mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-11 17:56:30 +03:00
Port CLI to Typer and add project stubs
This commit is contained in:
parent
988d2a4eda
commit
c12713a8be
|
@ -1,31 +1,4 @@
|
|||
if __name__ == "__main__":
|
||||
import plac
|
||||
import sys
|
||||
from wasabi import msg
|
||||
from spacy.cli import download, link, info, package, pretrain, convert
|
||||
from spacy.cli import init_model, profile, evaluate, validate, debug_data
|
||||
from spacy.cli import train_cli
|
||||
from spacy.cli import app
|
||||
|
||||
commands = {
|
||||
"download": download,
|
||||
"link": link,
|
||||
"info": info,
|
||||
"train": train_cli,
|
||||
"pretrain": pretrain,
|
||||
"debug-data": debug_data,
|
||||
"evaluate": evaluate,
|
||||
"convert": convert,
|
||||
"package": package,
|
||||
"init-model": init_model,
|
||||
"profile": profile,
|
||||
"validate": validate,
|
||||
}
|
||||
if len(sys.argv) == 1:
|
||||
msg.info("Available commands", ", ".join(commands), exits=1)
|
||||
command = sys.argv.pop(1)
|
||||
sys.argv[0] = f"spacy {command}"
|
||||
if command in commands:
|
||||
plac.call(commands[command], sys.argv[1:])
|
||||
else:
|
||||
available = f"Available: {', '.join(commands)}"
|
||||
msg.fail(f"Unknown command: {command}", available, exits=1)
|
||||
if __name__ == "__main__":
|
||||
app()
|
||||
|
|
|
@ -5,3 +5,4 @@ __release__ = True
|
|||
__download_url__ = "https://github.com/explosion/spacy-models/releases/download"
|
||||
__compatibility__ = "https://raw.githubusercontent.com/explosion/spacy-models/master/compatibility.json"
|
||||
__shortcuts__ = "https://raw.githubusercontent.com/explosion/spacy-models/master/shortcuts-v2.json"
|
||||
__projects__ = "https://github.com/explosion/spacy-boilerplates"
|
||||
|
|
|
@ -1,5 +1,4 @@
|
|||
from wasabi import msg
|
||||
|
||||
from ._app import app # noqa: F401
|
||||
from .download import download # noqa: F401
|
||||
from .info import info # noqa: F401
|
||||
from .package import package # noqa: F401
|
||||
|
@ -11,10 +10,4 @@ from .evaluate import evaluate # noqa: F401
|
|||
from .convert import convert # noqa: F401
|
||||
from .init_model import init_model # noqa: F401
|
||||
from .validate import validate # noqa: F401
|
||||
|
||||
|
||||
def link(*args, **kwargs):
|
||||
msg.warn(
|
||||
"As of spaCy v3.0, model symlinks are deprecated. You can load models "
|
||||
"using their full names or from a directory path."
|
||||
)
|
||||
from .project import project_cli # noqa: F401
|
||||
|
|
31
spacy/cli/_app.py
Normal file
31
spacy/cli/_app.py
Normal file
|
@ -0,0 +1,31 @@
|
|||
import typer
|
||||
from wasabi import msg
|
||||
|
||||
|
||||
def Arg(*args, help=None, **kwargs):
|
||||
# Filter out help for now until it's officially supported
|
||||
return typer.Argument(*args, **kwargs)
|
||||
|
||||
|
||||
def Opt(*args, **kwargs):
|
||||
return typer.Option(*args, show_default=True, **kwargs)
|
||||
|
||||
|
||||
app = typer.Typer(
|
||||
name="spacy",
|
||||
help="""spaCy Command-line Interface
|
||||
|
||||
|
||||
DOCS: https://spacy.io/api/cli
|
||||
""",
|
||||
)
|
||||
|
||||
|
||||
@app.command("link", no_args_is_help=True, deprecated=True, hidden=True)
|
||||
def link(*args, **kwargs):
|
||||
"""As of spaCy v3.0, model symlinks are deprecated. You can load models
|
||||
using their full names or from a directory path."""
|
||||
msg.warn(
|
||||
"As of spaCy v3.0, model symlinks are deprecated. You can load models "
|
||||
"using their full names or from a directory path."
|
||||
)
|
|
@ -1,8 +1,11 @@
|
|||
from typing import Optional
|
||||
from enum import Enum
|
||||
from pathlib import Path
|
||||
from wasabi import Printer
|
||||
import srsly
|
||||
import re
|
||||
|
||||
from ._app import app, Arg, Opt
|
||||
from .converters import conllu2json, iob2json, conll_ner2json
|
||||
from .converters import ner_jsonl2json
|
||||
|
||||
|
@ -21,23 +24,29 @@ CONVERTERS = {
|
|||
}
|
||||
|
||||
# File types
|
||||
FILE_TYPES = ("json", "jsonl", "msg")
|
||||
FILE_TYPES_STDOUT = ("json", "jsonl")
|
||||
|
||||
|
||||
class FileTypes(str, Enum):
|
||||
json = "json"
|
||||
jsonl = "jsonl"
|
||||
msg = "msg"
|
||||
|
||||
|
||||
@app.command("convert")
|
||||
def convert(
|
||||
# fmt: off
|
||||
input_file: ("Input file", "positional", None, str),
|
||||
output_dir: ("Output directory. '-' for stdout.", "positional", None, str) = "-",
|
||||
file_type: (f"Type of data to produce: {FILE_TYPES}", "option", "t", str, FILE_TYPES) = "json",
|
||||
n_sents: ("Number of sentences per doc (0 to disable)", "option", "n", int) = 1,
|
||||
seg_sents: ("Segment sentences (for -c ner)", "flag", "s") = False,
|
||||
model: ("Model for sentence segmentation (for -s)", "option", "b", str) = None,
|
||||
morphology: ("Enable appending morphology to tags", "flag", "m", bool) = False,
|
||||
merge_subtokens: ("Merge CoNLL-U subtokens", "flag", "T", bool) = False,
|
||||
converter: (f"Converter: {tuple(CONVERTERS.keys())}", "option", "c", str) = "auto",
|
||||
ner_map_path: ("NER tag mapping (as JSON-encoded dict of entity types)", "option", "N", Path) = None,
|
||||
lang: ("Language (if tokenizer required)", "option", "l", str) = None,
|
||||
input_file: str = Arg(..., help="Input file"),
|
||||
output_dir: str = Arg("-", help="Output directory. '-' for stdout."),
|
||||
file_type: FileTypes = Opt(FileTypes.json.value, "--file-type", "-t", help="Type of data to produce"),
|
||||
n_sents: int = Opt(1, "--n-sents", "-n", help="Number of sentences per doc (0 to disable)"),
|
||||
seg_sents: bool = Opt(False, "--seg-sents", "-s", help="Segment sentences (for -c ner)"),
|
||||
model: Optional[str] = Opt(None, "--model", "-b", help="Model for sentence segmentation (for -s)"),
|
||||
morphology: bool = Opt(False, "--morphology", "-m", help="Enable appending morphology to tags"),
|
||||
merge_subtokens: bool = Opt(False, "--merge-subtokens", "-T", help="Merge CoNLL-U subtokens"),
|
||||
converter: str = Opt("auto", "--converter", "-c", help=f"Converter: {tuple(CONVERTERS.keys())}"),
|
||||
ner_map_path: Optional[Path] = Opt(None, "--ner-map-path", "-N", help="NER tag mapping (as JSON-encoded dict of entity types)"),
|
||||
lang: Optional[str] = Opt(None, "--lang", "-l", help="Language (if tokenizer required)"),
|
||||
# fmt: on
|
||||
):
|
||||
"""
|
||||
|
@ -46,6 +55,9 @@ def convert(
|
|||
is written to stdout, so you can pipe them forward to a JSON file:
|
||||
$ spacy convert some_file.conllu > some_file.json
|
||||
"""
|
||||
if isinstance(file_type, FileTypes):
|
||||
# We get an instance of the FileTypes from the CLI so we need its string value
|
||||
file_type = file_type.value
|
||||
no_print = output_dir == "-"
|
||||
msg = Printer(no_print=no_print)
|
||||
input_path = Path(input_file)
|
||||
|
|
|
@ -1,9 +1,11 @@
|
|||
from typing import Optional
|
||||
from pathlib import Path
|
||||
from collections import Counter
|
||||
import sys
|
||||
import srsly
|
||||
from wasabi import Printer, MESSAGES
|
||||
|
||||
from ._app import app, Arg, Opt
|
||||
from ..gold import GoldCorpus
|
||||
from ..syntax import nonproj
|
||||
from ..util import load_model, get_lang_class
|
||||
|
@ -18,17 +20,18 @@ BLANK_MODEL_MIN_THRESHOLD = 100
|
|||
BLANK_MODEL_THRESHOLD = 2000
|
||||
|
||||
|
||||
@app.command("debug-data")
|
||||
def debug_data(
|
||||
# fmt: off
|
||||
lang: ("Model language", "positional", None, str),
|
||||
train_path: ("Location of JSON-formatted training data", "positional", None, Path),
|
||||
dev_path: ("Location of JSON-formatted development data", "positional", None, Path),
|
||||
tag_map_path: ("Location of JSON-formatted tag map", "option", "tm", Path) = None,
|
||||
base_model: ("Name of model to update (optional)", "option", "b", str) = None,
|
||||
pipeline: ("Comma-separated names of pipeline components to train", "option", "p", str) = "tagger,parser,ner",
|
||||
ignore_warnings: ("Ignore warnings, only show stats and errors", "flag", "IW", bool) = False,
|
||||
verbose: ("Print additional information and explanations", "flag", "V", bool) = False,
|
||||
no_format: ("Don't pretty-print the results", "flag", "NF", bool) = False,
|
||||
lang: str = Arg(..., help="Model language"),
|
||||
train_path: Path = Arg(..., help="Location of JSON-formatted training data"),
|
||||
dev_path: Path = Arg(..., help="Location of JSON-formatted development data"),
|
||||
tag_map_path: Optional[Path] = Opt(None, "--tag-map-path", "-tm", help="Location of JSON-formatted tag map"),
|
||||
base_model: Optional[str] = Opt(None, "--base-model", "-b", help="Name of model to update (optional)"),
|
||||
pipeline: str = Opt("tagger,parser,ner", "--pipeline", "-p", help="Comma-separated names of pipeline components to train"),
|
||||
ignore_warnings: bool = Opt(False, "--ignore-warnings", "-IW", help="Ignore warnings, only show stats and errors"),
|
||||
verbose: bool = Opt(False, "--verbose", "-V", help="Print additional information and explanations"),
|
||||
no_format: bool = Opt(False, "--no-format", "-NF", help="Don't pretty-print the results"),
|
||||
# fmt: on
|
||||
):
|
||||
"""
|
||||
|
|
|
@ -1,17 +1,25 @@
|
|||
from typing import List
|
||||
import requests
|
||||
import os
|
||||
import subprocess
|
||||
import sys
|
||||
from wasabi import msg
|
||||
|
||||
from ._app import app, Arg, Opt
|
||||
from .. import about
|
||||
from ..util import is_package, get_base_version
|
||||
|
||||
|
||||
@app.command(
|
||||
"download",
|
||||
context_settings={"allow_extra_args": True, "ignore_unknown_options": True},
|
||||
)
|
||||
def download(
|
||||
model: ("Model to download (shortcut or name)", "positional", None, str),
|
||||
direct: ("Force direct download of name + version", "flag", "d", bool) = False,
|
||||
*pip_args: ("Additional arguments to be passed to `pip install` on model install"),
|
||||
# fmt: off
|
||||
model: str = Arg(..., help="Model to download (shortcut or name)"),
|
||||
direct: bool = Opt(False, "--direct", "-d", help="Force direct download of name + version"),
|
||||
pip_args: List[str] = Arg(..., help="Additional arguments to be passed to `pip install` on model install"),
|
||||
# fmt: on
|
||||
):
|
||||
"""
|
||||
Download compatible model from default download path using pip. If --direct
|
||||
|
|
|
@ -1,20 +1,23 @@
|
|||
from typing import Optional
|
||||
from timeit import default_timer as timer
|
||||
from wasabi import msg
|
||||
|
||||
from ._app import app, Arg, Opt
|
||||
from ..gold import GoldCorpus
|
||||
from .. import util
|
||||
from .. import displacy
|
||||
|
||||
|
||||
@app.command("evaluate")
|
||||
def evaluate(
|
||||
# fmt: off
|
||||
model: ("Model name or path", "positional", None, str),
|
||||
data_path: ("Location of JSON-formatted evaluation data", "positional", None, str),
|
||||
gpu_id: ("Use GPU", "option", "g", int) = -1,
|
||||
gold_preproc: ("Use gold preprocessing", "flag", "G", bool) = False,
|
||||
displacy_path: ("Directory to output rendered parses as HTML", "option", "dp", str) = None,
|
||||
displacy_limit: ("Limit of parses to render as HTML", "option", "dl", int) = 25,
|
||||
return_scores: ("Return dict containing model scores", "flag", "R", bool) = False,
|
||||
model: str = Arg(..., help="Model name or path"),
|
||||
data_path: str = Arg(..., help="Location of JSON-formatted evaluation data"),
|
||||
gpu_id: int = Opt(-1, "--gpu-id", "-g", help="Use GPU"),
|
||||
gold_preproc: bool = Opt(False, "--gold-preproc", "-G", help="Use gold preprocessing"),
|
||||
displacy_path: Optional[str] = Opt(None, "--displacy-path", "-dp", help="Directory to output rendered parses as HTML"),
|
||||
displacy_limit: int = Opt(25, "--displacy-limit", "-dl", help="Limit of parses to render as HTML"),
|
||||
return_scores: bool = Opt(False, "--return-scores", "-R", help="Return dict containing model scores"),
|
||||
# fmt: on
|
||||
):
|
||||
"""
|
||||
|
|
|
@ -1,17 +1,22 @@
|
|||
from typing import Optional
|
||||
import platform
|
||||
from pathlib import Path
|
||||
from wasabi import msg
|
||||
import srsly
|
||||
|
||||
from ._app import app, Arg, Opt
|
||||
from .validate import get_model_pkgs
|
||||
from .. import util
|
||||
from .. import about
|
||||
|
||||
|
||||
@app.command("info")
|
||||
def info(
|
||||
model: ("Optional model name", "positional", None, str) = None,
|
||||
markdown: ("Generate Markdown for GitHub issues", "flag", "md", str) = False,
|
||||
silent: ("Don't print anything (just return)", "flag", "s") = False,
|
||||
# fmt: off
|
||||
model: Optional[str] = Arg(None, help="Optional model name"),
|
||||
markdown: bool = Opt(False, "--markdown", "-md", help="Generate Markdown for GitHub issues"),
|
||||
silent: bool = Opt(False, "--silent", "-s", help="Don't print anything (just return)"),
|
||||
# fmt: on
|
||||
):
|
||||
"""
|
||||
Print info about spaCy installation. If a model is speficied as an argument,
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
from typing import Optional
|
||||
import math
|
||||
from tqdm import tqdm
|
||||
import numpy
|
||||
|
@ -11,6 +12,7 @@ import srsly
|
|||
import warnings
|
||||
from wasabi import msg
|
||||
|
||||
from ._app import app, Arg, Opt
|
||||
from ..vectors import Vectors
|
||||
from ..errors import Errors, Warnings
|
||||
from ..util import ensure_path, get_lang_class, load_model, OOV_RANK
|
||||
|
@ -25,20 +27,21 @@ except ImportError:
|
|||
DEFAULT_OOV_PROB = -20
|
||||
|
||||
|
||||
@app.command("init-model")
|
||||
def init_model(
|
||||
# fmt: off
|
||||
lang: ("Model language", "positional", None, str),
|
||||
output_dir: ("Model output directory", "positional", None, Path),
|
||||
freqs_loc: ("Location of words frequencies file", "option", "f", Path) = None,
|
||||
clusters_loc: ("Optional location of brown clusters data", "option", "c", str) = None,
|
||||
jsonl_loc: ("Location of JSONL-formatted attributes file", "option", "j", Path) = None,
|
||||
vectors_loc: ("Optional vectors file in Word2Vec format", "option", "v", str) = None,
|
||||
prune_vectors: ("Optional number of vectors to prune to", "option", "V", int) = -1,
|
||||
truncate_vectors: ("Optional number of vectors to truncate to when reading in vectors file", "option", "t", int) = 0,
|
||||
vectors_name: ("Optional name for the word vectors, e.g. en_core_web_lg.vectors", "option", "vn", str) = None,
|
||||
model_name: ("Optional name for the model meta", "option", "mn", str) = None,
|
||||
omit_extra_lookups: ("Don't include extra lookups in model", "flag", "OEL", bool) = False,
|
||||
base_model: ("Base model (for languages with custom tokenizers)", "option", "b", str) = None
|
||||
lang: str = Arg(..., help="Model language"),
|
||||
output_dir: Path = Arg(..., help="Model output directory"),
|
||||
freqs_loc: Optional[Path] = Arg(None, help="Location of words frequencies file"),
|
||||
clusters_loc: Optional[str] = Opt(None, "--clusters-loc", "-c", help="Optional location of brown clusters data"),
|
||||
jsonl_loc: Optional[Path] = Opt(None, "--jsonl-loc", "-j", help="Location of JSONL-formatted attributes file"),
|
||||
vectors_loc: Optional[str] = Opt(None, "--vectors-loc", "-v", help="Optional vectors file in Word2Vec format"),
|
||||
prune_vectors: int = Opt(-1 , "--prune-vectors", "-V", help="Optional number of vectors to prune to"),
|
||||
truncate_vectors: int = Opt(0, "--truncate-vectors", "-t", help="Optional number of vectors to truncate to when reading in vectors file"),
|
||||
vectors_name: Optional[str] = Opt(None, "--vectors-name", "-vn", help="Optional name for the word vectors, e.g. en_core_web_lg.vectors"),
|
||||
model_name: Optional[str] = Opt(None, "--model-name", "-mn", help="Optional name for the model meta"),
|
||||
omit_extra_lookups: bool = Opt(False, "--omit-extra-lookups", "-OEL", help="Don't include extra lookups in model"),
|
||||
base_model: Optional[str] = Opt(None, "--base-model", "-b", help="Base model (for languages with custom tokenizers)")
|
||||
# fmt: on
|
||||
):
|
||||
"""
|
||||
|
|
|
@ -1,19 +1,22 @@
|
|||
from typing import Optional
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
from wasabi import msg, get_raw_input
|
||||
import srsly
|
||||
|
||||
from ._app import app, Arg, Opt
|
||||
from .. import util
|
||||
from .. import about
|
||||
|
||||
|
||||
@app.command("package")
|
||||
def package(
|
||||
# fmt: off
|
||||
input_dir: ("Directory with model data", "positional", None, str),
|
||||
output_dir: ("Output parent directory", "positional", None, str),
|
||||
meta_path: ("Path to meta.json", "option", "m", str) = None,
|
||||
create_meta: ("Create meta.json, even if one exists", "flag", "c", bool) = False,
|
||||
force: ("Force overwriting existing model in output directory", "flag", "f", bool) = False,
|
||||
input_dir: str = Arg(..., help="Directory with model data"),
|
||||
output_dir: str = Arg(..., help="Output parent directory"),
|
||||
meta_path: Optional[str] = Opt(None, "--meta-path", "-m", help="Path to meta.json"),
|
||||
create_meta: bool = Opt(False, "--create-meta", "-c", help="Create meta.json, even if one exists"),
|
||||
force: bool = Opt(False, "--force", "-f", help="Force overwriting existing model in output directory"),
|
||||
# fmt: on
|
||||
):
|
||||
"""
|
||||
|
|
|
@ -1,14 +1,15 @@
|
|||
from typing import Optional
|
||||
import random
|
||||
import numpy
|
||||
import time
|
||||
import re
|
||||
from collections import Counter
|
||||
import plac
|
||||
from pathlib import Path
|
||||
from thinc.api import Linear, Maxout, chain, list2array, use_pytorch_for_gpu_memory
|
||||
from wasabi import msg
|
||||
import srsly
|
||||
|
||||
from ._app import app, Arg, Opt
|
||||
from ..errors import Errors
|
||||
from ..ml.models.multi_task import build_masked_language_model
|
||||
from ..tokens import Doc
|
||||
|
@ -17,25 +18,17 @@ from .. import util
|
|||
from ..gold import Example
|
||||
|
||||
|
||||
@plac.annotations(
|
||||
# fmt: off
|
||||
texts_loc=("Path to JSONL file with raw texts to learn from, with text provided as the key 'text' or tokens as the key 'tokens'", "positional", None, str),
|
||||
vectors_model=("Name or path to spaCy model with vectors to learn from", "positional", None, str),
|
||||
output_dir=("Directory to write models to on each epoch", "positional", None, Path),
|
||||
config_path=("Path to config file", "positional", None, Path),
|
||||
use_gpu=("Use GPU", "option", "g", int),
|
||||
resume_path=("Path to pretrained weights from which to resume pretraining", "option", "r", Path),
|
||||
epoch_resume=("The epoch to resume counting from when using '--resume_path'. Prevents unintended overwriting of existing weight files.", "option", "er", int),
|
||||
# fmt: on
|
||||
)
|
||||
@app.command("pretrain")
|
||||
def pretrain(
|
||||
texts_loc,
|
||||
vectors_model,
|
||||
config_path,
|
||||
output_dir,
|
||||
use_gpu=-1,
|
||||
resume_path=None,
|
||||
epoch_resume=None,
|
||||
# fmt: off
|
||||
texts_loc: str =Arg(..., help="Path to JSONL file with raw texts to learn from, with text provided as the key 'text' or tokens as the key 'tokens'"),
|
||||
vectors_model: str = Arg(..., help="Name or path to spaCy model with vectors to learn from"),
|
||||
output_dir: Path = Arg(..., help="Directory to write models to on each epoch"),
|
||||
config_path: Path = Arg(..., help="Path to config file"),
|
||||
use_gpu: int = Opt(-1, "--use-gpu", "-g", help="Use GPU"),
|
||||
resume_path: Optional[Path] = Opt(None, "--resume-path", "-r", help="Path to pretrained weights from which to resume pretraining"),
|
||||
epoch_resume: Optional[int] = Opt(None, "--epoch-resume", "-er", help="The epoch to resume counting from when using '--resume_path'. Prevents unintended overwriting of existing weight files."),
|
||||
# fmt: on
|
||||
):
|
||||
"""
|
||||
Pre-train the 'token-to-vector' (tok2vec) layer of pipeline components,
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
from typing import Optional
|
||||
import tqdm
|
||||
from pathlib import Path
|
||||
import srsly
|
||||
|
@ -8,14 +9,16 @@ import itertools
|
|||
import ml_datasets
|
||||
from wasabi import msg
|
||||
|
||||
from ._app import app, Arg, Opt
|
||||
from ..util import load_model
|
||||
|
||||
|
||||
@app.command("profile")
|
||||
def profile(
|
||||
# fmt: off
|
||||
model: ("Model to load", "positional", None, str),
|
||||
inputs: ("Location of input file. '-' for stdin.", "positional", None, str) = None,
|
||||
n_texts: ("Maximum number of texts to use if available", "option", "n", int) = 10000,
|
||||
model: str = Arg(..., help="Model to load"),
|
||||
inputs: Optional[str] = Arg(None, help="Location of input file. '-' for stdin."),
|
||||
n_texts: int = Opt(10000, "--n-texts", "-n", help="Maximum number of texts to use if available"),
|
||||
# fmt: on
|
||||
):
|
||||
"""
|
||||
|
|
100
spacy/cli/project.py
Normal file
100
spacy/cli/project.py
Normal file
|
@ -0,0 +1,100 @@
|
|||
from typing import List, Dict
|
||||
import typer
|
||||
import srsly
|
||||
from pathlib import Path
|
||||
import os
|
||||
import subprocess
|
||||
import sys
|
||||
from wasabi import msg
|
||||
import shlex
|
||||
|
||||
from ._app import app, Arg, Opt
|
||||
from .. import about
|
||||
from ..schemas import ProjectConfigSchema, validate
|
||||
|
||||
CONFIG_FILE = "project.yml"
|
||||
SUBDIRS = [
|
||||
"assets",
|
||||
"configs",
|
||||
"packages",
|
||||
"metrics",
|
||||
"scripts",
|
||||
"notebooks",
|
||||
"training",
|
||||
]
|
||||
|
||||
|
||||
project_cli = typer.Typer(help="Command-line interface for spaCy projects")
|
||||
|
||||
|
||||
def load_project_config(path):
|
||||
config_path = path / CONFIG_FILE
|
||||
if not config_path.exists():
|
||||
msg.fail("Can't find project config", config_path, exits=1)
|
||||
config = srsly.read_yaml(config_path)
|
||||
errors = validate(ProjectConfigSchema, config)
|
||||
if errors:
|
||||
msg.fail(f"Invalid project config in {CONFIG_FILE}", "\n".join(errors), exits=1)
|
||||
return config
|
||||
|
||||
|
||||
def create_dirs(project_dir: Path):
|
||||
for subdir in SUBDIRS:
|
||||
(project_dir / subdir).mkdir(parents=True)
|
||||
|
||||
|
||||
def run_cmd(command: str):
|
||||
status = subprocess.call(shlex.split(command), env=os.environ.copy())
|
||||
if status != 0:
|
||||
sys.exit(status)
|
||||
|
||||
|
||||
def run_commands(commands: List[str] = tuple(), variables: Dict[str, str] = {}):
|
||||
for command in commands:
|
||||
# Substitute variables, e.g. "./{NAME}.json"
|
||||
command = command.format(**variables)
|
||||
msg.info(command)
|
||||
run_cmd(command)
|
||||
|
||||
|
||||
@project_cli.command("clone")
|
||||
def project_clone(
|
||||
# fmt: off
|
||||
name: str = Arg(..., help="The name of the template to fetch"),
|
||||
dest: Path = Arg(Path.cwd(), help="Where to download and work. Defaults to current working directory.", exists=True, file_okay=False),
|
||||
repo: str = Opt(about.__projects__, "--repo", "-r", help="The repository to look in."),
|
||||
# fmt: on
|
||||
):
|
||||
"""Clone a project template from a repository."""
|
||||
print("Cloning", repo)
|
||||
|
||||
|
||||
@project_cli.command("run")
|
||||
def project_run(
|
||||
# fmt: off
|
||||
project_dir: Path = Arg(..., help="Location of project directory", exists=True, file_okay=False),
|
||||
subcommand: str = Arg(None, help="Name of command defined in project config")
|
||||
# fmt: on
|
||||
):
|
||||
"""Run scripts defined in the project."""
|
||||
config = load_project_config(project_dir)
|
||||
config_commands = config.get("commands", [])
|
||||
variables = config.get("variables", {})
|
||||
commands = {cmd["name"]: cmd for cmd in config_commands}
|
||||
if subcommand is None:
|
||||
all_commands = config.get("run", [])
|
||||
if not all_commands:
|
||||
msg.warn("No run commands defined in project config", exits=0)
|
||||
msg.table([(cmd["name"], cmd.get("help", "")) for cmd in config_commands])
|
||||
for command in all_commands:
|
||||
if command not in commands:
|
||||
msg.fail(f"Can't find command '{command}' in project config", exits=1)
|
||||
msg.divider(command)
|
||||
run_commands(commands[command]["script"], variables)
|
||||
return
|
||||
if subcommand not in commands:
|
||||
msg.fail(f"Can't find command '{subcommand}' in project config", exits=1)
|
||||
run_commands(commands[subcommand]["script"], variables)
|
||||
|
||||
|
||||
app.add_typer(project_cli, name="project")
|
|
@ -1,16 +1,15 @@
|
|||
from typing import Optional, Dict, List, Union, Sequence
|
||||
from typing import Optional
|
||||
from timeit import default_timer as timer
|
||||
|
||||
import srsly
|
||||
from pydantic import BaseModel, FilePath
|
||||
import tqdm
|
||||
from pathlib import Path
|
||||
from wasabi import msg
|
||||
import thinc
|
||||
import thinc.schedules
|
||||
from thinc.api import Model, use_pytorch_for_gpu_memory
|
||||
from thinc.api import use_pytorch_for_gpu_memory
|
||||
import random
|
||||
|
||||
from ._app import app, Arg, Opt
|
||||
from ..gold import GoldCorpus
|
||||
from ..lookups import Lookups
|
||||
from .. import util
|
||||
|
@ -19,6 +18,9 @@ from ..errors import Errors
|
|||
# Don't remove - required to load the built-in architectures
|
||||
from ..ml import models # noqa: F401
|
||||
|
||||
# from ..schemas import ConfigSchema # TODO: include?
|
||||
|
||||
|
||||
registry = util.registry
|
||||
|
||||
CONFIG_STR = """
|
||||
|
@ -80,54 +82,20 @@ subword_features = true
|
|||
"""
|
||||
|
||||
|
||||
class PipelineComponent(BaseModel):
|
||||
factory: str
|
||||
model: Model
|
||||
|
||||
class Config:
|
||||
arbitrary_types_allowed = True
|
||||
|
||||
|
||||
class ConfigSchema(BaseModel):
|
||||
optimizer: Optional["Optimizer"]
|
||||
|
||||
class training(BaseModel):
|
||||
patience: int = 10
|
||||
eval_frequency: int = 100
|
||||
dropout: float = 0.2
|
||||
init_tok2vec: Optional[FilePath] = None
|
||||
max_epochs: int = 100
|
||||
orth_variant_level: float = 0.0
|
||||
gold_preproc: bool = False
|
||||
max_length: int = 0
|
||||
use_gpu: int = 0
|
||||
scores: List[str] = ["ents_p", "ents_r", "ents_f"]
|
||||
score_weights: Dict[str, Union[int, float]] = {"ents_f": 1.0}
|
||||
limit: int = 0
|
||||
batch_size: Union[Sequence[int], int]
|
||||
|
||||
class nlp(BaseModel):
|
||||
lang: str
|
||||
vectors: Optional[str]
|
||||
pipeline: Optional[Dict[str, PipelineComponent]]
|
||||
|
||||
class Config:
|
||||
extra = "allow"
|
||||
|
||||
|
||||
@app.command("train")
|
||||
def train_cli(
|
||||
# fmt: off
|
||||
train_path: ("Location of JSON-formatted training data", "positional", None, Path),
|
||||
dev_path: ("Location of JSON-formatted development data", "positional", None, Path),
|
||||
config_path: ("Path to config file", "positional", None, Path),
|
||||
output_path: ("Output directory to store model in", "option", "o", Path) = None,
|
||||
code_path: ("Path to Python file with additional code (registered functions) to be imported", "option", "c", Path) = None,
|
||||
init_tok2vec: ("Path to pretrained weights for the tok2vec components. See 'spacy pretrain'. Experimental.", "option", "t2v", Path) = None,
|
||||
raw_text: ("Path to jsonl file with unlabelled text documents.", "option", "rt", Path) = None,
|
||||
verbose: ("Display more information for debugging purposes", "flag", "VV", bool) = False,
|
||||
use_gpu: ("Use GPU", "option", "g", int) = -1,
|
||||
tag_map_path: ("Location of JSON-formatted tag map", "option", "tm", Path) = None,
|
||||
omit_extra_lookups: ("Don't include extra lookups in model", "flag", "OEL", bool) = False,
|
||||
train_path: Path = Arg(..., help="Location of JSON-formatted training data"),
|
||||
dev_path: Path = Arg(..., help="Location of JSON-formatted development data"),
|
||||
config_path: Path = Arg(..., help="Path to config file"),
|
||||
output_path: Optional[Path] = Opt(None, "--output-path", "-o", help="Output directory to store model in"),
|
||||
code_path: Optional[Path] = Opt(None, "--code-path", "-c", help="Path to Python file with additional code (registered functions) to be imported"),
|
||||
init_tok2vec: Optional[Path] = Opt(None, "--init-tok2vec", "-t2v", help="Path to pretrained weights for the tok2vec components. See 'spacy pretrain'. Experimental."),
|
||||
raw_text: Optional[Path] = Opt(None, "--raw-text", "-rt", help="Path to jsonl file with unlabelled text documents."),
|
||||
verbose: bool = Opt(False, "--verbose", "-VV", help="Display more information for debugging purposes"),
|
||||
use_gpu: int = Opt(-1, "--use-gpu", "-g", help="Use GPU"),
|
||||
tag_map_path: Optional[Path] = Opt(None, "--tag-map-path", "-tm", help="Location of JSON-formatted tag map"),
|
||||
omit_extra_lookups: bool = Opt(False, "--omit-extra-lookups", "-OEL", help="Don't include extra lookups in model"),
|
||||
# fmt: on
|
||||
):
|
||||
"""
|
||||
|
|
|
@ -3,11 +3,13 @@ import sys
|
|||
import requests
|
||||
from wasabi import msg
|
||||
|
||||
from ._app import app
|
||||
from .. import about
|
||||
from ..util import get_package_version, get_installed_models, get_base_version
|
||||
from ..util import get_package_path, get_model_meta, is_compatible_version
|
||||
|
||||
|
||||
@app.command("validate")
|
||||
def validate():
|
||||
"""
|
||||
Validate that the currently installed version of spaCy is compatible
|
||||
|
|
|
@ -1,8 +1,9 @@
|
|||
from typing import Dict, List, Union, Optional
|
||||
from typing import Dict, List, Union, Optional, Sequence
|
||||
from enum import Enum
|
||||
from pydantic import BaseModel, Field, ValidationError, validator
|
||||
from pydantic import StrictStr, StrictInt, StrictFloat, StrictBool
|
||||
from pydantic import StrictStr, StrictInt, StrictFloat, StrictBool, FilePath
|
||||
from collections import defaultdict
|
||||
from thinc.api import Model
|
||||
|
||||
from .attrs import NAMES
|
||||
|
||||
|
@ -169,18 +170,42 @@ class ModelMetaSchema(BaseModel):
|
|||
# fmt: on
|
||||
|
||||
|
||||
# Training data object in "simple training style"
|
||||
# JSON training format
|
||||
|
||||
|
||||
class SimpleTrainingSchema(BaseModel):
|
||||
# TODO: write
|
||||
class PipelineComponent(BaseModel):
|
||||
factory: str
|
||||
model: Model
|
||||
|
||||
class Config:
|
||||
title = "Schema for training data dict in passed to nlp.update"
|
||||
extra = "forbid"
|
||||
arbitrary_types_allowed = True
|
||||
|
||||
|
||||
# JSON training format
|
||||
class ConfigSchema(BaseModel):
|
||||
optimizer: Optional["Optimizer"]
|
||||
|
||||
class training(BaseModel):
|
||||
patience: int = 10
|
||||
eval_frequency: int = 100
|
||||
dropout: float = 0.2
|
||||
init_tok2vec: Optional[FilePath] = None
|
||||
max_epochs: int = 100
|
||||
orth_variant_level: float = 0.0
|
||||
gold_preproc: bool = False
|
||||
max_length: int = 0
|
||||
use_gpu: int = 0
|
||||
scores: List[str] = ["ents_p", "ents_r", "ents_f"]
|
||||
score_weights: Dict[str, Union[int, float]] = {"ents_f": 1.0}
|
||||
limit: int = 0
|
||||
batch_size: Union[Sequence[int], int]
|
||||
|
||||
class nlp(BaseModel):
|
||||
lang: str
|
||||
vectors: Optional[str]
|
||||
pipeline: Optional[Dict[str, PipelineComponent]]
|
||||
|
||||
class Config:
|
||||
extra = "allow"
|
||||
|
||||
|
||||
class TrainingSchema(BaseModel):
|
||||
|
@ -189,3 +214,34 @@ class TrainingSchema(BaseModel):
|
|||
class Config:
|
||||
title = "Schema for training data in spaCy's JSON format"
|
||||
extra = "forbid"
|
||||
|
||||
|
||||
# Project config Schema
|
||||
|
||||
|
||||
class ProjectConfigAsset(BaseModel):
|
||||
dest: StrictStr = Field(..., title="Destination of downloaded asset")
|
||||
url: StrictStr = Field(..., title="URL of asset")
|
||||
|
||||
|
||||
class ProjectConfigCommand(BaseModel):
|
||||
# fmt: off
|
||||
name: StrictStr = Field(..., title="Name of command")
|
||||
help: Optional[StrictStr] = Field(None, title="Command description")
|
||||
script: List[StrictStr] = Field([], title="List of CLI commands to run, in order")
|
||||
dvc_deps: List[StrictStr] = Field([], title="Data Version Control dependencies")
|
||||
dvc_outputs: List[StrictStr] = Field([], title="Data Version Control outputs")
|
||||
dvc_outputs_no_cache: List[StrictStr] = Field([], title="Data Version Control outputs (no cache)")
|
||||
# fmt: on
|
||||
|
||||
|
||||
class ProjectConfigSchema(BaseModel):
|
||||
# fmt: off
|
||||
variables: Dict[StrictStr, Union[str, int, float, bool]] = Field({}, title="Optional variables to substitute in commands")
|
||||
assets: List[ProjectConfigAsset] = Field([], title="Data assets")
|
||||
run: List[StrictStr] = Field([], title="Names of project commands to execute, in order")
|
||||
commands: List[ProjectConfigCommand] = Field([], title="Project command shortucts")
|
||||
# fmt: on
|
||||
|
||||
class Config:
|
||||
title = "Schema for project configuration file"
|
||||
|
|
Loading…
Reference in New Issue
Block a user