v3.1 and earlier) where each
key is mapped to one row in the vector table. Multiple keys can be mapped to
the same vector, and not all of the rows in the table need to be assigned so
`vectors.n_keys` may be greater or smaller than `vectors.shape[0]`.
- `floret`: Only supports vectors trained with
[floret](https://github.com/explosion/floret), an extended version of
[fastText](https://fasttext.cc) that produces compact vector tables by
combining fastText's subword ngrams with Bloom embeddings. The compact tables
are similar to the [`HashEmbed`](https://thinc.ai/docs/api-layers#hashembed)
embeddings already used in many spaCy components. Each word is represented as
the sum of one or more rows as determined by the settings related to character
ngrams and the hash table.
## Vectors.\_\_init\_\_ {#init tag="method"} ## Vectors.\_\_init\_\_ {#init tag="method"}
Create a new vector store. You can set the vector values and keys directly on Create a new vector store. With the default mode, you can set the vector values
initialization, or supply a `shape` keyword argument to create an empty table and keys directly on initialization, or supply a `shape` keyword argument to
you can add vectors to later. create an empty table you can add vectors to later. In floret mode, the complete
vector data and settings must be provided on initialization and cannot be
modified later.
> #### Example > #### Example
> >
@ -30,13 +45,21 @@ you can add vectors to later.
> vectors = Vectors(data=data, keys=keys) > vectors = Vectors(data=data, keys=keys)
> ``` > ```
| Name | Description | | Name | Description |
| -------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | ----------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| _keyword-only_ | | | _keyword-only_ | |
| `shape` | Size of the table as `(n_entries, n_columns)`, the number of entries and number of columns. Not required if you're initializing the object with `data` and `keys`. ~~Tuple[int, int]~~ | | `strings` | The string store. A new string store is created if one is not provided. Defaults to `None`. ~~Optional[StringStore]~~ |
| `data` | The vector data. ~~numpy.ndarray[ndim=1, dtype=float32]~~ | | `shape` | Size of the table as `(n_entries, n_columns)`, the number of entries and number of columns. Not required if you're initializing the object with `data` and `keys`. ~~Tuple[int, int]~~ |
| `keys` | A sequence of keys aligned with the data. ~~Iterable[Union[str, int]]~~ | | `data` | The vector data. ~~numpy.ndarray[ndim=1, dtype=float32]~~ |
| `name` | A name to identify the vectors table. ~~str~~ | | `keys` | A sequence of keys aligned with the data. ~~Iterable[Union[str, int]]~~ |
| `name` | A name to identify the vectors table. ~~str~~ |
| `mode` <Tag variant="new">3.2</Tag> | Vectors mode: `"default"` or [`"floret"`](https://github.com/explosion/floret) (default: `"default"`). ~~str~~ |
| `minn` <Tag variant="new">3.2</Tag> | The floret char ngram minn (default: `0`). ~~int~~ |
| `maxn` <Tag variant="new">3.2</Tag> | The floret char ngram maxn (default: `0`). ~~int~~ |
| `hash_count` <Tag variant="new">3.2</Tag> | The floret hash count. Supported values: 1--4 (default: `1`). ~~int~~ |
| `hash_seed` <Tag variant="new">3.2</Tag> | The floret hash seed (default: `0`). ~~int~~ |
| `bow` <Tag variant="new">3.2</Tag> | The floret BOW string (default: `"<"`). ~~str~~ |
| `eow` <Tag variant="new">3.2</Tag> | The floret EOW string (default: `">"`). ~~str~~ |
## Vectors.\_\_getitem\_\_ {#getitem tag="method"} ## Vectors.\_\_getitem\_\_ {#getitem tag="method"}
@ -53,12 +76,12 @@ raised.
| Name | Description | | Name | Description |
| ----------- | ---------------------------------------------------------------- | | ----------- | ---------------------------------------------------------------- |
| `key` | The key to get the vector for. ~~int~~ | | `key` | The key to get the vector for. ~~Union[int, str]~~ |
| **RETURNS** | The vector for the key. ~~numpy.ndarray[ndim=1, dtype=float32]~~ | | **RETURNS** | The vector for the key. ~~numpy.ndarray[ndim=1, dtype=float32]~~ |
## Vectors.\_\_setitem\_\_ {#setitem tag="method"} ## Vectors.\_\_setitem\_\_ {#setitem tag="method"}
Set a vector for the given key. Set a vector for the given key. Not supported for `floret` mode.
> #### Example > #### Example
> >
@ -75,7 +98,8 @@ Set a vector for the given key.
## Vectors.\_\_iter\_\_ {#iter tag="method"} ## Vectors.\_\_iter\_\_ {#iter tag="method"}
Iterate over the keys in the table. Iterate over the keys in the table. In `floret` mode, the keys table is not
used.
> #### Example > #### Example
> >
@ -105,7 +129,8 @@ Return the number of vectors in the table.
## Vectors.\_\_contains\_\_ {#contains tag="method"} ## Vectors.\_\_contains\_\_ {#contains tag="method"}
Check whether a key has been mapped to a vector entry in the table. Check whether a key has been mapped to a vector entry in the table. In `floret`
mode, returns `True` for all keys.
> #### Example > #### Example
> >
@ -123,11 +148,8 @@ Check whether a key has been mapped to a vector entry in the table.
## Vectors.add {#add tag="method"} ## Vectors.add {#add tag="method"}
Add a key to the table, optionally setting a vector value as well. Keys can be Add a key to the table, optionally setting a vector value as well. Keys can be
mapped to an existing vector by setting `row`, or a new vector can be added. mapped to an existing vector by setting `row`, or a new vector can be added. Not
When adding string keys, keep in mind that the `Vectors` class itself has no supported for `floret` mode.
[`StringStore`](/api/stringstore), so you have to store the hash-to-string
mapping separately. If you need to manage the strings, you should use the
`Vectors` via the [`Vocab`](/api/vocab) class, e.g. `vocab.vectors`.
> #### Example > #### Example
> >
@ -152,7 +174,8 @@ Resize the underlying vectors array. If `inplace=True`, the memory is
reallocated. This may cause other references to the data to become invalid, so reallocated. This may cause other references to the data to become invalid, so
only use `inplace=True` if you're sure that's what you want. If the number of only use `inplace=True` if you're sure that's what you want. If the number of
vectors is reduced, keys mapped to rows that have been deleted are removed. vectors is reduced, keys mapped to rows that have been deleted are removed.
These removed items are returned as a list of `(key, row)` tuples. These removed items are returned as a list of `(key, row)` tuples. Not supported
for `floret` mode.
> #### Example > #### Example
> >
@ -168,7 +191,8 @@ These removed items are returned as a list of `(key, row)` tuples.
## Vectors.keys {#keys tag="method"} ## Vectors.keys {#keys tag="method"}
A sequence of the keys in the table. A sequence of the keys in the table. In `floret` mode, the keys table is not
used.
> #### Example > #### Example
> >
@ -185,7 +209,7 @@ A sequence of the keys in the table.
Iterate over vectors that have been assigned to at least one key. Note that some Iterate over vectors that have been assigned to at least one key. Note that some
vectors may be unassigned, so the number of vectors returned may be less than vectors may be unassigned, so the number of vectors returned may be less than
the length of the vectors table. the length of the vectors table. In `floret` mode, the keys table is not used.
> #### Example > #### Example
> >
@ -200,7 +224,8 @@ the length of the vectors table.
## Vectors.items {#items tag="method"} ## Vectors.items {#items tag="method"}
Iterate over `(key, vector)` pairs, in order. Iterate over `(key, vector)` pairs, in order. In `floret` mode, the keys table
is empty.
> #### Example > #### Example
> >
@ -215,7 +240,7 @@ Iterate over `(key, vector)` pairs, in order.
## Vectors.find {#find tag="method"} ## Vectors.find {#find tag="method"}
Look up one or more keys by row, or vice versa. Look up one or more keys by row, or vice versa. Not supported for `floret` mode.
> #### Example > #### Example
> >
@ -273,7 +298,8 @@ The vector size, i.e. `rows * dims`.
Whether the vectors table is full and has no slots are available for new keys. Whether the vectors table is full and has no slots are available for new keys.
If a table is full, it can be resized using If a table is full, it can be resized using
[`Vectors.resize`](/api/vectors#resize). [`Vectors.resize`](/api/vectors#resize). In `floret` mode, the table is always
full and cannot be resized.
> #### Example > #### Example
> >
@ -291,7 +317,7 @@ If a table is full, it can be resized using
Get the number of keys in the table. Note that this is the number of _all_ keys, Get the number of keys in the table. Note that this is the number of _all_ keys,
not just unique vectors. If several keys are mapped to the same vectors, they not just unique vectors. If several keys are mapped to the same vectors, they
will be counted individually. will be counted individually. In `floret` mode, the keys table is not used.
> #### Example > #### Example
> >
@ -311,7 +337,8 @@ For each of the given vectors, find the `n` most similar entries to it by
cosine. Queries are by vector. Results are returned as a cosine. Queries are by vector. Results are returned as a
`(keys, best_rows, scores)` tuple. If `queries` is large, the calculations are `(keys, best_rows, scores)` tuple. If `queries` is large, the calculations are
performed in chunks to avoid consuming too much memory. You can set the performed in chunks to avoid consuming too much memory. You can set the
`batch_size` to control the size/space trade-off during the calculations. `batch_size` to control the size/space trade-off during the calculations. Not
supported for `floret` mode.
> #### Example > #### Example
> >
@ -329,6 +356,21 @@ performed in chunks to avoid consuming too much memory. You can set the
| `sort` | Whether to sort the entries returned by score. Defaults to `True`. ~~bool~~ | | `sort` | Whether to sort the entries returned by score. Defaults to `True`. ~~bool~~ |
| **RETURNS** | tuple | The most similar entries as a `(keys, best_rows, scores)` tuple. ~~Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray]~~ | | **RETURNS** | tuple | The most similar entries as a `(keys, best_rows, scores)` tuple. ~~Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray]~~ |
## Vectors.get_batch {#get_batch tag="method" new="3.2"}
Get the vectors for the provided keys efficiently as a batch.
> #### Example
>
> ```python
> words = ["cat", "dog"]
> vectors = nlp.vocab.vectors.get_batch(words)
> ```
| Name | Description |
| ------ | --------------------------------------- |
| `keys` | The keys. ~~Iterable[Union[int, str]]~~ |
## Vectors.to_disk {#to_disk tag="method"} ## Vectors.to_disk {#to_disk tag="method"}
Save the current state to a directory. Save the current state to a directory.