mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-25 00:34:20 +03:00
Make small changes to Doc.to_array
* Change type-check logic to 'hasattr' (Python type-checking is brittle) * Small 'house style' edits, mostly making code more terse.
This commit is contained in:
parent
fbccc8c87d
commit
c0799430a7
|
@ -477,11 +477,11 @@ cdef class Doc:
|
|||
cpdef np.ndarray to_array(self, object py_attr_ids):
|
||||
"""Export given token attributes to a numpy `ndarray`.
|
||||
|
||||
If `attr_ids` is a sequence of M attributes, the output array will
|
||||
be of shape `(N, M)`, where N is the length of the `Doc`
|
||||
(in tokens). If `attr_ids` is a single attribute, the output shape will
|
||||
be (N,). You can specify attributes by integer ID (e.g. spacy.attrs.LEMMA)
|
||||
or string name (e.g. 'LEMMA' or 'lemma').
|
||||
If `attr_ids` is a sequence of M attributes, the output array will
|
||||
be of shape `(N, M)`, where N is the length of the `Doc`
|
||||
(in tokens). If `attr_ids` is a single attribute, the output shape will
|
||||
be (N,). You can specify attributes by integer ID (e.g. spacy.attrs.LEMMA)
|
||||
or string name (e.g. 'LEMMA' or 'lemma').
|
||||
|
||||
Example:
|
||||
from spacy import attrs
|
||||
|
@ -499,28 +499,25 @@ cdef class Doc:
|
|||
"""
|
||||
cdef int i, j
|
||||
cdef attr_id_t feature
|
||||
cdef np.ndarray[attr_t, ndim=1] attr_ids, output_1D
|
||||
cdef np.ndarray[attr_t, ndim=2] output
|
||||
cdef np.ndarray[attr_t, ndim=1] output_1D
|
||||
# Handle scalar/list inputs of strings/ints for py_attr_ids
|
||||
if( type(py_attr_ids) is not list and type(py_attr_ids) is not tuple ):
|
||||
py_attr_ids = [ py_attr_ids ]
|
||||
py_attr_ids_input = []
|
||||
for py_attr_id in py_attr_ids:
|
||||
if( type(py_attr_id) is int ):
|
||||
py_attr_ids_input.append(py_attr_id)
|
||||
else:
|
||||
py_attr_ids_input.append(IDS[py_attr_id.upper()])
|
||||
# Make an array from the attributes --- otherwise our inner loop is Python
|
||||
if not hasattr(py_attr_ids, '__iter__'):
|
||||
py_attr_ids = [py_attr_ids]
|
||||
|
||||
# Allow strings, e.g. 'lemma' or 'LEMMA'
|
||||
convert_id = lambda id_: IDS[id_.upper()] if hasattr(id_, 'upper') else id_
|
||||
# Make an array from the attributes --- otherwise inner loop would be Python
|
||||
# dict iteration.
|
||||
cdef np.ndarray[attr_t, ndim=1] attr_ids = numpy.asarray(py_attr_ids_input, dtype=numpy.int32)
|
||||
attr_ids = numpy.asarray((convert_id(id_) for id_ in py_attr_ids),
|
||||
dtype=numpy.int32)
|
||||
|
||||
output = numpy.ndarray(shape=(self.length, len(attr_ids)), dtype=numpy.int32)
|
||||
for i in range(self.length):
|
||||
for j, feature in enumerate(attr_ids):
|
||||
output[i, j] = get_token_attr(&self.c[i], feature)
|
||||
if( len(attr_ids) == 1 ):
|
||||
output_1D = output.reshape((self.length))
|
||||
return output_1D
|
||||
return output
|
||||
# Handle 1d case
|
||||
return output if len(attr_ids) >= 2 else output.reshape((self.length,))
|
||||
|
||||
def count_by(self, attr_id_t attr_id, exclude=None, PreshCounter counts=None):
|
||||
"""
|
||||
|
|
Loading…
Reference in New Issue
Block a user