diff --git a/examples/experiments/onto-joint/defaults.cfg b/examples/experiments/onto-joint/defaults.cfg
index 6c3a21f4b..f76336d84 100644
--- a/examples/experiments/onto-joint/defaults.cfg
+++ b/examples/experiments/onto-joint/defaults.cfg
@@ -9,6 +9,7 @@ max_length = 0
limit = 0
# Data augmentation
orth_variant_level = 0.0
+noise_level = 0.0
dropout = 0.1
# Controls early-stopping. 0 or -1 mean unlimited.
patience = 1600
@@ -24,8 +25,8 @@ scores = ["speed", "tags_acc", "uas", "las", "ents_f"]
score_weights = {"las": 0.4, "ents_f": 0.4, "tags_acc": 0.2}
# These settings are invalid for the transformer models.
init_tok2vec = null
-vectors = null
discard_oversize = false
+omit_extra_lookups = false
[training.batch_size]
@schedules = "compounding.v1"
@@ -52,7 +53,7 @@ learn_rate = 0.001
[nlp]
lang = "en"
-vectors = ${training:vectors}
+vectors = null
[nlp.pipeline.tok2vec]
factory = "tok2vec"
@@ -62,12 +63,20 @@ factory = "senter"
[nlp.pipeline.ner]
factory = "ner"
+learn_tokens = false
+min_action_freq = 1
+beam_width = 1
+beam_update_prob = 1.0
[nlp.pipeline.tagger]
factory = "tagger"
[nlp.pipeline.parser]
factory = "parser"
+learn_tokens = false
+min_action_freq = 1
+beam_width = 1
+beam_update_prob = 1.0
[nlp.pipeline.senter.model]
@architectures = "spacy.Tagger.v1"
diff --git a/examples/experiments/onto-joint/pretrain.cfg b/examples/experiments/onto-joint/pretrain.cfg
index 4f1898d69..40885b6e8 100644
--- a/examples/experiments/onto-joint/pretrain.cfg
+++ b/examples/experiments/onto-joint/pretrain.cfg
@@ -9,6 +9,7 @@ max_length = 0
limit = 0
# Data augmentation
orth_variant_level = 0.0
+noise_level = 0.0
dropout = 0.1
# Controls early-stopping. 0 or -1 mean unlimited.
patience = 1600
@@ -24,7 +25,6 @@ scores = ["speed", "tags_acc", "uas", "las", "ents_f"]
score_weights = {"las": 0.4, "ents_f": 0.4, "tags_acc": 0.2}
# These settings are invalid for the transformer models.
init_tok2vec = null
-vectors = null
discard_oversize = false
[training.batch_size]
@@ -72,7 +72,7 @@ normalize = true
[nlp]
lang = "en"
-vectors = ${training:vectors}
+vectors = null
[nlp.pipeline.tok2vec]
factory = "tok2vec"
@@ -82,12 +82,20 @@ factory = "senter"
[nlp.pipeline.ner]
factory = "ner"
+learn_tokens = false
+min_action_freq = 1
+beam_width = 1
+beam_update_prob = 1.0
[nlp.pipeline.tagger]
factory = "tagger"
[nlp.pipeline.parser]
factory = "parser"
+learn_tokens = false
+min_action_freq = 1
+beam_width = 1
+beam_update_prob = 1.0
[nlp.pipeline.senter.model]
@architectures = "spacy.Tagger.v1"
diff --git a/examples/experiments/ptb-joint-pos-dep/bilstm_tok2vec.cfg b/examples/experiments/ptb-joint-pos-dep/bilstm_tok2vec.cfg
index acbcc8d41..905b5b4e0 100644
--- a/examples/experiments/ptb-joint-pos-dep/bilstm_tok2vec.cfg
+++ b/examples/experiments/ptb-joint-pos-dep/bilstm_tok2vec.cfg
@@ -6,6 +6,7 @@ init_tok2vec = null
vectors = null
max_epochs = 100
orth_variant_level = 0.0
+noise_level = 0.0
gold_preproc = true
max_length = 0
use_gpu = 0
@@ -40,6 +41,10 @@ factory = "tagger"
[nlp.pipeline.parser]
factory = "parser"
+learn_tokens = false
+min_action_freq = 1
+beam_width = 1
+beam_update_prob = 1.0
[nlp.pipeline.tagger.model]
@architectures = "spacy.Tagger.v1"
diff --git a/examples/experiments/ptb-joint-pos-dep/defaults.cfg b/examples/experiments/ptb-joint-pos-dep/defaults.cfg
index c305c015c..7383116e7 100644
--- a/examples/experiments/ptb-joint-pos-dep/defaults.cfg
+++ b/examples/experiments/ptb-joint-pos-dep/defaults.cfg
@@ -6,6 +6,7 @@ init_tok2vec = null
vectors = null
max_epochs = 100
orth_variant_level = 0.0
+noise_level = 0.0
gold_preproc = true
max_length = 0
use_gpu = -1
@@ -40,6 +41,10 @@ factory = "tagger"
[nlp.pipeline.parser]
factory = "parser"
+learn_tokens = false
+min_action_freq = 1
+beam_width = 1
+beam_update_prob = 1.0
[nlp.pipeline.tagger.model]
@architectures = "spacy.Tagger.v1"
diff --git a/examples/training/train_textcat.py b/examples/training/train_textcat.py
index 65acadb07..c5e679467 100644
--- a/examples/training/train_textcat.py
+++ b/examples/training/train_textcat.py
@@ -120,13 +120,22 @@ def load_data(dataset, threshold, limit=0, split=0.8):
random.shuffle(train_data)
texts, labels = zip(*train_data)
- unique_labels = sorted(set([l for label_set in labels for l in label_set]))
+ unique_labels = set()
+ for label_set in labels:
+ if isinstance(label_set, int) or isinstance(label_set, str):
+ unique_labels.add(label_set)
+ elif isinstance(label_set, list) or isinstance(label_set, set):
+ unique_labels.update(label_set)
+ unique_labels = sorted(unique_labels)
print(f"# of unique_labels: {len(unique_labels)}")
count_values_train = dict()
for text, annot_list in train_data:
- for annot in annot_list:
- count_values_train[annot] = count_values_train.get(annot, 0) + 1
+ if isinstance(annot_list, int) or isinstance(annot_list, str):
+ count_values_train[annot_list] = count_values_train.get(annot_list, 0) + 1
+ else:
+ for annot in annot_list:
+ count_values_train[annot] = count_values_train.get(annot, 0) + 1
for value, count in sorted(count_values_train.items(), key=lambda item: item[1]):
if count < threshold:
unique_labels.remove(value)
@@ -138,7 +147,7 @@ def load_data(dataset, threshold, limit=0, split=0.8):
else:
cats = []
for y in labels:
- if isinstance(y, str):
+ if isinstance(y, str) or isinstance(y, int):
cats.append({str(label): (label == y) for label in unique_labels})
elif isinstance(y, set):
cats.append({str(label): (label in y) for label in unique_labels})
diff --git a/spacy/cli/evaluate.py b/spacy/cli/evaluate.py
index 735e304f9..bae252b1c 100644
--- a/spacy/cli/evaluate.py
+++ b/spacy/cli/evaluate.py
@@ -54,7 +54,8 @@ def evaluate(
"NER P": f"{scorer.ents_p:.2f}",
"NER R": f"{scorer.ents_r:.2f}",
"NER F": f"{scorer.ents_f:.2f}",
- "Textcat": f"{scorer.textcat_score:.2f}",
+ "Textcat AUC": f"{scorer.textcat_auc:.2f}",
+ "Textcat F": f"{scorer.textcat_f:.2f}",
"Sent P": f"{scorer.sent_p:.2f}",
"Sent R": f"{scorer.sent_r:.2f}",
"Sent F": f"{scorer.sent_f:.2f}",
diff --git a/spacy/cli/pretrain.py b/spacy/cli/pretrain.py
index d37426b5a..4f4707b52 100644
--- a/spacy/cli/pretrain.py
+++ b/spacy/cli/pretrain.py
@@ -266,17 +266,15 @@ def create_pretraining_model(nlp, tok2vec):
the tok2vec input model. The tok2vec input model needs to be a model that
takes a batch of Doc objects (as a list), and returns a list of arrays.
Each array in the output needs to have one row per token in the doc.
+ The actual tok2vec layer is stored as a reference, and only this bit will be
+ serialized to file and read back in when calling the 'train' command.
"""
output_size = nlp.vocab.vectors.data.shape[1]
output_layer = chain(
Maxout(nO=300, nP=3, normalize=True, dropout=0.0), Linear(output_size)
)
- # This is annoying, but the parser etc have the flatten step after
- # the tok2vec. To load the weights in cleanly, we need to match
- # the shape of the models' components exactly. So what we cann
- # "tok2vec" has to be the same set of processes as what the components do.
- tok2vec = chain(tok2vec, list2array())
- model = chain(tok2vec, output_layer)
+ model = chain(tok2vec, list2array())
+ model = chain(model, output_layer)
model.initialize(X=[nlp.make_doc("Give it a doc to infer shapes")])
mlm_model = build_masked_language_model(nlp.vocab, model)
mlm_model.set_ref("tok2vec", tok2vec)
diff --git a/spacy/cli/train.py b/spacy/cli/train.py
deleted file mode 100644
index cbe977cad..000000000
--- a/spacy/cli/train.py
+++ /dev/null
@@ -1,773 +0,0 @@
-import os
-import tqdm
-from pathlib import Path
-from thinc.api import use_ops
-from timeit import default_timer as timer
-import shutil
-import srsly
-from wasabi import msg
-import contextlib
-import random
-
-from ..util import create_default_optimizer
-from ..util import use_gpu as set_gpu
-from ..gold import GoldCorpus
-from ..lookups import Lookups
-from .. import util
-from .. import about
-
-
-def train(
- # fmt: off
- lang: ("Model language", "positional", None, str),
- output_path: ("Output directory to store model in", "positional", None, Path),
- train_path: ("Location of JSON-formatted training data", "positional", None, Path),
- dev_path: ("Location of JSON-formatted development data", "positional", None, Path),
- raw_text: ("Path to jsonl file with unlabelled text documents.", "option", "rt", Path) = None,
- base_model: ("Name of model to update (optional)", "option", "b", str) = None,
- pipeline: ("Comma-separated names of pipeline components", "option", "p", str) = "tagger,parser,ner",
- vectors: ("Model to load vectors from", "option", "v", str) = None,
- replace_components: ("Replace components from base model", "flag", "R", bool) = False,
- n_iter: ("Number of iterations", "option", "n", int) = 30,
- n_early_stopping: ("Maximum number of training epochs without dev accuracy improvement", "option", "ne", int) = None,
- n_examples: ("Number of examples", "option", "ns", int) = 0,
- use_gpu: ("Use GPU", "option", "g", int) = -1,
- version: ("Model version", "option", "V", str) = "0.0.0",
- meta_path: ("Optional path to meta.json to use as base.", "option", "m", Path) = None,
- init_tok2vec: ("Path to pretrained weights for the token-to-vector parts of the models. See 'spacy pretrain'. Experimental.", "option", "t2v", Path) = None,
- parser_multitasks: ("Side objectives for parser CNN, e.g. 'dep' or 'dep,tag'", "option", "pt", str) = "",
- entity_multitasks: ("Side objectives for NER CNN, e.g. 'dep' or 'dep,tag'", "option", "et", str) = "",
- noise_level: ("Amount of corruption for data augmentation", "option", "nl", float) = 0.0,
- orth_variant_level: ("Amount of orthography variation for data augmentation", "option", "ovl", float) = 0.0,
- eval_beam_widths: ("Beam widths to evaluate, e.g. 4,8", "option", "bw", str) = "",
- gold_preproc: ("Use gold preprocessing", "flag", "G", bool) = False,
- learn_tokens: ("Make parser learn gold-standard tokenization", "flag", "T", bool) = False,
- textcat_multilabel: ("Textcat classes aren't mutually exclusive (multilabel)", "flag", "TML", bool) = False,
- textcat_arch: ("Textcat model architecture", "option", "ta", str) = "bow",
- textcat_positive_label: ("Textcat positive label for binary classes with two labels", "option", "tpl", str) = None,
- tag_map_path: ("Location of JSON-formatted tag map", "option", "tm", Path) = None,
- omit_extra_lookups: ("Don't include extra lookups in model", "flag", "OEL", bool) = False,
- verbose: ("Display more information for debug", "flag", "VV", bool) = False,
- debug: ("Run data diagnostics before training", "flag", "D", bool) = False,
- # fmt: on
-):
- """
- Train or update a spaCy model. Requires data to be formatted in spaCy's
- JSON format. To convert data from other formats, use the `spacy convert`
- command.
- """
- util.fix_random_seed()
- util.set_env_log(verbose)
-
- # Make sure all files and paths exists if they are needed
- train_path = util.ensure_path(train_path)
- dev_path = util.ensure_path(dev_path)
- meta_path = util.ensure_path(meta_path)
- output_path = util.ensure_path(output_path)
- if raw_text is not None:
- raw_text = list(srsly.read_jsonl(raw_text))
- if not train_path or not train_path.exists():
- msg.fail("Training data not found", train_path, exits=1)
- if not dev_path or not dev_path.exists():
- msg.fail("Development data not found", dev_path, exits=1)
- if meta_path is not None and not meta_path.exists():
- msg.fail("Can't find model meta.json", meta_path, exits=1)
- meta = srsly.read_json(meta_path) if meta_path else {}
- if output_path.exists() and [p for p in output_path.iterdir() if p.is_dir()]:
- msg.warn(
- "Output directory is not empty",
- "This can lead to unintended side effects when saving the model. "
- "Please use an empty directory or a different path instead. If "
- "the specified output path doesn't exist, the directory will be "
- "created for you.",
- )
- if not output_path.exists():
- output_path.mkdir()
- msg.good(f"Created output directory: {output_path}")
-
- tag_map = {}
- if tag_map_path is not None:
- tag_map = srsly.read_json(tag_map_path)
- # Take dropout and batch size as generators of values -- dropout
- # starts high and decays sharply, to force the optimizer to explore.
- # Batch size starts at 1 and grows, so that we make updates quickly
- # at the beginning of training.
- dropout_rates = util.decaying(
- util.env_opt("dropout_from", 0.2),
- util.env_opt("dropout_to", 0.2),
- util.env_opt("dropout_decay", 0.0),
- )
- batch_sizes = util.compounding(
- util.env_opt("batch_from", 100.0),
- util.env_opt("batch_to", 1000.0),
- util.env_opt("batch_compound", 1.001),
- )
-
- if not eval_beam_widths:
- eval_beam_widths = [1]
- else:
- eval_beam_widths = [int(bw) for bw in eval_beam_widths.split(",")]
- if 1 not in eval_beam_widths:
- eval_beam_widths.append(1)
- eval_beam_widths.sort()
- has_beam_widths = eval_beam_widths != [1]
-
- default_dir = Path(__file__).parent.parent / "pipeline" / "defaults"
-
- # Set up the base model and pipeline. If a base model is specified, load
- # the model and make sure the pipeline matches the pipeline setting. If
- # training starts from a blank model, intitalize the language class.
- pipeline = [p.strip() for p in pipeline.split(",")]
- msg.text(f"Training pipeline: {pipeline}")
- disabled_pipes = None
- pipes_added = False
- if use_gpu >= 0:
- activated_gpu = None
- try:
- activated_gpu = set_gpu(use_gpu)
- except Exception as e:
- msg.warn(f"Exception: {e}")
- if activated_gpu is not None:
- msg.text(f"Using GPU: {use_gpu}")
- else:
- msg.warn(f"Unable to activate GPU: {use_gpu}")
- msg.text("Using CPU only")
- use_gpu = -1
- if base_model:
- msg.text(f"Starting with base model '{base_model}'")
- nlp = util.load_model(base_model)
- if nlp.lang != lang:
- msg.fail(
- f"Model language ('{nlp.lang}') doesn't match language "
- f"specified as `lang` argument ('{lang}') ",
- exits=1,
- )
- if vectors:
- msg.text(f"Loading vectors from model '{vectors}'")
- _load_vectors(nlp, vectors)
-
- nlp.select_pipes(disable=[p for p in nlp.pipe_names if p not in pipeline])
- for pipe in pipeline:
- # first, create the model.
- # Bit of a hack after the refactor to get the vectors into a default config
- # use train-from-config instead :-)
- if pipe == "parser":
- config_loc = default_dir / "parser_defaults.cfg"
- elif pipe == "tagger":
- config_loc = default_dir / "tagger_defaults.cfg"
- elif pipe == "ner":
- config_loc = default_dir / "ner_defaults.cfg"
- elif pipe == "textcat":
- config_loc = default_dir / "textcat_defaults.cfg"
- elif pipe == "senter":
- config_loc = default_dir / "senter_defaults.cfg"
- else:
- raise ValueError(f"Component {pipe} currently not supported.")
- pipe_cfg = util.load_config(config_loc, create_objects=False)
- if vectors:
- pretrained_config = {
- "@architectures": "spacy.VocabVectors.v1",
- "name": vectors,
- }
- pipe_cfg["model"]["tok2vec"]["pretrained_vectors"] = pretrained_config
-
- if pipe == "parser":
- pipe_cfg["learn_tokens"] = learn_tokens
- elif pipe == "textcat":
- pipe_cfg["exclusive_classes"] = not textcat_multilabel
- pipe_cfg["architecture"] = textcat_arch
- pipe_cfg["positive_label"] = textcat_positive_label
-
- if pipe not in nlp.pipe_names:
- msg.text(f"Adding component to base model '{pipe}'")
- nlp.add_pipe(nlp.create_pipe(pipe, config=pipe_cfg))
- pipes_added = True
- elif replace_components:
- msg.text(f"Replacing component from base model '{pipe}'")
- nlp.replace_pipe(pipe, nlp.create_pipe(pipe, config=pipe_cfg))
- pipes_added = True
- else:
- if pipe == "textcat":
- textcat_cfg = nlp.get_pipe("textcat").cfg
- base_cfg = {
- "exclusive_classes": textcat_cfg["exclusive_classes"],
- "architecture": textcat_cfg["architecture"],
- "positive_label": textcat_cfg["positive_label"],
- }
- if base_cfg != pipe_cfg:
- msg.fail(
- f"The base textcat model configuration does"
- f"not match the provided training options. "
- f"Existing cfg: {base_cfg}, provided cfg: {pipe_cfg}",
- exits=1,
- )
- msg.text(f"Extending component from base model '{pipe}'")
- disabled_pipes = nlp.select_pipes(
- disable=[p for p in nlp.pipe_names if p not in pipeline]
- )
- else:
- msg.text(f"Starting with blank model '{lang}'")
- lang_cls = util.get_lang_class(lang)
- nlp = lang_cls()
-
- if vectors:
- msg.text(f"Loading vectors from model '{vectors}'")
- _load_vectors(nlp, vectors)
-
- for pipe in pipeline:
- # first, create the model.
- # Bit of a hack after the refactor to get the vectors into a default config
- # use train-from-config instead :-)
- if pipe == "parser":
- config_loc = default_dir / "parser_defaults.cfg"
- elif pipe == "tagger":
- config_loc = default_dir / "tagger_defaults.cfg"
- elif pipe == "morphologizer":
- config_loc = default_dir / "morphologizer_defaults.cfg"
- elif pipe == "ner":
- config_loc = default_dir / "ner_defaults.cfg"
- elif pipe == "textcat":
- config_loc = default_dir / "textcat_defaults.cfg"
- elif pipe == "senter":
- config_loc = default_dir / "senter_defaults.cfg"
- else:
- raise ValueError(f"Component {pipe} currently not supported.")
- pipe_cfg = util.load_config(config_loc, create_objects=False)
- if vectors:
- pretrained_config = {
- "@architectures": "spacy.VocabVectors.v1",
- "name": vectors,
- }
- pipe_cfg["model"]["tok2vec"]["pretrained_vectors"] = pretrained_config
-
- if pipe == "parser":
- pipe_cfg["learn_tokens"] = learn_tokens
- elif pipe == "textcat":
- pipe_cfg["exclusive_classes"] = not textcat_multilabel
- pipe_cfg["architecture"] = textcat_arch
- pipe_cfg["positive_label"] = textcat_positive_label
-
- pipe = nlp.create_pipe(pipe, config=pipe_cfg)
- nlp.add_pipe(pipe)
-
- # Update tag map with provided mapping
- nlp.vocab.morphology.tag_map.update(tag_map)
-
- # Create empty extra lexeme tables so the data from spacy-lookups-data
- # isn't loaded if these features are accessed
- if omit_extra_lookups:
- nlp.vocab.lookups_extra = Lookups()
- nlp.vocab.lookups_extra.add_table("lexeme_cluster")
- nlp.vocab.lookups_extra.add_table("lexeme_prob")
- nlp.vocab.lookups_extra.add_table("lexeme_settings")
-
- if vectors:
- msg.text("Loading vector from model '{}'".format(vectors))
- _load_vectors(nlp, vectors)
-
- # Multitask objectives
- multitask_options = [("parser", parser_multitasks), ("ner", entity_multitasks)]
- for pipe_name, multitasks in multitask_options:
- if multitasks:
- if pipe_name not in pipeline:
- msg.fail(
- f"Can't use multitask objective without '{pipe_name}' in "
- f"the pipeline"
- )
- pipe = nlp.get_pipe(pipe_name)
- for objective in multitasks.split(","):
- pipe.add_multitask_objective(objective)
-
- # Prepare training corpus
- msg.text(f"Counting training words (limit={n_examples})")
- corpus = GoldCorpus(train_path, dev_path, limit=n_examples)
- n_train_words = corpus.count_train()
-
- if base_model and not pipes_added:
- # Start with an existing model, use default optimizer
- optimizer = create_default_optimizer()
- else:
- # Start with a blank model, call begin_training
- cfg = {"device": use_gpu}
- optimizer = nlp.begin_training(lambda: corpus.train_examples, **cfg)
- nlp._optimizer = None
-
- # Load in pretrained weights (TODO: this may be broken in the config rewrite)
- if init_tok2vec is not None:
- components = _load_pretrained_tok2vec(nlp, init_tok2vec)
- msg.text(f"Loaded pretrained tok2vec for: {components}")
-
- # Verify textcat config
- if "textcat" in pipeline:
- textcat_labels = nlp.get_pipe("textcat").cfg.get("labels", [])
- if textcat_positive_label and textcat_positive_label not in textcat_labels:
- msg.fail(
- f"The textcat_positive_label (tpl) '{textcat_positive_label}' "
- f"does not match any label in the training data.",
- exits=1,
- )
- if textcat_positive_label and len(textcat_labels) != 2:
- msg.fail(
- "A textcat_positive_label (tpl) '{textcat_positive_label}' was "
- "provided for training data that does not appear to be a "
- "binary classification problem with two labels.",
- exits=1,
- )
- train_data = corpus.train_data(
- nlp,
- noise_level=noise_level,
- gold_preproc=gold_preproc,
- max_length=0,
- ignore_misaligned=True,
- )
- train_labels = set()
- if textcat_multilabel:
- multilabel_found = False
- for ex in train_data:
- train_labels.update(ex.gold.cats.keys())
- if list(ex.gold.cats.values()).count(1.0) != 1:
- multilabel_found = True
- if not multilabel_found and not base_model:
- msg.warn(
- "The textcat training instances look like they have "
- "mutually-exclusive classes. Remove the flag "
- "'--textcat-multilabel' to train a classifier with "
- "mutually-exclusive classes."
- )
- if not textcat_multilabel:
- for ex in train_data:
- train_labels.update(ex.gold.cats.keys())
- if list(ex.gold.cats.values()).count(1.0) != 1 and not base_model:
- msg.warn(
- "Some textcat training instances do not have exactly "
- "one positive label. Modifying training options to "
- "include the flag '--textcat-multilabel' for classes "
- "that are not mutually exclusive."
- )
- nlp.get_pipe("textcat").cfg["exclusive_classes"] = False
- textcat_multilabel = True
- break
- if base_model and set(textcat_labels) != train_labels:
- msg.fail(
- f"Cannot extend textcat model using data with different "
- f"labels. Base model labels: {textcat_labels}, training data "
- f"labels: {list(train_labels)}",
- exits=1,
- )
- if textcat_multilabel:
- msg.text(
- f"Textcat evaluation score: ROC AUC score macro-averaged across "
- f"the labels '{', '.join(textcat_labels)}'"
- )
- elif textcat_positive_label and len(textcat_labels) == 2:
- msg.text(
- f"Textcat evaluation score: F1-score for the "
- f"label '{textcat_positive_label}'"
- )
- elif len(textcat_labels) > 1:
- if len(textcat_labels) == 2:
- msg.warn(
- "If the textcat component is a binary classifier with "
- "exclusive classes, provide '--textcat-positive-label' for "
- "an evaluation on the positive class."
- )
- msg.text(
- f"Textcat evaluation score: F1-score macro-averaged across "
- f"the labels '{', '.join(textcat_labels)}'"
- )
- else:
- msg.fail(
- "Unsupported textcat configuration. Use `spacy debug-data` "
- "for more information."
- )
-
- # fmt: off
- row_head, output_stats = _configure_training_output(pipeline, use_gpu, has_beam_widths)
- row_widths = [len(w) for w in row_head]
- row_settings = {"widths": row_widths, "aligns": tuple(["r" for i in row_head]), "spacing": 2}
- # fmt: on
- print("")
- msg.row(row_head, **row_settings)
- msg.row(["-" * width for width in row_settings["widths"]], **row_settings)
- try:
- iter_since_best = 0
- best_score = 0.0
- for i in range(n_iter):
- train_data = corpus.train_dataset(
- nlp,
- noise_level=noise_level,
- orth_variant_level=orth_variant_level,
- gold_preproc=gold_preproc,
- max_length=0,
- ignore_misaligned=True,
- )
- if raw_text:
- random.shuffle(raw_text)
- raw_batches = util.minibatch(
- (nlp.make_doc(rt["text"]) for rt in raw_text), size=8
- )
- words_seen = 0
- with tqdm.tqdm(total=n_train_words, leave=False) as pbar:
- losses = {}
- for batch in util.minibatch_by_words(train_data, size=batch_sizes):
- if not batch:
- continue
- try:
- nlp.update(
- batch,
- sgd=optimizer,
- drop=next(dropout_rates),
- losses=losses,
- )
- except ValueError as e:
- err = "Error during training"
- if init_tok2vec:
- err += " Did you provide the same parameters during 'train' as during 'pretrain'?"
- msg.fail(err, f"Original error message: {e}", exits=1)
- if raw_text:
- # If raw text is available, perform 'rehearsal' updates,
- # which use unlabelled data to reduce overfitting.
- raw_batch = list(next(raw_batches))
- nlp.rehearse(raw_batch, sgd=optimizer, losses=losses)
- docs = [ex.doc for ex in batch]
- if not int(os.environ.get("LOG_FRIENDLY", 0)):
- pbar.update(sum(len(doc) for doc in docs))
- words_seen += sum(len(doc) for doc in docs)
- with nlp.use_params(optimizer.averages):
- util.set_env_log(False)
- epoch_model_path = output_path / f"model{i}"
- nlp.to_disk(epoch_model_path)
- nlp_loaded = util.load_model_from_path(epoch_model_path)
- for beam_width in eval_beam_widths:
- for name, component in nlp_loaded.pipeline:
- if hasattr(component, "cfg"):
- component.cfg["beam_width"] = beam_width
- dev_dataset = list(
- corpus.dev_dataset(
- nlp_loaded,
- gold_preproc=gold_preproc,
- ignore_misaligned=True,
- )
- )
- nwords = sum(len(ex.doc) for ex in dev_dataset)
- start_time = timer()
- scorer = nlp_loaded.evaluate(dev_dataset, verbose=verbose)
- end_time = timer()
- if use_gpu < 0:
- gpu_wps = None
- cpu_wps = nwords / (end_time - start_time)
- else:
- gpu_wps = nwords / (end_time - start_time)
- # Evaluate on CPU in the first iteration only (for
- # timing) when GPU is enabled
- if i == 0:
- with use_ops("numpy"):
- nlp_loaded = util.load_model_from_path(epoch_model_path)
- for name, component in nlp_loaded.pipeline:
- if hasattr(component, "cfg"):
- component.cfg["beam_width"] = beam_width
- dev_dataset = list(
- corpus.dev_dataset(
- nlp_loaded,
- gold_preproc=gold_preproc,
- ignore_misaligned=True,
- )
- )
- start_time = timer()
- scorer = nlp_loaded.evaluate(dev_dataset, verbose=verbose)
- end_time = timer()
- cpu_wps = nwords / (end_time - start_time)
- acc_loc = output_path / f"model{i}" / "accuracy.json"
- srsly.write_json(acc_loc, scorer.scores)
-
- # Update model meta.json
- meta["lang"] = nlp.lang
- meta["pipeline"] = nlp.pipe_names
- if beam_width == 1:
- meta["speed"] = {
- "nwords": nwords,
- "cpu": cpu_wps,
- "gpu": gpu_wps,
- }
- meta.setdefault("accuracy", {})
- for component in nlp.pipe_names:
- for metric in _get_metrics(component):
- meta["accuracy"][metric] = scorer.scores[metric]
- else:
- meta.setdefault("beam_accuracy", {})
- meta.setdefault("beam_speed", {})
- for component in nlp.pipe_names:
- for metric in _get_metrics(component):
- meta["beam_accuracy"][metric] = scorer.scores[metric]
- meta["beam_speed"][beam_width] = {
- "nwords": nwords,
- "cpu": cpu_wps,
- "gpu": gpu_wps,
- }
- meta["vectors"] = {
- "width": nlp.vocab.vectors_length,
- "vectors": len(nlp.vocab.vectors),
- "keys": nlp.vocab.vectors.n_keys,
- "name": nlp.vocab.vectors.name,
- }
- meta.setdefault("name", f"model{i}")
- meta.setdefault("version", version)
- meta["labels"] = nlp.meta["labels"]
- meta_loc = output_path / f"model{i}" / "meta.json"
- srsly.write_json(meta_loc, meta)
- util.set_env_log(verbose)
-
- progress = _get_progress(
- i,
- losses,
- scorer.scores,
- output_stats,
- beam_width=beam_width if has_beam_widths else None,
- cpu_wps=cpu_wps,
- gpu_wps=gpu_wps,
- )
- if i == 0 and "textcat" in pipeline:
- textcats_per_cat = scorer.scores.get("textcats_per_cat", {})
- for cat, cat_score in textcats_per_cat.items():
- if cat_score.get("roc_auc_score", 0) < 0:
- msg.warn(
- f"Textcat ROC AUC score is undefined due to "
- f"only one value in label '{cat}'."
- )
- msg.row(progress, **row_settings)
- # Early stopping
- if n_early_stopping is not None:
- current_score = _score_for_model(meta)
- if current_score < best_score:
- iter_since_best += 1
- else:
- iter_since_best = 0
- best_score = current_score
- if iter_since_best >= n_early_stopping:
- msg.text(
- f"Early stopping, best iteration is: {i - iter_since_best}"
- )
- msg.text(
- f"Best score = {best_score}; Final iteration score = {current_score}"
- )
- break
- except Exception as e:
- msg.warn(f"Aborting and saving final best model. Encountered exception: {e}", exits=1)
- finally:
- best_pipes = nlp.pipe_names
- if disabled_pipes:
- disabled_pipes.restore()
- with nlp.use_params(optimizer.averages):
- final_model_path = output_path / "model-final"
- nlp.to_disk(final_model_path)
- meta_loc = output_path / "model-final" / "meta.json"
- final_meta = srsly.read_json(meta_loc)
- final_meta.setdefault("accuracy", {})
- final_meta["accuracy"].update(meta.get("accuracy", {}))
- final_meta.setdefault("speed", {})
- final_meta["speed"].setdefault("cpu", None)
- final_meta["speed"].setdefault("gpu", None)
- meta.setdefault("speed", {})
- meta["speed"].setdefault("cpu", None)
- meta["speed"].setdefault("gpu", None)
- # combine cpu and gpu speeds with the base model speeds
- if final_meta["speed"]["cpu"] and meta["speed"]["cpu"]:
- speed = _get_total_speed(
- [final_meta["speed"]["cpu"], meta["speed"]["cpu"]]
- )
- final_meta["speed"]["cpu"] = speed
- if final_meta["speed"]["gpu"] and meta["speed"]["gpu"]:
- speed = _get_total_speed(
- [final_meta["speed"]["gpu"], meta["speed"]["gpu"]]
- )
- final_meta["speed"]["gpu"] = speed
- # if there were no speeds to update, overwrite with meta
- if (
- final_meta["speed"]["cpu"] is None
- and final_meta["speed"]["gpu"] is None
- ):
- final_meta["speed"].update(meta["speed"])
- # note: beam speeds are not combined with the base model
- if has_beam_widths:
- final_meta.setdefault("beam_accuracy", {})
- final_meta["beam_accuracy"].update(meta.get("beam_accuracy", {}))
- final_meta.setdefault("beam_speed", {})
- final_meta["beam_speed"].update(meta.get("beam_speed", {}))
- srsly.write_json(meta_loc, final_meta)
- msg.good("Saved model to output directory", final_model_path)
- with msg.loading("Creating best model..."):
- best_model_path = _collate_best_model(final_meta, output_path, best_pipes)
- msg.good("Created best model", best_model_path)
-
-
-def _score_for_model(meta):
- """ Returns mean score between tasks in pipeline that can be used for early stopping. """
- mean_acc = list()
- pipes = meta["pipeline"]
- acc = meta["accuracy"]
- if "tagger" in pipes:
- mean_acc.append(acc["tags_acc"])
- if "morphologizer" in pipes:
- mean_acc.append((acc["morphs_acc"] + acc["pos_acc"]) / 2)
- if "parser" in pipes:
- mean_acc.append((acc["uas"] + acc["las"]) / 2)
- if "ner" in pipes:
- mean_acc.append((acc["ents_p"] + acc["ents_r"] + acc["ents_f"]) / 3)
- if "textcat" in pipes:
- mean_acc.append(acc["textcat_score"])
- if "senter" in pipes:
- mean_acc.append((acc["sent_p"] + acc["sent_r"] + acc["sent_f"]) / 3)
- return sum(mean_acc) / len(mean_acc)
-
-
-@contextlib.contextmanager
-def _create_progress_bar(total):
- if int(os.environ.get("LOG_FRIENDLY", 0)):
- yield
- else:
- pbar = tqdm.tqdm(total=total, leave=False)
- yield pbar
-
-
-def _load_vectors(nlp, vectors):
- util.load_model(vectors, vocab=nlp.vocab)
-
-
-def _load_pretrained_tok2vec(nlp, loc):
- """Load pretrained weights for the 'token-to-vector' part of the component
- models, which is typically a CNN. See 'spacy pretrain'. Experimental.
- """
- with loc.open("rb") as file_:
- weights_data = file_.read()
- loaded = []
- for name, component in nlp.pipeline:
- if hasattr(component, "model") and component.model.has_ref("tok2vec"):
- component.get_ref("tok2vec").from_bytes(weights_data)
- loaded.append(name)
- return loaded
-
-
-def _collate_best_model(meta, output_path, components):
- bests = {}
- meta.setdefault("accuracy", {})
- for component in components:
- bests[component] = _find_best(output_path, component)
- best_dest = output_path / "model-best"
- shutil.copytree(str(output_path / "model-final"), str(best_dest))
- for component, best_component_src in bests.items():
- shutil.rmtree(str(best_dest / component))
- shutil.copytree(str(best_component_src / component), str(best_dest / component))
- accs = srsly.read_json(best_component_src / "accuracy.json")
- for metric in _get_metrics(component):
- meta["accuracy"][metric] = accs[metric]
- srsly.write_json(best_dest / "meta.json", meta)
- return best_dest
-
-
-def _find_best(experiment_dir, component):
- accuracies = []
- for epoch_model in experiment_dir.iterdir():
- if epoch_model.is_dir() and epoch_model.parts[-1] != "model-final":
- accs = srsly.read_json(epoch_model / "accuracy.json")
- scores = [accs.get(metric, 0.0) for metric in _get_metrics(component)]
- # remove per_type dicts from score list for max() comparison
- scores = [score for score in scores if isinstance(score, float)]
- accuracies.append((scores, epoch_model))
- if accuracies:
- return max(accuracies)[1]
- else:
- return None
-
-
-def _get_metrics(component):
- if component == "parser":
- return ("las", "uas", "las_per_type", "sent_f", "token_acc")
- elif component == "tagger":
- return ("tags_acc", "token_acc")
- elif component == "morphologizer":
- return ("morphs_acc", "pos_acc", "token_acc")
- elif component == "ner":
- return ("ents_f", "ents_p", "ents_r", "ents_per_type", "token_acc")
- elif component == "senter":
- return ("sent_f", "sent_p", "sent_r", "token_acc")
- elif component == "textcat":
- return ("textcat_score", "token_acc")
- return ("token_acc",)
-
-
-def _configure_training_output(pipeline, use_gpu, has_beam_widths):
- row_head = ["Itn"]
- output_stats = []
- for pipe in pipeline:
- if pipe == "tagger":
- row_head.extend(["Tag Loss ", " Tag % "])
- output_stats.extend(["tag_loss", "tags_acc"])
- elif pipe == "morphologizer" or pipe == "morphologizertagger":
- row_head.extend(["Morph Loss ", " Morph % ", " POS % "])
- output_stats.extend(["morph_loss", "morphs_acc", "pos_acc"])
- elif pipe == "parser":
- row_head.extend(
- ["Dep Loss ", " UAS ", " LAS ", "Sent P", "Sent R", "Sent F"]
- )
- output_stats.extend(
- ["dep_loss", "uas", "las", "sent_p", "sent_r", "sent_f"]
- )
- elif pipe == "ner":
- row_head.extend(["NER Loss ", "NER P ", "NER R ", "NER F "])
- output_stats.extend(["ner_loss", "ents_p", "ents_r", "ents_f"])
- elif pipe == "textcat":
- row_head.extend(["Textcat Loss", "Textcat"])
- output_stats.extend(["textcat_loss", "textcat_score"])
- elif pipe == "senter":
- row_head.extend(["Senter Loss", "Sent P", "Sent R", "Sent F"])
- output_stats.extend(["senter_loss", "sent_p", "sent_r", "sent_f"])
- row_head.extend(["Token %", "CPU WPS"])
- output_stats.extend(["token_acc", "cpu_wps"])
-
- if use_gpu >= 0:
- row_head.extend(["GPU WPS"])
- output_stats.extend(["gpu_wps"])
-
- if has_beam_widths:
- row_head.insert(1, "Beam W.")
- # remove duplicates
- row_head_dict = {k: 1 for k in row_head}
- output_stats_dict = {k: 1 for k in output_stats}
- return row_head_dict.keys(), output_stats_dict.keys()
-
-
-def _get_progress(
- itn, losses, dev_scores, output_stats, beam_width=None, cpu_wps=0.0, gpu_wps=0.0
-):
- scores = {}
- for stat in output_stats:
- scores[stat] = 0.0
- scores["dep_loss"] = losses.get("parser", 0.0)
- scores["ner_loss"] = losses.get("ner", 0.0)
- scores["tag_loss"] = losses.get("tagger", 0.0)
- scores["morph_loss"] = losses.get("morphologizer", 0.0)
- scores["textcat_loss"] = losses.get("textcat", 0.0)
- scores["senter_loss"] = losses.get("senter", 0.0)
- scores["cpu_wps"] = cpu_wps
- scores["gpu_wps"] = gpu_wps or 0.0
- scores.update(dev_scores)
- formatted_scores = []
- for stat in output_stats:
- format_spec = "{:.3f}"
- if stat.endswith("_wps"):
- format_spec = "{:.0f}"
- formatted_scores.append(format_spec.format(scores[stat]))
- result = [itn + 1]
- result.extend(formatted_scores)
- if beam_width is not None:
- result.insert(1, beam_width)
- return result
-
-
-def _get_total_speed(speeds):
- seconds_per_word = 0.0
- for words_per_second in speeds:
- if words_per_second is None:
- return None
- seconds_per_word += 1.0 / words_per_second
- return 1.0 / seconds_per_word
diff --git a/spacy/cli/train_from_config.py b/spacy/cli/train_from_config.py
index a6d0a0abc..ec099b294 100644
--- a/spacy/cli/train_from_config.py
+++ b/spacy/cli/train_from_config.py
@@ -1,5 +1,7 @@
from typing import Optional, Dict, List, Union, Sequence
from timeit import default_timer as timer
+
+import srsly
from pydantic import BaseModel, FilePath
import plac
import tqdm
@@ -11,9 +13,10 @@ from thinc.api import Model, use_pytorch_for_gpu_memory
import random
from ..gold import GoldCorpus
+from ..lookups import Lookups
from .. import util
from ..errors import Errors
-from ..ml import models # don't remove - required to load the built-in architectures
+from ..ml import models # don't remove - required to load the built-in architectures
registry = util.registry
@@ -23,7 +26,6 @@ patience = 10
eval_frequency = 10
dropout = 0.2
init_tok2vec = null
-vectors = null
max_epochs = 100
orth_variant_level = 0.0
gold_preproc = false
@@ -47,7 +49,7 @@ beta2 = 0.999
[nlp]
lang = "en"
-vectors = ${training:vectors}
+vectors = null
[nlp.pipeline.tok2vec]
factory = "tok2vec"
@@ -93,7 +95,6 @@ class ConfigSchema(BaseModel):
eval_frequency: int = 100
dropout: float = 0.2
init_tok2vec: Optional[FilePath] = None
- vectors: Optional[str] = None
max_epochs: int = 100
orth_variant_level: float = 0.0
gold_preproc: bool = False
@@ -119,9 +120,14 @@ class ConfigSchema(BaseModel):
dev_path=("Location of JSON-formatted development data", "positional", None, Path),
config_path=("Path to config file", "positional", None, Path),
output_path=("Output directory to store model in", "option", "o", Path),
- meta_path=("Optional path to meta.json to use as base.", "option", "m", Path),
+ init_tok2vec=(
+ "Path to pretrained weights for the tok2vec components. See 'spacy pretrain'. Experimental.", "option", "t2v",
+ Path),
raw_text=("Path to jsonl file with unlabelled text documents.", "option", "rt", Path),
+ verbose=("Display more information for debugging purposes", "flag", "VV", bool),
use_gpu=("Use GPU", "option", "g", int),
+ tag_map_path=("Location of JSON-formatted tag map", "option", "tm", Path),
+ omit_extra_lookups=("Don't include extra lookups in model", "flag", "OEL", bool),
# fmt: on
)
def train_cli(
@@ -129,30 +135,53 @@ def train_cli(
dev_path,
config_path,
output_path=None,
- meta_path=None,
+ init_tok2vec=None,
raw_text=None,
- debug=False,
verbose=False,
use_gpu=-1,
+ tag_map_path=None,
+ omit_extra_lookups=False,
):
"""
Train or update a spaCy model. Requires data to be formatted in spaCy's
JSON format. To convert data from other formats, use the `spacy convert`
command.
"""
+ util.set_env_log(verbose)
+
+ # Make sure all files and paths exists if they are needed
if not config_path or not config_path.exists():
msg.fail("Config file not found", config_path, exits=1)
if not train_path or not train_path.exists():
msg.fail("Training data not found", train_path, exits=1)
if not dev_path or not dev_path.exists():
msg.fail("Development data not found", dev_path, exits=1)
- if meta_path is not None and not meta_path.exists():
- msg.fail("Can't find model meta.json", meta_path, exits=1)
if output_path is not None and not output_path.exists():
output_path.mkdir()
+ msg.good(f"Created output directory: {output_path}")
+ elif output_path.exists() and [p for p in output_path.iterdir() if p.is_dir()]:
+ msg.warn(
+ "Output directory is not empty.",
+ "This can lead to unintended side effects when saving the model. "
+ "Please use an empty directory or a different path instead. If "
+ "the specified output path doesn't exist, the directory will be "
+ "created for you.",
+ )
+ if raw_text is not None:
+ raw_text = list(srsly.read_jsonl(raw_text))
+ tag_map = {}
+ if tag_map_path is not None:
+ tag_map = srsly.read_json(tag_map_path)
+
+ weights_data = None
+ if init_tok2vec is not None:
+ if not init_tok2vec.exists():
+ msg.fail("Can't find pretrained tok2vec", init_tok2vec, exits=1)
+ with init_tok2vec.open("rb") as file_:
+ weights_data = file_.read()
if use_gpu >= 0:
- msg.info("Using GPU")
+ msg.info("Using GPU: {use_gpu}")
util.use_gpu(use_gpu)
else:
msg.info("Using CPU")
@@ -161,13 +190,21 @@ def train_cli(
config_path,
{"train": train_path, "dev": dev_path},
output_path=output_path,
- meta_path=meta_path,
raw_text=raw_text,
+ tag_map=tag_map,
+ weights_data=weights_data,
+ omit_extra_lookups=omit_extra_lookups,
)
def train(
- config_path, data_paths, raw_text=None, meta_path=None, output_path=None,
+ config_path,
+ data_paths,
+ raw_text=None,
+ output_path=None,
+ tag_map=None,
+ weights_data=None,
+ omit_extra_lookups=False,
):
msg.info(f"Loading config from: {config_path}")
# Read the config first without creating objects, to get to the original nlp_config
@@ -177,15 +214,104 @@ def train(
use_pytorch_for_gpu_memory()
nlp_config = config["nlp"]
config = util.load_config(config_path, create_objects=True)
+ training = config["training"]
msg.info("Creating nlp from config")
nlp = util.load_model_from_config(nlp_config)
- training = config["training"]
optimizer = training["optimizer"]
limit = training["limit"]
msg.info("Loading training corpus")
corpus = GoldCorpus(data_paths["train"], data_paths["dev"], limit=limit)
- msg.info("Initializing the nlp pipeline")
- nlp.begin_training(lambda: corpus.train_examples)
+
+ # verify textcat config
+ if "textcat" in nlp_config["pipeline"]:
+ textcat_labels = set(nlp.get_pipe("textcat").labels)
+ textcat_multilabel = not nlp_config["pipeline"]["textcat"]["model"]["exclusive_classes"]
+
+ # check whether the setting 'exclusive_classes' corresponds to the provided training data
+ if textcat_multilabel:
+ multilabel_found = False
+ for ex in corpus.train_examples:
+ cats = ex.doc_annotation.cats
+ textcat_labels.update(cats.keys())
+ if list(cats.values()).count(1.0) != 1:
+ multilabel_found = True
+ if not multilabel_found:
+ msg.warn(
+ "The textcat training instances look like they have "
+ "mutually exclusive classes. Set 'exclusive_classes' "
+ "to 'true' in the config to train a classifier with "
+ "mutually exclusive classes more accurately."
+ )
+ else:
+ for ex in corpus.train_examples:
+ cats = ex.doc_annotation.cats
+ textcat_labels.update(cats.keys())
+ if list(cats.values()).count(1.0) != 1:
+ msg.fail(
+ "Some textcat training instances do not have exactly "
+ "one positive label. Set 'exclusive_classes' "
+ "to 'false' in the config to train a classifier with classes "
+ "that are not mutually exclusive."
+ )
+ msg.info(f"Initialized textcat component for {len(textcat_labels)} unique labels")
+ nlp.get_pipe("textcat").labels = tuple(textcat_labels)
+
+ # if 'positive_label' is provided: double check whether it's in the data and the task is binary
+ if nlp_config["pipeline"]["textcat"].get("positive_label", None):
+ textcat_labels = nlp.get_pipe("textcat").cfg.get("labels", [])
+ pos_label = nlp_config["pipeline"]["textcat"]["positive_label"]
+ if pos_label not in textcat_labels:
+ msg.fail(
+ f"The textcat's 'positive_label' config setting '{pos_label}' "
+ f"does not match any label in the training data.",
+ exits=1,
+ )
+ if len(textcat_labels) != 2:
+ msg.fail(
+ f"A textcat 'positive_label' '{pos_label}' was "
+ f"provided for training data that does not appear to be a "
+ f"binary classification problem with two labels.",
+ exits=1,
+ )
+
+ if training.get("resume", False):
+ msg.info("Resuming training")
+ nlp.resume_training()
+ else:
+ msg.info(f"Initializing the nlp pipeline: {nlp.pipe_names}")
+ nlp.begin_training(
+ lambda: corpus.train_examples
+ )
+
+ # Update tag map with provided mapping
+ nlp.vocab.morphology.tag_map.update(tag_map)
+
+ # Create empty extra lexeme tables so the data from spacy-lookups-data
+ # isn't loaded if these features are accessed
+ if omit_extra_lookups:
+ nlp.vocab.lookups_extra = Lookups()
+ nlp.vocab.lookups_extra.add_table("lexeme_cluster")
+ nlp.vocab.lookups_extra.add_table("lexeme_prob")
+ nlp.vocab.lookups_extra.add_table("lexeme_settings")
+
+ # Load a pretrained tok2vec model - cf. CLI command 'pretrain'
+ if weights_data is not None:
+ tok2vec_path = config.get("pretraining", {}).get("tok2vec_model", None)
+ if tok2vec_path is None:
+ msg.fail(
+ f"To use a pretrained tok2vec model, the config needs to specify which "
+ f"tok2vec layer to load in the setting [pretraining.tok2vec_model].",
+ exits=1,
+ )
+ tok2vec = config
+ for subpath in tok2vec_path.split("."):
+ tok2vec = tok2vec.get(subpath)
+ if not tok2vec:
+ msg.fail(
+ f"Could not locate the tok2vec model at {tok2vec_path}.",
+ exits=1,
+ )
+ tok2vec.from_bytes(weights_data)
train_batches = create_train_batches(nlp, corpus, training)
evaluate = create_evaluation_callback(nlp, optimizer, corpus, training)
@@ -202,6 +328,7 @@ def train(
patience=training.get("patience", 0),
max_steps=training.get("max_steps", 0),
eval_frequency=training["eval_frequency"],
+ raw_text=raw_text,
)
msg.info(f"Training. Initial learn rate: {optimizer.learn_rate}")
@@ -215,7 +342,8 @@ def train(
progress.close()
print_row(info)
if is_best_checkpoint and output_path is not None:
- nlp.to_disk(output_path)
+ update_meta(training, nlp, info)
+ nlp.to_disk(output_path / "model-best")
progress = tqdm.tqdm(total=training["eval_frequency"], leave=False)
# Clean up the objects to faciliate garbage collection.
for eg in batch:
@@ -223,6 +351,12 @@ def train(
eg.goldparse = None
eg.doc_annotation = None
eg.token_annotation = None
+ except Exception as e:
+ msg.warn(
+ f"Aborting and saving the final best model. "
+ f"Encountered exception: {str(e)}",
+ exits=1,
+ )
finally:
if output_path is not None:
final_model_path = output_path / "model-final"
@@ -231,24 +365,30 @@ def train(
nlp.to_disk(final_model_path)
else:
nlp.to_disk(final_model_path)
- msg.good("Saved model to output directory", final_model_path)
+ msg.good(f"Saved model to output directory {final_model_path}")
def create_train_batches(nlp, corpus, cfg):
epochs_todo = cfg.get("max_epochs", 0)
while True:
- train_examples = list(corpus.train_dataset(
- nlp,
- noise_level=0.0,
- orth_variant_level=cfg["orth_variant_level"],
- gold_preproc=cfg["gold_preproc"],
- max_length=cfg["max_length"],
- ignore_misaligned=True,
- ))
+ train_examples = list(
+ corpus.train_dataset(
+ nlp,
+ noise_level=cfg["noise_level"],
+ orth_variant_level=cfg["orth_variant_level"],
+ gold_preproc=cfg["gold_preproc"],
+ max_length=cfg["max_length"],
+ ignore_misaligned=True,
+ )
+ )
if len(train_examples) == 0:
raise ValueError(Errors.E988)
random.shuffle(train_examples)
- batches = util.minibatch_by_words(train_examples, size=cfg["batch_size"], discard_oversize=cfg["discard_oversize"])
+ batches = util.minibatch_by_words(
+ train_examples,
+ size=cfg["batch_size"],
+ discard_oversize=cfg["discard_oversize"],
+ )
# make sure the minibatch_by_words result is not empty, or we'll have an infinite training loop
try:
first = next(batches)
@@ -273,7 +413,7 @@ def create_evaluation_callback(nlp, optimizer, corpus, cfg):
)
n_words = sum(len(ex.doc) for ex in dev_examples)
start_time = timer()
-
+
if optimizer.averages:
with nlp.use_params(optimizer.averages):
scorer = nlp.evaluate(dev_examples, batch_size=32)
@@ -284,7 +424,11 @@ def create_evaluation_callback(nlp, optimizer, corpus, cfg):
scores = scorer.scores
# Calculate a weighted sum based on score_weights for the main score
weights = cfg["score_weights"]
- weighted_score = sum(scores[s] * weights.get(s, 0.0) for s in weights)
+ try:
+ weighted_score = sum(scores[s] * weights.get(s, 0.0) for s in weights)
+ except KeyError as e:
+ raise KeyError(Errors.E983.format(dict_name='score_weights', key=str(e), keys=list(scores.keys())))
+
scores["speed"] = wps
return weighted_score, scores
@@ -292,8 +436,17 @@ def create_evaluation_callback(nlp, optimizer, corpus, cfg):
def train_while_improving(
- nlp, optimizer, train_data, evaluate, *, dropout, eval_frequency,
- accumulate_gradient=1, patience=0, max_steps=0
+ nlp,
+ optimizer,
+ train_data,
+ evaluate,
+ *,
+ dropout,
+ eval_frequency,
+ accumulate_gradient=1,
+ patience=0,
+ max_steps=0,
+ raw_text=None,
):
"""Train until an evaluation stops improving. Works as a generator,
with each iteration yielding a tuple `(batch, info, is_best_checkpoint)`,
@@ -341,11 +494,22 @@ def train_while_improving(
losses = {}
to_enable = [name for name, proc in nlp.pipeline if hasattr(proc, "model")]
+ if raw_text:
+ random.shuffle(raw_text)
+ raw_batches = util.minibatch(
+ (nlp.make_doc(rt["text"]) for rt in raw_text), size=8
+ )
+
for step, batch in enumerate(train_data):
dropout = next(dropouts)
with nlp.select_pipes(enable=to_enable):
for subbatch in subdivide_batch(batch, accumulate_gradient):
nlp.update(subbatch, drop=dropout, losses=losses, sgd=False)
+ if raw_text:
+ # If raw text is available, perform 'rehearsal' updates,
+ # which use unlabelled data to reduce overfitting.
+ raw_batch = list(next(raw_batches))
+ nlp.rehearse(raw_batch, sgd=optimizer, losses=losses)
for name, proc in nlp.pipeline:
if hasattr(proc, "model"):
proc.model.finish_update(optimizer)
@@ -386,7 +550,7 @@ def subdivide_batch(batch, accumulate_gradient):
if subbatch:
yield subbatch
start += len(subbatch)
- subbatch = batch[start : ]
+ subbatch = batch[start:]
if subbatch:
yield subbatch
@@ -405,14 +569,34 @@ def setup_printer(training, nlp):
msg.row(["-" * width for width in table_widths])
def print_row(info):
- losses = [
- "{0:.2f}".format(float(info["losses"].get(pipe_name, 0.0)))
- for pipe_name in nlp.pipe_names
- ]
- scores = [
- "{0:.2f}".format(float(info["other_scores"].get(col, 0.0))) for col in score_cols
- ]
- data = [info["step"]] + losses + scores + ["{0:.2f}".format(float(info["score"]))]
+ try:
+ losses = [
+ "{0:.2f}".format(float(info["losses"][pipe_name]))
+ for pipe_name in nlp.pipe_names
+ ]
+ except KeyError as e:
+ raise KeyError(
+ Errors.E983.format(dict_name='scores (losses)', key=str(e), keys=list(info["losses"].keys())))
+
+ try:
+ scores = [
+ "{0:.2f}".format(float(info["other_scores"][col]))
+ for col in score_cols
+ ]
+ except KeyError as e:
+ raise KeyError(Errors.E983.format(dict_name='scores (other)', key=str(e), keys=list(info["other_scores"].keys())))
+ data = (
+ [info["step"]] + losses + scores + ["{0:.2f}".format(float(info["score"]))]
+ )
msg.row(data, widths=table_widths, aligns=table_aligns)
return print_row
+
+
+def update_meta(training, nlp, info):
+ score_cols = training["scores"]
+ nlp.meta["performance"] = {}
+ for metric in score_cols:
+ nlp.meta["performance"][metric] = info["other_scores"][metric]
+ for pipe_name in nlp.pipe_names:
+ nlp.meta["performance"][f"{pipe_name}_loss"] = info["losses"][pipe_name]
diff --git a/spacy/errors.py b/spacy/errors.py
index 94a0218a7..d6fdd1b43 100644
--- a/spacy/errors.py
+++ b/spacy/errors.py
@@ -580,7 +580,14 @@ class Errors(object):
"table, which contains {n_rows} vectors.")
# TODO: fix numbering after merging develop into master
-
+ E983 = ("Invalid key for '{dict_name}': {key}. Available keys: "
+ "{keys}")
+ E984 = ("Could not parse the {input} - double check the data is written "
+ "in the correct format as expected by spaCy.")
+ E985 = ("The pipeline component '{component}' is already available in the base "
+ "model. The settings in the component block in the config file are "
+ "being ignored. If you want to replace this component instead, set "
+ "'replace' to True in the training configuration.")
E986 = ("Could not create any training batches: check your input. "
"Perhaps discard_oversize should be set to False ?")
E987 = ("The text of an example training instance is either a Doc or "
diff --git a/spacy/gold.pyx b/spacy/gold.pyx
index 1e58f0635..19b135193 100644
--- a/spacy/gold.pyx
+++ b/spacy/gold.pyx
@@ -229,6 +229,10 @@ class GoldCorpus(object):
if not (doc is None or isinstance(doc, Doc) or isinstance(doc, str)):
raise ValueError(Errors.E987.format(type=type(doc)))
examples.append(Example.from_dict(ex_dict, doc=doc))
+ else:
+ raise ValueError(Errors.E984.format(input="JSONL format"))
+ else:
+ raise ValueError(Errors.E984.format(input="JSONL format"))
elif file_name.endswith("msg"):
text, ex_dict = srsly.read_msgpack(loc)
@@ -550,14 +554,22 @@ def json_to_examples(doc):
def read_json_file(loc, docs_filter=None, limit=None):
loc = util.ensure_path(loc)
if loc.is_dir():
+ parsed = False
for filename in loc.iterdir():
+ parsed = True
yield from read_json_file(loc / filename, limit=limit)
+ if not parsed:
+ raise ValueError(Errors.E984.format(input="JSON directory"))
else:
+ parsed = False
for doc in _json_iterate(loc):
if docs_filter is not None and not docs_filter(doc):
continue
for json_data in json_to_examples(doc):
+ parsed = True
yield json_data
+ if not parsed:
+ raise ValueError(Errors.E984.format(input="JSON file"))
def _json_iterate(loc):
diff --git a/spacy/language.py b/spacy/language.py
index 6341dc858..97bdd698c 100644
--- a/spacy/language.py
+++ b/spacy/language.py
@@ -319,14 +319,14 @@ class Language(object):
# transform the model's config to an actual Model
factory_cfg = dict(config)
- # check whether we have a proper model config, or load a default one
+ # check whether we have a proper model config, ignore if the type is wrong
if "model" in factory_cfg and not isinstance(factory_cfg["model"], dict):
warnings.warn(
Warnings.W099.format(type=type(factory_cfg["model"]), pipe=name)
)
# refer to the model configuration in the cfg settings for this component
- if "model" in factory_cfg:
+ elif "model" in factory_cfg:
self.config[name] = {"model": factory_cfg["model"]}
# create all objects in the config
@@ -1086,6 +1086,7 @@ class component(object):
requires=tuple(),
retokenizes=False,
default_model=lambda: None,
+ default_config=None,
):
"""Decorate a pipeline component.
@@ -1099,6 +1100,7 @@ class component(object):
self.requires = validate_attrs(requires)
self.retokenizes = retokenizes
self.default_model = default_model
+ self.default_config = default_config
def __call__(self, *args, **kwargs):
obj = args[0]
@@ -1113,9 +1115,10 @@ class component(object):
def factory(nlp, model, **cfg):
if model is None:
model = self.default_model()
- warnings.warn(Warnings.W098.format(name=self.name))
- if model is None:
- warnings.warn(Warnings.W097.format(name=self.name))
+ if self.default_config:
+ for key, value in self.default_config.items():
+ if key not in cfg:
+ cfg[key] = value
if hasattr(obj, "from_nlp"):
return obj.from_nlp(nlp, model, **cfg)
elif isinstance(obj, type):
diff --git a/spacy/ml/models/multi_task.py b/spacy/ml/models/multi_task.py
index 8000d1aff..4a360a9e6 100644
--- a/spacy/ml/models/multi_task.py
+++ b/spacy/ml/models/multi_task.py
@@ -3,26 +3,31 @@ import numpy
from thinc.api import chain, Maxout, LayerNorm, Softmax, Linear, zero_init, Model
-def build_multi_task_model(n_tags, tok2vec=None, token_vector_width=96):
+def build_multi_task_model(tok2vec, maxout_pieces, token_vector_width, nO=None):
+ softmax = Softmax(nO=nO, nI=token_vector_width * 2)
model = chain(
tok2vec,
- Maxout(nO=token_vector_width * 2, nI=token_vector_width, nP=3, dropout=0.0),
+ Maxout(nO=token_vector_width * 2, nI=token_vector_width, nP=maxout_pieces, dropout=0.0),
LayerNorm(token_vector_width * 2),
- Softmax(nO=n_tags, nI=token_vector_width * 2),
+ softmax,
)
+ model.set_ref("tok2vec", tok2vec)
+ model.set_ref("output_layer", softmax)
return model
-def build_cloze_multi_task_model(vocab, tok2vec):
- output_size = vocab.vectors.data.shape[1]
+def build_cloze_multi_task_model(vocab, tok2vec, maxout_pieces, nO=None):
+ # nO = vocab.vectors.data.shape[1]
output_layer = chain(
Maxout(
- nO=output_size, nI=tok2vec.get_dim("nO"), nP=3, normalize=True, dropout=0.0
+ nO=nO, nI=tok2vec.get_dim("nO"), nP=maxout_pieces, normalize=True, dropout=0.0
),
- Linear(nO=output_size, nI=output_size, init_W=zero_init),
+ Linear(nO=nO, nI=nO, init_W=zero_init),
)
model = chain(tok2vec, output_layer)
model = build_masked_language_model(vocab, model)
+ model.set_ref("tok2vec", tok2vec)
+ model.set_ref("output_layer", output_layer)
return model
diff --git a/spacy/ml/models/textcat.py b/spacy/ml/models/textcat.py
index 141c66f79..a02e1a5a1 100644
--- a/spacy/ml/models/textcat.py
+++ b/spacy/ml/models/textcat.py
@@ -31,6 +31,7 @@ def build_simple_cnn_text_classifier(tok2vec, exclusive_classes, nO=None):
model.set_ref("output_layer", linear_layer)
model.set_ref("tok2vec", tok2vec)
model.set_dim("nO", nO)
+ model.attrs["multi_label"] = not exclusive_classes
return model
@@ -44,6 +45,7 @@ def build_bow_text_classifier(exclusive_classes, ngram_size, no_output_layer, nO
output_layer = softmax_activation() if exclusive_classes else Logistic()
model = model >> with_cpu(output_layer, output_layer.ops)
model.set_ref("output_layer", sparse_linear)
+ model.attrs["multi_label"] = not exclusive_classes
return model
@@ -110,6 +112,7 @@ def build_text_classifier(width, embed_size, pretrained_vectors, exclusive_class
if model.has_dim("nO") is not False:
model.set_dim("nO", nO)
model.set_ref("output_layer", linear_model.get_ref("output_layer"))
+ model.attrs["multi_label"] = not exclusive_classes
return model
diff --git a/spacy/pipeline/defaults/multitask_defaults.cfg b/spacy/pipeline/defaults/multitask_defaults.cfg
new file mode 100644
index 000000000..d3dbe9b53
--- /dev/null
+++ b/spacy/pipeline/defaults/multitask_defaults.cfg
@@ -0,0 +1,15 @@
+[model]
+@architectures = "spacy.MultiTask.v1"
+maxout_pieces = 3
+token_vector_width = 96
+
+[model.tok2vec]
+@architectures = "spacy.HashEmbedCNN.v1"
+pretrained_vectors = null
+width = 96
+depth = 4
+embed_size = 2000
+window_size = 1
+maxout_pieces = 2
+subword_features = true
+dropout = null
diff --git a/spacy/pipeline/pipes.pyx b/spacy/pipeline/pipes.pyx
index a6edf00d9..75628ce3c 100644
--- a/spacy/pipeline/pipes.pyx
+++ b/spacy/pipeline/pipes.pyx
@@ -648,9 +648,10 @@ class MultitaskObjective(Tagger):
side-objective.
"""
- def __init__(self, vocab, model, target='dep_tag_offset', **cfg):
+ def __init__(self, vocab, model, **cfg):
self.vocab = vocab
self.model = model
+ target = cfg["target"] # default: 'dep_tag_offset'
if target == "dep":
self.make_label = self.make_dep
elif target == "tag":
@@ -668,8 +669,6 @@ class MultitaskObjective(Tagger):
else:
raise ValueError(Errors.E016)
self.cfg = dict(cfg)
- # TODO: remove - put in config
- self.cfg.setdefault("maxout_pieces", 2)
@property
def labels(self):
@@ -682,7 +681,7 @@ class MultitaskObjective(Tagger):
def set_annotations(self, docs, dep_ids, tensors=None):
pass
- def begin_training(self, get_examples=lambda: [], pipeline=None, tok2vec=None,
+ def begin_training(self, get_examples=lambda: [], pipeline=None,
sgd=None, **kwargs):
gold_examples = nonproj.preprocess_training_data(get_examples())
# for raw_text, doc_annot in gold_tuples:
@@ -808,13 +807,13 @@ class ClozeMultitask(Pipe):
self.vocab = vocab
self.model = model
self.cfg = cfg
- self.distance = CosineDistance(ignore_zeros=True, normalize=False)
+ self.distance = CosineDistance(ignore_zeros=True, normalize=False) # TODO: in config
def set_annotations(self, docs, dep_ids, tensors=None):
pass
def begin_training(self, get_examples=lambda: [], pipeline=None,
- tok2vec=None, sgd=None, **kwargs):
+ sgd=None, **kwargs):
link_vectors_to_models(self.vocab)
self.model.initialize()
X = self.model.ops.alloc((5, self.model.get_ref("tok2vec").get_dim("nO")))
@@ -951,13 +950,13 @@ class TextCategorizer(Pipe):
losses[self.name] += (gradient**2).sum()
def _examples_to_truth(self, examples):
- golds = [ex.gold for ex in examples]
- truths = numpy.zeros((len(golds), len(self.labels)), dtype="f")
- not_missing = numpy.ones((len(golds), len(self.labels)), dtype="f")
- for i, gold in enumerate(golds):
+ gold_cats = [ex.doc_annotation.cats for ex in examples]
+ truths = numpy.zeros((len(gold_cats), len(self.labels)), dtype="f")
+ not_missing = numpy.ones((len(gold_cats), len(self.labels)), dtype="f")
+ for i, gold_cat in enumerate(gold_cats):
for j, label in enumerate(self.labels):
- if label in gold.cats:
- truths[i, j] = gold.cats[label]
+ if label in gold_cat:
+ truths[i, j] = gold_cat[label]
else:
not_missing[i, j] = 0.
truths = self.model.ops.asarray(truths)
@@ -1026,28 +1025,27 @@ cdef class DependencyParser(Parser):
output.append(merge_subtokens)
return tuple(output)
- def add_multitask_objective(self, target):
- if target == "cloze":
- cloze = ClozeMultitask(self.vocab)
- self._multitasks.append(cloze)
- else:
- labeller = MultitaskObjective(self.vocab, target=target)
- self._multitasks.append(labeller)
+ def add_multitask_objective(self, mt_component):
+ self._multitasks.append(mt_component)
def init_multitask_objectives(self, get_examples, pipeline, sgd=None, **cfg):
+ # TODO: transfer self.model.get_ref("tok2vec") to the multitask's model ?
for labeller in self._multitasks:
- tok2vec = self.model.get_ref("tok2vec")
- labeller.begin_training(get_examples, pipeline=pipeline,
- tok2vec=tok2vec, sgd=sgd)
+ labeller.model.set_dim("nO", len(self.labels))
+ if labeller.model.has_ref("output_layer"):
+ labeller.model.get_ref("output_layer").set_dim("nO", len(self.labels))
+ labeller.begin_training(get_examples, pipeline=pipeline, sgd=sgd)
def __reduce__(self):
- return (DependencyParser, (self.vocab, self.model), self.moves)
+ return (DependencyParser, (self.vocab, self.model), (self.moves, self.cfg))
def __getstate__(self):
- return self.moves
+ return (self.moves, self.cfg)
- def __setstate__(self, moves):
+ def __setstate__(self, state):
+ moves, config = state
self.moves = moves
+ self.cfg = config
@property
def labels(self):
@@ -1073,28 +1071,27 @@ cdef class EntityRecognizer(Parser):
requires = []
TransitionSystem = BiluoPushDown
- def add_multitask_objective(self, target):
- if target == "cloze":
- cloze = ClozeMultitask(self.vocab)
- self._multitasks.append(cloze)
- else:
- labeller = MultitaskObjective(self.vocab, target=target)
- self._multitasks.append(labeller)
+ def add_multitask_objective(self, mt_component):
+ self._multitasks.append(mt_component)
def init_multitask_objectives(self, get_examples, pipeline, sgd=None, **cfg):
+ # TODO: transfer self.model.get_ref("tok2vec") to the multitask's model ?
for labeller in self._multitasks:
- tok2vec = self.model.get_ref("tok2vec")
- labeller.begin_training(get_examples, pipeline=pipeline,
- tok2vec=tok2vec)
+ labeller.model.set_dim("nO", len(self.labels))
+ if labeller.model.has_ref("output_layer"):
+ labeller.model.get_ref("output_layer").set_dim("nO", len(self.labels))
+ labeller.begin_training(get_examples, pipeline=pipeline)
def __reduce__(self):
- return (EntityRecognizer, (self.vocab, self.model), self.moves)
+ return (EntityRecognizer, (self.vocab, self.model), (self.moves, self.cfg))
def __getstate__(self):
- return self.moves
+ return self.moves, self.cfg
- def __setstate__(self, moves):
+ def __setstate__(self, state):
+ moves, config = state
self.moves = moves
+ self.cfg = config
@property
def labels(self):
@@ -1565,15 +1562,23 @@ Language.factories["parser"] = lambda nlp, model, **cfg: parser_factory(nlp, mod
Language.factories["ner"] = lambda nlp, model, **cfg: ner_factory(nlp, model, **cfg)
def parser_factory(nlp, model, **cfg):
+ default_config = {"learn_tokens": False, "min_action_freq": 30, "beam_width": 1, "beam_update_prob": 1.0}
if model is None:
model = default_parser()
warnings.warn(Warnings.W098.format(name="parser"))
+ for key, value in default_config.items():
+ if key not in cfg:
+ cfg[key] = value
return DependencyParser.from_nlp(nlp, model, **cfg)
def ner_factory(nlp, model, **cfg):
+ default_config = {"learn_tokens": False, "min_action_freq": 30, "beam_width": 1, "beam_update_prob": 1.0}
if model is None:
model = default_ner()
warnings.warn(Warnings.W098.format(name="ner"))
+ for key, value in default_config.items():
+ if key not in cfg:
+ cfg[key] = value
return EntityRecognizer.from_nlp(nlp, model, **cfg)
__all__ = ["Tagger", "DependencyParser", "EntityRecognizer", "TextCategorizer", "EntityLinker", "Sentencizer", "SentenceRecognizer"]
diff --git a/spacy/pipeline/tok2vec.py b/spacy/pipeline/tok2vec.py
index 5882fa266..de30a55f0 100644
--- a/spacy/pipeline/tok2vec.py
+++ b/spacy/pipeline/tok2vec.py
@@ -172,7 +172,7 @@ class Tok2VecListener(Model):
def verify_inputs(self, inputs):
if self._batch_id is None and self._outputs is None:
- raise ValueError
+ raise ValueError("The Tok2Vec listener did not receive valid input.")
else:
batch_id = self.get_batch_id(inputs)
if batch_id != self._batch_id:
diff --git a/spacy/scorer.py b/spacy/scorer.py
index 7e2466be7..288da23aa 100644
--- a/spacy/scorer.py
+++ b/spacy/scorer.py
@@ -88,24 +88,20 @@ class Scorer(object):
self.ner = PRFScore()
self.ner_per_ents = dict()
self.eval_punct = eval_punct
- self.textcat = None
- self.textcat_per_cat = dict()
+ self.textcat = PRFScore()
+ self.textcat_f_per_cat = dict()
+ self.textcat_auc_per_cat = dict()
self.textcat_positive_label = None
self.textcat_multilabel = False
if pipeline:
- for name, model in pipeline:
+ for name, component in pipeline:
if name == "textcat":
- self.textcat_positive_label = model.cfg.get("positive_label", None)
- if self.textcat_positive_label:
- self.textcat = PRFScore()
- if not model.cfg.get("exclusive_classes", False):
- self.textcat_multilabel = True
- for label in model.cfg.get("labels", []):
- self.textcat_per_cat[label] = ROCAUCScore()
- else:
- for label in model.cfg.get("labels", []):
- self.textcat_per_cat[label] = PRFScore()
+ self.textcat_multilabel = component.model.attrs["multi_label"]
+ self.textcat_positive_label = component.cfg.get("positive_label", None)
+ for label in component.cfg.get("labels", []):
+ self.textcat_auc_per_cat[label] = ROCAUCScore()
+ self.textcat_f_per_cat[label] = PRFScore()
@property
def tags_acc(self):
@@ -207,46 +203,52 @@ class Scorer(object):
}
@property
- def textcat_score(self):
- """RETURNS (float): f-score on positive label for binary exclusive,
- macro-averaged f-score for 3+ exclusive,
- macro-averaged AUC ROC score for multilabel (-1 if undefined)
+ def textcat_f(self):
+ """RETURNS (float): f-score on positive label for binary classification,
+ macro-averaged f-score for multilabel classification
"""
if not self.textcat_multilabel:
- # binary multiclass
if self.textcat_positive_label:
+ # binary classification
return self.textcat.fscore * 100
- # other multiclass
- return (
- sum([score.fscore for label, score in self.textcat_per_cat.items()])
- / (len(self.textcat_per_cat) + 1e-100)
- * 100
- )
- # multilabel
+ # multi-class and/or multi-label
+ return (
+ sum([score.fscore for label, score in self.textcat_f_per_cat.items()])
+ / (len(self.textcat_f_per_cat) + 1e-100)
+ * 100
+ )
+
+ @property
+ def textcat_auc(self):
+ """RETURNS (float): macro-averaged AUC ROC score for multilabel classification (-1 if undefined)
+ """
return max(
- sum([score.score for label, score in self.textcat_per_cat.items()])
- / (len(self.textcat_per_cat) + 1e-100),
+ sum([score.score for label, score in self.textcat_auc_per_cat.items()])
+ / (len(self.textcat_auc_per_cat) + 1e-100),
-1,
)
@property
- def textcats_per_cat(self):
- """RETURNS (dict): Scores per textcat label.
+ def textcats_auc_per_cat(self):
+ """RETURNS (dict): AUC ROC Scores per textcat label.
"""
- if not self.textcat_multilabel:
- return {
- k: {"p": v.precision * 100, "r": v.recall * 100, "f": v.fscore * 100}
- for k, v in self.textcat_per_cat.items()
- }
return {
k: {"roc_auc_score": max(v.score, -1)}
- for k, v in self.textcat_per_cat.items()
+ for k, v in self.textcat_auc_per_cat.items()
+ }
+
+ @property
+ def textcats_f_per_cat(self):
+ """RETURNS (dict): F-scores per textcat label.
+ """
+ return {
+ k: {"p": v.precision * 100, "r": v.recall * 100, "f": v.fscore * 100}
+ for k, v in self.textcat_f_per_cat.items()
}
@property
def scores(self):
- """RETURNS (dict): All scores with keys `uas`, `las`, `ents_p`,
- `ents_r`, `ents_f`, `tags_acc`, `token_acc`, and `textcat_score`.
+ """RETURNS (dict): All scores mapped by key.
"""
return {
"uas": self.uas,
@@ -264,8 +266,10 @@ class Scorer(object):
"sent_r": self.sent_r,
"sent_f": self.sent_f,
"token_acc": self.token_acc,
- "textcat_score": self.textcat_score,
- "textcats_per_cat": self.textcats_per_cat,
+ "textcat_f": self.textcat_f,
+ "textcat_auc": self.textcat_auc,
+ "textcats_f_per_cat": self.textcats_f_per_cat,
+ "textcats_auc_per_cat": self.textcats_auc_per_cat,
}
def score(self, example, verbose=False, punct_labels=("p", "punct")):
@@ -408,7 +412,7 @@ class Scorer(object):
)
if (
len(gold.cats) > 0
- and set(self.textcat_per_cat) == set(gold.cats)
+ and set(self.textcat_f_per_cat) == set(self.textcat_auc_per_cat) == set(gold.cats)
and set(gold.cats) == set(doc.cats)
):
goldcat = max(gold.cats, key=gold.cats.get)
@@ -418,17 +422,21 @@ class Scorer(object):
set([self.textcat_positive_label]) & set([candcat]),
set([self.textcat_positive_label]) & set([goldcat]),
)
- for label in self.textcat_per_cat:
- if self.textcat_multilabel:
- self.textcat_per_cat[label].score_set(
+ for label in set(gold.cats):
+ self.textcat_auc_per_cat[label].score_set(
doc.cats[label], gold.cats[label]
- )
- else:
- self.textcat_per_cat[label].score_set(
+ )
+ self.textcat_f_per_cat[label].score_set(
set([label]) & set([candcat]), set([label]) & set([goldcat])
- )
- elif len(self.textcat_per_cat) > 0:
- model_labels = set(self.textcat_per_cat)
+ )
+ elif len(self.textcat_f_per_cat) > 0:
+ model_labels = set(self.textcat_f_per_cat)
+ eval_labels = set(gold.cats)
+ raise ValueError(
+ Errors.E162.format(model_labels=model_labels, eval_labels=eval_labels)
+ )
+ elif len(self.textcat_auc_per_cat) > 0:
+ model_labels = set(self.textcat_auc_per_cat)
eval_labels = set(gold.cats)
raise ValueError(
Errors.E162.format(model_labels=model_labels, eval_labels=eval_labels)
diff --git a/spacy/syntax/nn_parser.pyx b/spacy/syntax/nn_parser.pyx
index fcaff444e..7bd9562e2 100644
--- a/spacy/syntax/nn_parser.pyx
+++ b/spacy/syntax/nn_parser.pyx
@@ -63,15 +63,14 @@ cdef class Parser:
# defined by EntityRecognizer as a BiluoPushDown
moves = self.TransitionSystem(self.vocab.strings)
self.moves = moves
- cfg.setdefault('min_action_freq', 30)
- cfg.setdefault('learn_tokens', False)
- cfg.setdefault('beam_width', 1)
- cfg.setdefault('beam_update_prob', 1.0) # or 0.5 (both defaults were previously used)
self.model = model
if self.moves.n_moves != 0:
self.set_output(self.moves.n_moves)
self.cfg = cfg
self._multitasks = []
+ for multitask in cfg.get("multitasks", []):
+ self.add_multitask_objective(multitask)
+
self._rehearsal_model = None
@classmethod
@@ -79,13 +78,15 @@ cdef class Parser:
return cls(nlp.vocab, model, **cfg)
def __reduce__(self):
- return (Parser, (self.vocab, self.model), self.moves)
+ return (Parser, (self.vocab, self.model), (self.moves, self.cfg))
def __getstate__(self):
- return self.moves
+ return (self.moves, self.cfg)
- def __setstate__(self, moves):
+ def __setstate__(self, state):
+ moves, config = state
self.moves = moves
+ self.cfg = config
@property
def move_names(self):
diff --git a/spacy/tests/doc/test_add_entities.py b/spacy/tests/doc/test_add_entities.py
index c92fc1ff9..879334056 100644
--- a/spacy/tests/doc/test_add_entities.py
+++ b/spacy/tests/doc/test_add_entities.py
@@ -9,7 +9,8 @@ from spacy.pipeline.defaults import default_ner
def test_doc_add_entities_set_ents_iob(en_vocab):
text = ["This", "is", "a", "lion"]
doc = get_doc(en_vocab, text)
- ner = EntityRecognizer(en_vocab, default_ner())
+ config = {"learn_tokens": False, "min_action_freq": 30, "beam_width": 1, "beam_update_prob": 1.0}
+ ner = EntityRecognizer(en_vocab, default_ner(), **config)
ner.begin_training([])
ner(doc)
assert len(list(doc.ents)) == 0
@@ -25,7 +26,8 @@ def test_doc_add_entities_set_ents_iob(en_vocab):
def test_ents_reset(en_vocab):
text = ["This", "is", "a", "lion"]
doc = get_doc(en_vocab, text)
- ner = EntityRecognizer(en_vocab, default_ner())
+ config = {"learn_tokens": False, "min_action_freq": 30, "beam_width": 1, "beam_update_prob": 1.0}
+ ner = EntityRecognizer(en_vocab, default_ner(), **config)
ner.begin_training([])
ner(doc)
assert [t.ent_iob_ for t in doc] == (["O"] * len(doc))
diff --git a/spacy/tests/parser/test_add_label.py b/spacy/tests/parser/test_add_label.py
index ee1bba886..f9663ba32 100644
--- a/spacy/tests/parser/test_add_label.py
+++ b/spacy/tests/parser/test_add_label.py
@@ -17,7 +17,8 @@ def vocab():
@pytest.fixture
def parser(vocab):
- parser = DependencyParser(vocab, default_parser())
+ config = {"learn_tokens": False, "min_action_freq": 30, "beam_width": 1, "beam_update_prob": 1.0}
+ parser = DependencyParser(vocab, default_parser(), **config)
return parser
@@ -57,12 +58,13 @@ def test_add_label(parser):
def test_add_label_deserializes_correctly():
- ner1 = EntityRecognizer(Vocab(), default_ner())
+ config = {"learn_tokens": False, "min_action_freq": 30, "beam_width": 1, "beam_update_prob": 1.0}
+ ner1 = EntityRecognizer(Vocab(), default_ner(), **config)
ner1.add_label("C")
ner1.add_label("B")
ner1.add_label("A")
ner1.begin_training([])
- ner2 = EntityRecognizer(Vocab(), default_ner())
+ ner2 = EntityRecognizer(Vocab(), default_ner(), **config)
# the second model needs to be resized before we can call from_bytes
ner2.model.attrs["resize_output"](ner2.model, ner1.moves.n_moves)
diff --git a/spacy/tests/parser/test_arc_eager_oracle.py b/spacy/tests/parser/test_arc_eager_oracle.py
index 30b4a6f6d..5d265261f 100644
--- a/spacy/tests/parser/test_arc_eager_oracle.py
+++ b/spacy/tests/parser/test_arc_eager_oracle.py
@@ -138,7 +138,8 @@ def test_get_oracle_actions():
deps.append(dep)
ents.append(ent)
doc = Doc(Vocab(), words=[t[1] for t in annot_tuples])
- parser = DependencyParser(doc.vocab, default_parser())
+ config = {"learn_tokens": False, "min_action_freq": 30, "beam_width": 1, "beam_update_prob": 1.0}
+ parser = DependencyParser(doc.vocab, default_parser(), **config)
parser.moves.add_action(0, "")
parser.moves.add_action(1, "")
parser.moves.add_action(1, "")
diff --git a/spacy/tests/parser/test_ner.py b/spacy/tests/parser/test_ner.py
index 8e41a16c0..b0a8109dc 100644
--- a/spacy/tests/parser/test_ner.py
+++ b/spacy/tests/parser/test_ner.py
@@ -138,7 +138,8 @@ def test_accept_blocked_token():
# 1. test normal behaviour
nlp1 = English()
doc1 = nlp1("I live in New York")
- ner1 = EntityRecognizer(doc1.vocab, default_ner())
+ config = {"learn_tokens": False, "min_action_freq": 30, "beam_width": 1, "beam_update_prob": 1.0}
+ ner1 = EntityRecognizer(doc1.vocab, default_ner(), **config)
assert [token.ent_iob_ for token in doc1] == ["", "", "", "", ""]
assert [token.ent_type_ for token in doc1] == ["", "", "", "", ""]
@@ -156,7 +157,8 @@ def test_accept_blocked_token():
# 2. test blocking behaviour
nlp2 = English()
doc2 = nlp2("I live in New York")
- ner2 = EntityRecognizer(doc2.vocab, default_ner())
+ config = {"learn_tokens": False, "min_action_freq": 30, "beam_width": 1, "beam_update_prob": 1.0}
+ ner2 = EntityRecognizer(doc2.vocab, default_ner(), **config)
# set "New York" to a blocked entity
doc2.ents = [(0, 3, 5)]
@@ -213,7 +215,8 @@ def test_overwrite_token():
assert [token.ent_type_ for token in doc] == ["", "", "", "", ""]
# Check that a new ner can overwrite O
- ner2 = EntityRecognizer(doc.vocab, default_ner())
+ config = {"learn_tokens": False, "min_action_freq": 30, "beam_width": 1, "beam_update_prob": 1.0}
+ ner2 = EntityRecognizer(doc.vocab, default_ner(), **config)
ner2.moves.add_action(5, "")
ner2.add_label("GPE")
state = ner2.moves.init_batch([doc])[0]
diff --git a/spacy/tests/parser/test_neural_parser.py b/spacy/tests/parser/test_neural_parser.py
index b648e9a00..7f3e981ea 100644
--- a/spacy/tests/parser/test_neural_parser.py
+++ b/spacy/tests/parser/test_neural_parser.py
@@ -28,7 +28,8 @@ def tok2vec():
@pytest.fixture
def parser(vocab, arc_eager):
- return Parser(vocab, model=default_parser(), moves=arc_eager)
+ config = {"learn_tokens": False, "min_action_freq": 30, "beam_width": 1, "beam_update_prob": 1.0}
+ return Parser(vocab, model=default_parser(), moves=arc_eager, **config)
@pytest.fixture
diff --git a/spacy/tests/parser/test_nn_beam.py b/spacy/tests/parser/test_nn_beam.py
index db9eb5e6f..fa5d59f9e 100644
--- a/spacy/tests/parser/test_nn_beam.py
+++ b/spacy/tests/parser/test_nn_beam.py
@@ -94,7 +94,8 @@ def test_beam_advance_too_few_scores(beam, scores):
def test_beam_parse():
nlp = Language()
- nlp.add_pipe(DependencyParser(nlp.vocab, default_parser()), name="parser")
+ config = {"learn_tokens": False, "min_action_freq": 30, "beam_width": 1, "beam_update_prob": 1.0}
+ nlp.add_pipe(DependencyParser(nlp.vocab, default_parser(), **config), name="parser")
nlp.parser.add_label("nsubj")
nlp.parser.begin_training([], token_vector_width=8, hidden_width=8)
doc = nlp.make_doc("Australia is a country")
diff --git a/spacy/tests/parser/test_preset_sbd.py b/spacy/tests/parser/test_preset_sbd.py
index dc13fcdf1..ccf7d3ba3 100644
--- a/spacy/tests/parser/test_preset_sbd.py
+++ b/spacy/tests/parser/test_preset_sbd.py
@@ -16,7 +16,8 @@ def vocab():
@pytest.fixture
def parser(vocab):
- parser = DependencyParser(vocab, default_parser())
+ config = {"learn_tokens": False, "min_action_freq": 30, "beam_width": 1, "beam_update_prob": 1.0}
+ parser = DependencyParser(vocab, default_parser(), **config)
parser.cfg["token_vector_width"] = 4
parser.cfg["hidden_width"] = 32
# parser.add_label('right')
diff --git a/spacy/tests/regression/test_issue1501-2000.py b/spacy/tests/regression/test_issue1501-2000.py
index 5a76697bc..177b6bb3d 100644
--- a/spacy/tests/regression/test_issue1501-2000.py
+++ b/spacy/tests/regression/test_issue1501-2000.py
@@ -270,7 +270,8 @@ def test_issue1963(en_tokenizer):
@pytest.mark.parametrize("label", ["U-JOB-NAME"])
def test_issue1967(label):
- ner = EntityRecognizer(Vocab(), default_ner())
+ config = {"learn_tokens": False, "min_action_freq": 30, "beam_width": 1, "beam_update_prob": 1.0}
+ ner = EntityRecognizer(Vocab(), default_ner(), **config)
example = Example(doc=None)
example.set_token_annotation(
ids=[0], words=["word"], tags=["tag"], heads=[0], deps=["dep"], entities=[label]
diff --git a/spacy/tests/regression/test_issue3001-3500.py b/spacy/tests/regression/test_issue3001-3500.py
index 9ff118a1f..6df437b3c 100644
--- a/spacy/tests/regression/test_issue3001-3500.py
+++ b/spacy/tests/regression/test_issue3001-3500.py
@@ -196,7 +196,8 @@ def test_issue3345():
doc = Doc(nlp.vocab, words=["I", "live", "in", "New", "York"])
doc[4].is_sent_start = True
ruler = EntityRuler(nlp, patterns=[{"label": "GPE", "pattern": "New York"}])
- ner = EntityRecognizer(doc.vocab, default_ner())
+ config = {"learn_tokens": False, "min_action_freq": 30, "beam_width": 1, "beam_update_prob": 1.0}
+ ner = EntityRecognizer(doc.vocab, default_ner(), **config)
# Add the OUT action. I wouldn't have thought this would be necessary...
ner.moves.add_action(5, "")
ner.add_label("GPE")
diff --git a/spacy/tests/regression/test_issue3830.py b/spacy/tests/regression/test_issue3830.py
index 3d8e80847..15632bdf8 100644
--- a/spacy/tests/regression/test_issue3830.py
+++ b/spacy/tests/regression/test_issue3830.py
@@ -6,7 +6,8 @@ from spacy.pipeline.defaults import default_parser
def test_issue3830_no_subtok():
"""Test that the parser doesn't have subtok label if not learn_tokens"""
- parser = DependencyParser(Vocab(), default_parser())
+ config = {"learn_tokens": False, "min_action_freq": 30, "beam_width": 1, "beam_update_prob": 1.0}
+ parser = DependencyParser(Vocab(), default_parser(), **config)
parser.add_label("nsubj")
assert "subtok" not in parser.labels
parser.begin_training(lambda: [])
@@ -15,7 +16,8 @@ def test_issue3830_no_subtok():
def test_issue3830_with_subtok():
"""Test that the parser does have subtok label if learn_tokens=True."""
- parser = DependencyParser(Vocab(), default_parser(), learn_tokens=True)
+ config = {"learn_tokens": True, "min_action_freq": 30, "beam_width": 1, "beam_update_prob": 1.0}
+ parser = DependencyParser(Vocab(), default_parser(), **config)
parser.add_label("nsubj")
assert "subtok" not in parser.labels
parser.begin_training(lambda: [])
diff --git a/spacy/tests/regression/test_issue4042.py b/spacy/tests/regression/test_issue4042.py
index 30081543b..4978aba44 100644
--- a/spacy/tests/regression/test_issue4042.py
+++ b/spacy/tests/regression/test_issue4042.py
@@ -74,6 +74,7 @@ def test_issue4042_bug2():
output_dir.mkdir()
ner1.to_disk(output_dir)
- ner2 = EntityRecognizer(vocab, default_ner())
+ config = {"learn_tokens": False, "min_action_freq": 30, "beam_width": 1, "beam_update_prob": 1.0}
+ ner2 = EntityRecognizer(vocab, default_ner(), **config)
ner2.from_disk(output_dir)
assert len(ner2.labels) == 2
diff --git a/spacy/tests/regression/test_issue4313.py b/spacy/tests/regression/test_issue4313.py
index ba4d2deab..946316d85 100644
--- a/spacy/tests/regression/test_issue4313.py
+++ b/spacy/tests/regression/test_issue4313.py
@@ -12,7 +12,8 @@ def test_issue4313():
beam_width = 16
beam_density = 0.0001
nlp = English()
- ner = EntityRecognizer(nlp.vocab, default_ner())
+ config = {"learn_tokens": False, "min_action_freq": 30, "beam_width": 1, "beam_update_prob": 1.0}
+ ner = EntityRecognizer(nlp.vocab, default_ner(), **config)
ner.add_label("SOME_LABEL")
ner.begin_training([])
nlp.add_pipe(ner)
diff --git a/spacy/tests/regression/test_issue4725.py b/spacy/tests/regression/test_issue4725.py
index 967db5d67..cdc3c09ca 100644
--- a/spacy/tests/regression/test_issue4725.py
+++ b/spacy/tests/regression/test_issue4725.py
@@ -1,12 +1,30 @@
-import pytest
+import pickle
import numpy
from spacy.lang.en import English
from spacy.vocab import Vocab
+from spacy.tests.util import make_tempdir
+
+
+def test_pickle_ner():
+ """ Ensure the pickling of the NER goes well"""
+ vocab = Vocab(vectors_name="test_vocab_add_vector")
+ nlp = English(vocab=vocab)
+ ner = nlp.create_pipe("ner", config={"min_action_freq": 342})
+ with make_tempdir() as tmp_path:
+ with (tmp_path / "ner.pkl").open("wb") as file_:
+ pickle.dump(ner, file_)
+ assert ner.cfg["min_action_freq"] == 342
+
+ with (tmp_path / "ner.pkl").open("rb") as file_:
+ ner2 = pickle.load(file_)
+ assert ner2.cfg["min_action_freq"] == 342
+
def test_issue4725():
# ensures that this runs correctly and doesn't hang or crash because of the global vectors
+ # if it does crash, it's usually because of calling 'spawn' for multiprocessing (e.g. on Windows)
vocab = Vocab(vectors_name="test_vocab_add_vector")
data = numpy.ndarray((5, 3), dtype="f")
data[0] = 1.0
diff --git a/spacy/tests/serialize/test_serialize_pipeline.py b/spacy/tests/serialize/test_serialize_pipeline.py
index 595a35a9f..9c4e1f61e 100644
--- a/spacy/tests/serialize/test_serialize_pipeline.py
+++ b/spacy/tests/serialize/test_serialize_pipeline.py
@@ -12,7 +12,8 @@ test_parsers = [DependencyParser, EntityRecognizer]
@pytest.fixture
def parser(en_vocab):
- parser = DependencyParser(en_vocab, default_parser())
+ config = {"learn_tokens": False, "min_action_freq": 30, "beam_width": 1, "beam_update_prob": 1.0}
+ parser = DependencyParser(en_vocab, default_parser(), **config)
parser.add_label("nsubj")
return parser
diff --git a/spacy/util.py b/spacy/util.py
index bc6c98a82..d2d87bef9 100644
--- a/spacy/util.py
+++ b/spacy/util.py
@@ -186,7 +186,7 @@ def load_model_from_path(model_path, meta=False, **overrides):
return nlp.from_disk(model_path, exclude=disable)
-def load_model_from_config(nlp_config):
+def load_model_from_config(nlp_config, replace=False):
if "name" in nlp_config:
nlp = load_model(**nlp_config)
elif "lang" in nlp_config:
@@ -197,8 +197,15 @@ def load_model_from_config(nlp_config):
if "pipeline" in nlp_config:
for name, component_cfg in nlp_config["pipeline"].items():
factory = component_cfg.pop("factory")
- component = nlp.create_pipe(factory, config=component_cfg)
- nlp.add_pipe(component, name=name)
+ if name in nlp.pipe_names:
+ if replace:
+ component = nlp.create_pipe(factory, config=component_cfg)
+ nlp.replace_pipe(name, component)
+ else:
+ raise ValueError(Errors.E985.format(component=name))
+ else:
+ component = nlp.create_pipe(factory, config=component_cfg)
+ nlp.add_pipe(component, name=name)
return nlp
diff --git a/website/docs/api/scorer.md b/website/docs/api/scorer.md
index b1824573c..180665929 100644
--- a/website/docs/api/scorer.md
+++ b/website/docs/api/scorer.md
@@ -46,17 +46,19 @@ Update the evaluation scores from a single [`Doc`](/api/doc) /
## Properties
-| Name | Type | Description |
-| ----------------------------------------------- | ----- | --------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| `token_acc` | float | Tokenization accuracy. |
-| `tags_acc` | float | Part-of-speech tag accuracy (fine grained tags, i.e. `Token.tag`). |
-| `uas` | float | Unlabelled dependency score. |
-| `las` | float | Labelled dependency score. |
-| `ents_p` | float | Named entity accuracy (precision). |
-| `ents_r` | float | Named entity accuracy (recall). |
-| `ents_f` | float | Named entity accuracy (F-score). |
-| `ents_per_type` 2.1.5 | dict | Scores per entity label. Keyed by label, mapped to a dict of `p`, `r` and `f` scores. |
-| `textcat_score` 2.2 | float | F-score on positive label for binary exclusive, macro-averaged F-score for 3+ exclusive, macro-averaged AUC ROC score for multilabel (`-1` if undefined). |
-| `textcats_per_cat` 2.2 | dict | Scores per textcat label, keyed by label. |
-| `las_per_type` 2.2.3 | dict | Labelled dependency scores, keyed by label. |
-| `scores` | dict | All scores, keyed by type. |
+| Name | Type | Description |
+| --------------------------------------------------- | ----- | ---------------------------------------------------------------------------------------------------------- |
+| `token_acc` | float | Tokenization accuracy. |
+| `tags_acc` | float | Part-of-speech tag accuracy (fine grained tags, i.e. `Token.tag`). |
+| `uas` | float | Unlabelled dependency score. |
+| `las` | float | Labelled dependency score. |
+| `ents_p` | float | Named entity accuracy (precision). |
+| `ents_r` | float | Named entity accuracy (recall). |
+| `ents_f` | float | Named entity accuracy (F-score). |
+| `ents_per_type` 2.1.5 | dict | Scores per entity label. Keyed by label, mapped to a dict of `p`, `r` and `f` scores. |
+| `textcat_f` 3.0 | float | F-score on positive label for binary classification, macro-averaged F-score otherwise. |
+| `textcat_auc` | float | Macro-averaged AUC ROC score for multilabel classification (`-1` if undefined). |
+| `textcats_f_per_cat` 3.0 | dict | F-scores per textcat label, keyed by label. |
+| `textcats_auc_per_cat` 3.0 | dict | ROC AUC scores per textcat label, keyed by label. |
+| `las_per_type` 2.2.3 | dict | Labelled dependency scores, keyed by label. |
+| `scores` | dict | All scores, keyed by type. |