mirror of
https://github.com/explosion/spaCy.git
synced 2025-04-05 01:34:14 +03:00
Merge 7abfb4e3e8
into b3c46c315e
This commit is contained in:
commit
c1654e98b9
|
@ -1,4 +1,5 @@
|
|||
from .attributeruler import AttributeRuler
|
||||
from .coordinationruler import CoordinationSplitter
|
||||
from .dep_parser import DependencyParser
|
||||
from .edit_tree_lemmatizer import EditTreeLemmatizer
|
||||
from .entity_linker import EntityLinker
|
||||
|
@ -21,6 +22,7 @@ from .trainable_pipe import TrainablePipe
|
|||
|
||||
__all__ = [
|
||||
"AttributeRuler",
|
||||
"CoordinationSplitter",
|
||||
"DependencyParser",
|
||||
"EditTreeLemmatizer",
|
||||
"EntityLinker",
|
||||
|
|
248
spacy/pipeline/coordinationruler.py
Normal file
248
spacy/pipeline/coordinationruler.py
Normal file
|
@ -0,0 +1,248 @@
|
|||
import re
|
||||
from typing import Callable, List, Optional, Union
|
||||
|
||||
import pydantic
|
||||
from pydantic import BaseModel
|
||||
|
||||
if pydantic.VERSION.split(".")[0] == "1": # type: ignore
|
||||
from pydantic import validator # type: ignore
|
||||
else:
|
||||
from pydantic import field_validator as validator # type: ignore
|
||||
|
||||
from ..language import Language
|
||||
from ..tokens import Doc, Token
|
||||
from ..vocab import Vocab
|
||||
from .pipe import Pipe
|
||||
|
||||
######### helper functions across the default splitting rules ##############
|
||||
|
||||
|
||||
def _split_doc(doc: Doc) -> bool:
|
||||
"""Check to see if the document has a noun phrase
|
||||
with a modifier and a conjunction.
|
||||
|
||||
Args:
|
||||
doc (Doc): The input document.
|
||||
|
||||
Returns:
|
||||
bool: True if the document has a noun phrase
|
||||
with a modifier and a conjunction, else False.
|
||||
"""
|
||||
|
||||
noun_modified = False
|
||||
has_conjunction = False
|
||||
|
||||
for token in doc:
|
||||
if token.head.pos_ == "NOUN": ## check to see that the phrase is a noun phrase
|
||||
for child in token.head.children:
|
||||
if child.dep_ in ["amod", "advmod", "nmod"]:
|
||||
noun_modified = True
|
||||
|
||||
# check if there is a conjunction in the phrase
|
||||
if token.pos_ == "CCONJ":
|
||||
has_conjunction = True
|
||||
|
||||
if noun_modified and has_conjunction:
|
||||
return True
|
||||
|
||||
else:
|
||||
return False
|
||||
|
||||
|
||||
def _collect_modifiers(token: Token) -> List[str]:
|
||||
"""Collects adverbial modifiers for a given token.
|
||||
|
||||
Args:
|
||||
token (Token): The input token.
|
||||
|
||||
Returns:
|
||||
List[str]: A list of modifiers for the token.
|
||||
"""
|
||||
modifiers = []
|
||||
for child in token.children:
|
||||
if child.dep_ == "amod":
|
||||
# collect adverbial modifiers for this adjective
|
||||
adv_mods = [
|
||||
adv_mod.text
|
||||
for adv_mod in child.children
|
||||
if adv_mod.dep_ in ["advmod"] and not adv_mod.pos_ == "CCONJ"
|
||||
]
|
||||
|
||||
modifier_phrase = " ".join(adv_mods + [child.text])
|
||||
modifiers.append(modifier_phrase)
|
||||
# also check for conjunctions to this adjective
|
||||
for conj in child.conjuncts:
|
||||
adv_mods_conj = [
|
||||
adv_mod.text
|
||||
for adv_mod in conj.children
|
||||
if adv_mod.dep_ in ["advmod"] and not adv_mod.pos_ == "CCONJ"
|
||||
]
|
||||
modifier_phrase_conj = " ".join(adv_mods_conj + [conj.text])
|
||||
modifiers.append(modifier_phrase_conj)
|
||||
|
||||
return modifiers
|
||||
|
||||
|
||||
########### DEFAULT COORDINATION SPLITTING RULES ##############
|
||||
|
||||
|
||||
def split_noun_coordination(doc: Doc) -> Union[List[str], None]:
|
||||
"""Identifies and splits noun phrases with a modifier
|
||||
and a conjunction.
|
||||
|
||||
construction cases:
|
||||
- "apples and oranges" -> None
|
||||
- "green apples and oranges" -> ["green apples", "green oranges"]
|
||||
- "apples and juicy oranges" -> ["juicy apples", "juicy oranges"]
|
||||
- "hot chicken wings and soup" -> ["hot chicken wings", "hot soup"]
|
||||
- "green apples and rotten oranges" -> ["green apples", "rotten oranges"]
|
||||
- "very green apples and oranges" -> ["very green apples", "very green oranges"]
|
||||
- "delicious and juicy apples" -> ["delicious apples", "juicy apples"]
|
||||
- "delicious but quite sour apples" -> ["delicious apples", "quite sour apples"]
|
||||
- "delicious but quite sour apples and oranges" -> ["delicious apples", "quite sour apples", "delicious oranges", "quite sour oranges"]
|
||||
|
||||
Args:
|
||||
doc (Doc): The input document.
|
||||
|
||||
Returns:
|
||||
Union[List[str], None]: A list of the coordinated noun phrases,
|
||||
or None if no coordinated noun phrases are found.
|
||||
"""
|
||||
phrases = []
|
||||
modified_nouns = set()
|
||||
to_split = _split_doc(doc)
|
||||
|
||||
if to_split:
|
||||
for token in doc:
|
||||
if token.dep_ == "amod" and token.head.pos_ == "NOUN":
|
||||
head_noun = token.head
|
||||
|
||||
if head_noun not in modified_nouns:
|
||||
modifier_phrases = _collect_modifiers(head_noun)
|
||||
nouns_to_modify = [head_noun] + list(head_noun.conjuncts)
|
||||
|
||||
for noun in nouns_to_modify:
|
||||
compound_parts = [
|
||||
child.text
|
||||
for child in noun.lefts
|
||||
if child.dep_ == "compound"
|
||||
]
|
||||
complete_noun_phrase = " ".join(compound_parts + [noun.text])
|
||||
for modifier_phrase in modifier_phrases:
|
||||
phrases.append(f"{modifier_phrase} {complete_noun_phrase}")
|
||||
modified_nouns.add(noun) # mark this noun as modified
|
||||
|
||||
return phrases if phrases != [] else None
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
###############################################################
|
||||
|
||||
|
||||
class SplittingRule(BaseModel):
|
||||
function: Callable[[Doc], Union[List[str], None]]
|
||||
|
||||
@validator("function")
|
||||
def check_return_type(cls, v):
|
||||
dummy_doc = Doc(Language().vocab, words=["dummy", "doc"], spaces=[True, False])
|
||||
result = v(dummy_doc)
|
||||
if result is not None:
|
||||
if not isinstance(result, List):
|
||||
raise ValueError(
|
||||
"The custom splitting rule must return None or a list."
|
||||
)
|
||||
elif not all(isinstance(item, str) for item in result):
|
||||
raise ValueError(
|
||||
"The custom splitting rule must return None or a list of strings."
|
||||
)
|
||||
return v
|
||||
|
||||
|
||||
@Language.factory(
|
||||
"coordination_splitter", requires=["token.dep", "token.tag", "token.pos"]
|
||||
)
|
||||
def make_coordination_splitter(nlp: Language, name: str):
|
||||
"""Make a CoordinationSplitter component.
|
||||
|
||||
the default splitting rules include:
|
||||
- split_noun_coordination
|
||||
|
||||
Args:
|
||||
nlp (Language): The spaCy Language object.
|
||||
name (str): The name of the component.
|
||||
|
||||
RETURNS The CoordinationSplitter component.
|
||||
|
||||
DOCS: xxx
|
||||
"""
|
||||
|
||||
return CoordinationSplitter(nlp.vocab, name=name)
|
||||
|
||||
|
||||
class CoordinationSplitter(Pipe):
|
||||
def __init__(
|
||||
self,
|
||||
vocab: Vocab,
|
||||
name: str = "coordination_splitter",
|
||||
rules: Optional[List[SplittingRule]] = None,
|
||||
) -> None:
|
||||
self.name = name
|
||||
self.vocab = vocab
|
||||
if rules is None:
|
||||
default_rules = [
|
||||
split_noun_coordination,
|
||||
]
|
||||
self.rules = [SplittingRule(function=rule) for rule in default_rules]
|
||||
else:
|
||||
self.rules = [
|
||||
rule
|
||||
if isinstance(rule, SplittingRule)
|
||||
else SplittingRule(function=rule)
|
||||
for rule in rules
|
||||
]
|
||||
|
||||
def clear_rules(self) -> None:
|
||||
"""Clear the default splitting rules."""
|
||||
self.rules = []
|
||||
|
||||
def add_default_rules(self) -> None:
|
||||
"""Reset the default splitting rules."""
|
||||
default_rules = [
|
||||
split_noun_coordination,
|
||||
]
|
||||
self.rules = [SplittingRule(function=rule) for rule in default_rules]
|
||||
|
||||
def add_rule(self, rule: Callable[[Doc], Union[List[str], None]]) -> None:
|
||||
"""Add a single splitting rule to the default rules."""
|
||||
validated_rule = SplittingRule(function=rule)
|
||||
self.rules.append(validated_rule)
|
||||
|
||||
def add_rules(self, rules: List[Callable[[Doc], Union[List[str], None]]]) -> None:
|
||||
"""Add a list of splitting rules to the default rules.
|
||||
|
||||
Args:
|
||||
rules (List[Callable[[Doc], Union[List[str], None]]]): A list of functions to be added as splitting rules.
|
||||
"""
|
||||
for rule in rules:
|
||||
# Wrap each rule in a SplittingRule instance to ensure it's validated
|
||||
validated_rule = SplittingRule(function=rule)
|
||||
self.rules.append(validated_rule)
|
||||
|
||||
def __call__(self, doc: Doc) -> Doc:
|
||||
"""Apply the splitting rules to the doc.
|
||||
|
||||
Args:
|
||||
doc (Doc): The spaCy Doc object.
|
||||
|
||||
Returns:
|
||||
Doc: The modified spaCy Doc object.
|
||||
"""
|
||||
if doc.lang_ != "en":
|
||||
return doc
|
||||
|
||||
for rule in self.rules:
|
||||
split = rule.function(doc)
|
||||
if split:
|
||||
return Doc(doc.vocab, words=split)
|
||||
return doc
|
404
spacy/tests/pipeline/test_coordinationruler.py
Normal file
404
spacy/tests/pipeline/test_coordinationruler.py
Normal file
|
@ -0,0 +1,404 @@
|
|||
from typing import List
|
||||
|
||||
import pytest
|
||||
|
||||
import spacy
|
||||
from spacy.pipeline.coordinationruler import split_noun_coordination
|
||||
from spacy.tokens import Doc
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def nlp():
|
||||
return spacy.blank("en")
|
||||
|
||||
|
||||
### CONSTRUCTION CASES ###
|
||||
@pytest.fixture
|
||||
def noun_construction_case1(nlp):
|
||||
words = ["apples", "and", "oranges"]
|
||||
spaces = [True, True, False]
|
||||
pos_tags = ["NOUN", "CCONJ", "NOUN"]
|
||||
dep_relations = ["nsubj", "cc", "conj"]
|
||||
|
||||
doc = Doc(nlp.vocab, words=words, spaces=spaces)
|
||||
|
||||
for token, pos, dep in zip(doc, pos_tags, dep_relations):
|
||||
token.pos_ = pos
|
||||
token.dep_ = dep
|
||||
|
||||
doc[1].head = doc[2]
|
||||
doc[2].head = doc[0]
|
||||
doc[0].head = doc[0]
|
||||
|
||||
return doc
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def noun_construction_case2(nlp):
|
||||
words = ["red", "apples", "and", "oranges"]
|
||||
spaces = [True, True, True, False]
|
||||
pos_tags = ["ADJ", "NOUN", "CCONJ", "NOUN"]
|
||||
dep_relations = ["amod", "nsubj", "cc", "conj"]
|
||||
|
||||
doc = Doc(nlp.vocab, words=words, spaces=spaces)
|
||||
|
||||
for token, pos, dep in zip(doc, pos_tags, dep_relations):
|
||||
token.pos_ = pos
|
||||
token.dep_ = dep
|
||||
|
||||
doc[0].head = doc[1]
|
||||
doc[2].head = doc[3]
|
||||
doc[3].head = doc[1]
|
||||
|
||||
return doc
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def noun_construction_case3(nlp):
|
||||
words = ["apples", "and", "juicy", "oranges"]
|
||||
spaces = [True, True, True, False]
|
||||
pos_tags = ["NOUN", "CCONJ", "ADJ", "NOUN"]
|
||||
dep_relations = ["nsubj", "cc", "amod", "conj"]
|
||||
|
||||
doc = Doc(nlp.vocab, words=words, spaces=spaces)
|
||||
|
||||
for token, pos, dep in zip(doc, pos_tags, dep_relations):
|
||||
token.pos_ = pos
|
||||
token.dep_ = dep
|
||||
|
||||
doc[0].head = doc[0]
|
||||
doc[1].head = doc[3]
|
||||
doc[2].head = doc[3]
|
||||
doc[3].head = doc[0]
|
||||
|
||||
return doc
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def noun_construction_case4(nlp):
|
||||
words = ["hot", "chicken", "wings", "and", "soup"]
|
||||
spaces = [True, True, True, True, False]
|
||||
pos_tags = ["ADJ", "NOUN", "NOUN", "CCONJ", "NOUN"]
|
||||
dep_relations = ["amod", "compound", "ROOT", "cc", "conj"]
|
||||
|
||||
doc = Doc(nlp.vocab, words=words, spaces=spaces)
|
||||
|
||||
for token, pos, dep in zip(doc, pos_tags, dep_relations):
|
||||
token.pos_ = pos
|
||||
token.dep_ = dep
|
||||
|
||||
doc[0].head = doc[2]
|
||||
doc[1].head = doc[2]
|
||||
doc[2].head = doc[2]
|
||||
doc[3].head = doc[4]
|
||||
doc[4].head = doc[2]
|
||||
|
||||
return doc
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def noun_construction_case5(nlp):
|
||||
words = ["green", "apples", "and", "rotten", "oranges"]
|
||||
spaces = [True, True, True, True, False]
|
||||
pos_tags = ["ADJ", "NOUN", "CCONJ", "ADJ", "NOUN"]
|
||||
dep_relations = ["amod", "ROOT", "cc", "amod", "conj"]
|
||||
|
||||
doc = Doc(nlp.vocab, words=words, spaces=spaces)
|
||||
|
||||
for token, pos, dep in zip(doc, pos_tags, dep_relations):
|
||||
token.pos_ = pos
|
||||
token.dep_ = dep
|
||||
|
||||
doc[0].head = doc[1]
|
||||
doc[1].head = doc[1]
|
||||
doc[2].head = doc[4]
|
||||
doc[3].head = doc[4]
|
||||
doc[4].head = doc[1]
|
||||
|
||||
return doc
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def noun_construction_case6(nlp):
|
||||
words = ["very", "green", "apples", "and", "oranges"]
|
||||
spaces = [True, True, True, True, False]
|
||||
pos_tags = ["ADV", "ADJ", "NOUN", "CCONJ", "NOUN"]
|
||||
dep_relations = ["advmod", "amod", "ROOT", "cc", "conj"]
|
||||
|
||||
doc = Doc(nlp.vocab, words=words, spaces=spaces)
|
||||
|
||||
for token, pos, dep in zip(doc, pos_tags, dep_relations):
|
||||
token.pos_ = pos
|
||||
token.dep_ = dep
|
||||
|
||||
doc[0].head = doc[1]
|
||||
doc[1].head = doc[2]
|
||||
doc[2].head = doc[2]
|
||||
doc[3].head = doc[4]
|
||||
doc[4].head = doc[2]
|
||||
|
||||
return doc
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def noun_construction_case7(nlp):
|
||||
words = ["fresh", "and", "juicy", "apples"]
|
||||
spaces = [True, True, True, False]
|
||||
pos_tags = ["ADJ", "CCONJ", "ADJ", "NOUN"]
|
||||
dep_relations = ["amod", "cc", "conj", "ROOT"]
|
||||
|
||||
doc = Doc(nlp.vocab, words=words, spaces=spaces)
|
||||
|
||||
for token, pos, dep in zip(doc, pos_tags, dep_relations):
|
||||
token.pos_ = pos
|
||||
token.dep_ = dep
|
||||
|
||||
doc[0].head = doc[3]
|
||||
doc[1].head = doc[2]
|
||||
doc[2].head = doc[0]
|
||||
doc[3].head = doc[3]
|
||||
|
||||
return doc
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def noun_construction_case8(nlp):
|
||||
words = ["fresh", ",", "juicy", "and", "delicious", "apples"]
|
||||
spaces = [True, True, True, True, True, False]
|
||||
pos_tags = ["ADJ", "PUNCT", "ADJ", "CCONJ", "ADJ", "NOUN"]
|
||||
dep_relations = ["amod", "punct", "conj", "cc", "conj", "ROOT"]
|
||||
|
||||
doc = Doc(nlp.vocab, words=words, spaces=spaces)
|
||||
|
||||
for token, pos, dep in zip(doc, pos_tags, dep_relations):
|
||||
token.pos_ = pos
|
||||
token.dep_ = dep
|
||||
|
||||
doc[0].head = doc[5]
|
||||
doc[1].head = doc[2]
|
||||
doc[2].head = doc[0]
|
||||
doc[3].head = doc[4]
|
||||
doc[4].head = doc[0]
|
||||
doc[5].head = doc[5]
|
||||
|
||||
return doc
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def noun_construction_case9(nlp):
|
||||
words = ["fresh", "and", "quite", "sour", "apples"]
|
||||
spaces = [True, True, True, True, False]
|
||||
pos_tags = ["ADJ", "CCONJ", "ADV", "ADJ", "NOUN"]
|
||||
dep_relations = ["amod", "cc", "advmod", "conj", "ROOT"]
|
||||
|
||||
doc = Doc(nlp.vocab, words=words, spaces=spaces)
|
||||
|
||||
for token, pos, dep in zip(doc, pos_tags, dep_relations):
|
||||
token.pos_ = pos
|
||||
token.dep_ = dep
|
||||
|
||||
doc[0].head = doc[4]
|
||||
doc[1].head = doc[3]
|
||||
doc[2].head = doc[3]
|
||||
doc[3].head = doc[0]
|
||||
doc[4].head = doc[4]
|
||||
|
||||
return doc
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def noun_construction_case10(nlp):
|
||||
words = ["fresh", "but", "quite", "sour", "apples", "and", "chicken", "wings"]
|
||||
spaces = [True, True, True, True, True, True, True, False]
|
||||
pos_tags = ["ADJ", "CCONJ", "ADV", "ADJ", "NOUN", "CCONJ", "NOUN", "NOUN"]
|
||||
dep_relations = ["amod", "cc", "advmod", "amod", "ROOT", "cc", "compound", "conj"]
|
||||
|
||||
doc = Doc(nlp.vocab, words=words, spaces=spaces)
|
||||
|
||||
for token, pos, dep in zip(doc, pos_tags, dep_relations):
|
||||
token.pos_ = pos
|
||||
token.dep_ = dep
|
||||
|
||||
doc[0].head = doc[4]
|
||||
doc[1].head = doc[4]
|
||||
doc[2].head = doc[3]
|
||||
doc[3].head = doc[4]
|
||||
doc[5].head = doc[4]
|
||||
doc[6].head = doc[7]
|
||||
doc[7].head = doc[4]
|
||||
|
||||
return doc
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def noun_construction_case11(nlp):
|
||||
words = ["water", "and", "power", "meters", "and", "electrical", "sockets"]
|
||||
spaces = [True, True, True, True, True, True, False]
|
||||
pos_tags = ["NOUN", "CCONJ", "NOUN", "NOUN", "CCONJ", "ADJ", "NOUN"]
|
||||
dep_relations = ["compound", "cc", "compound", "ROOT", "cc", "amod", "conj"]
|
||||
|
||||
doc = Doc(nlp.vocab, words=words, spaces=spaces)
|
||||
|
||||
for token, pos, dep in zip(doc, pos_tags, dep_relations):
|
||||
token.pos_ = pos
|
||||
token.dep_ = dep
|
||||
|
||||
doc[0].head = doc[2]
|
||||
doc[1].head = doc[2]
|
||||
doc[2].head = doc[3]
|
||||
doc[3].head = doc[3]
|
||||
doc[4].head = doc[6]
|
||||
doc[5].head = doc[6]
|
||||
doc[6].head = doc[3]
|
||||
|
||||
return doc
|
||||
|
||||
|
||||
### splitting rules ###
|
||||
def _my_custom_splitting_rule(doc: Doc) -> List[str]:
|
||||
split_phrases = []
|
||||
for token in doc:
|
||||
if token.text == "red":
|
||||
split_phrases.append("test1")
|
||||
split_phrases.append("test2")
|
||||
return split_phrases
|
||||
|
||||
|
||||
# test split_noun_coordination on 6 different cases
|
||||
def test_split_noun_coordination(
|
||||
noun_construction_case1,
|
||||
noun_construction_case2,
|
||||
noun_construction_case3,
|
||||
noun_construction_case4,
|
||||
noun_construction_case5,
|
||||
noun_construction_case6,
|
||||
noun_construction_case7,
|
||||
noun_construction_case8,
|
||||
noun_construction_case9,
|
||||
noun_construction_case10,
|
||||
noun_construction_case11,
|
||||
):
|
||||
|
||||
# test 1: no modifier - it should return None from _split_doc
|
||||
case1_split = split_noun_coordination(noun_construction_case1)
|
||||
|
||||
assert case1_split == None
|
||||
|
||||
# test 2: modifier is at the beginning of the noun phrase
|
||||
case2_split = split_noun_coordination(noun_construction_case2)
|
||||
|
||||
assert len(case2_split) == 2
|
||||
assert isinstance(case2_split, list)
|
||||
assert all(isinstance(phrase, str) for phrase in case2_split)
|
||||
assert case2_split == ["red apples", "red oranges"]
|
||||
|
||||
# test 3: modifier is at the end of the noun phrase
|
||||
case3_split = split_noun_coordination(noun_construction_case3)
|
||||
|
||||
assert len(case3_split) == 2
|
||||
assert isinstance(case3_split, list)
|
||||
assert all(isinstance(phrase, str) for phrase in case3_split)
|
||||
assert case3_split == ["juicy oranges", "juicy apples"]
|
||||
|
||||
# test 4: deal with compound nouns
|
||||
case4_split = split_noun_coordination(noun_construction_case4)
|
||||
|
||||
assert len(case4_split) == 2
|
||||
assert isinstance(case4_split, list)
|
||||
assert all(isinstance(phrase, str) for phrase in case4_split)
|
||||
assert case4_split == ["hot chicken wings", "hot soup"]
|
||||
|
||||
# #test 5: same # of modifiers as nouns
|
||||
# case5_split = split_noun_coordination(noun_construction_case5)
|
||||
# assert case5_split == None
|
||||
|
||||
# test 6: modifier phrases
|
||||
case6_split = split_noun_coordination(noun_construction_case6)
|
||||
|
||||
assert len(case6_split) == 2
|
||||
assert isinstance(case6_split, list)
|
||||
assert all(isinstance(phrase, str) for phrase in case6_split)
|
||||
assert case6_split == ["very green apples", "very green oranges"]
|
||||
|
||||
## test cases for coordinating adjectives
|
||||
|
||||
# test 7:
|
||||
case7_split = split_noun_coordination(noun_construction_case7)
|
||||
print(case7_split)
|
||||
assert case7_split == ["fresh apples", "juicy apples"]
|
||||
|
||||
# test 8:
|
||||
case8_split = split_noun_coordination(noun_construction_case8)
|
||||
assert case8_split == ["fresh apples", "juicy apples", "delicious apples"]
|
||||
|
||||
# test 9:
|
||||
case9_split = split_noun_coordination(noun_construction_case9)
|
||||
assert case9_split == ["fresh apples", "quite sour apples"]
|
||||
|
||||
# test 10:
|
||||
case10_split = split_noun_coordination(noun_construction_case10)
|
||||
assert case10_split == [
|
||||
"fresh apples",
|
||||
"quite sour apples",
|
||||
"fresh chicken wings",
|
||||
"quite sour chicken wings",
|
||||
]
|
||||
|
||||
# test 11:
|
||||
case11_split = split_noun_coordination(noun_construction_case11)
|
||||
pass
|
||||
|
||||
|
||||
################### test factory ##############################
|
||||
|
||||
|
||||
def test_coordinationruler(nlp, noun_construction_case2):
|
||||
assert len(noun_construction_case2) == 4
|
||||
assert [d.text for d in noun_construction_case2] == [
|
||||
"red",
|
||||
"apples",
|
||||
"and",
|
||||
"oranges",
|
||||
]
|
||||
|
||||
coord_splitter = nlp.add_pipe("coordination_splitter")
|
||||
assert len(coord_splitter.rules) == 1
|
||||
assert coord_splitter.name == "coordination_splitter"
|
||||
doc_split = coord_splitter(noun_construction_case2)
|
||||
assert len(doc_split) == 2
|
||||
assert [t.text for t in doc_split] == ["red apples", "red oranges"]
|
||||
|
||||
|
||||
def test_coordinationruler_clear_rules(nlp):
|
||||
coord_splitter = nlp.add_pipe("coordination_splitter")
|
||||
assert len(coord_splitter.rules) == 1
|
||||
coord_splitter.clear_rules()
|
||||
assert len(coord_splitter.rules) == 0
|
||||
assert coord_splitter.rules == []
|
||||
|
||||
|
||||
def test_coordinationruler_add_rule(nlp):
|
||||
coord_splitter = nlp.add_pipe("coordination_splitter")
|
||||
assert len(coord_splitter.rules) == 1
|
||||
coord_splitter.add_rule(_my_custom_splitting_rule)
|
||||
assert len(coord_splitter.rules) == 2
|
||||
|
||||
|
||||
def test_coordinationruler_add_rules(nlp, noun_construction_case2):
|
||||
|
||||
coord_splitter = nlp.add_pipe("coordination_splitter")
|
||||
coord_splitter.clear_rules()
|
||||
coord_splitter.add_rules([_my_custom_splitting_rule, _my_custom_splitting_rule])
|
||||
assert len(coord_splitter.rules) == 2
|
||||
doc_split = coord_splitter(noun_construction_case2)
|
||||
assert len(doc_split) == 2
|
||||
|
||||
assert [t.text for t in doc_split] == ["test1", "test2"]
|
||||
|
||||
|
||||
def test_coordinationruler_add_default_rules(nlp):
|
||||
coord_splitter = nlp.add_pipe("coordination_splitter")
|
||||
coord_splitter.clear_rules()
|
||||
assert len(coord_splitter.rules) == 0
|
||||
coord_splitter.add_default_rules()
|
||||
assert len(coord_splitter.rules) == 1
|
Loading…
Reference in New Issue
Block a user