mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-25 00:34:20 +03:00
Merge branch 'develop' into feature/lemmatizer
This commit is contained in:
commit
c1d6d43c83
|
@ -311,7 +311,7 @@ def link_vectors_to_models(vocab):
|
||||||
|
|
||||||
def Tok2Vec(width, embed_size, **kwargs):
|
def Tok2Vec(width, embed_size, **kwargs):
|
||||||
pretrained_dims = kwargs.get('pretrained_dims', 0)
|
pretrained_dims = kwargs.get('pretrained_dims', 0)
|
||||||
cnn_maxout_pieces = kwargs.get('cnn_maxout_pieces', 3)
|
cnn_maxout_pieces = kwargs.get('cnn_maxout_pieces', 2)
|
||||||
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH]
|
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH]
|
||||||
with Model.define_operators({'>>': chain, '|': concatenate, '**': clone, '+': add,
|
with Model.define_operators({'>>': chain, '|': concatenate, '**': clone, '+': add,
|
||||||
'*': reapply}):
|
'*': reapply}):
|
||||||
|
|
|
@ -68,6 +68,8 @@ def train(cmd, lang, output_dir, train_data, dev_data, n_iter=10, n_sents=0,
|
||||||
if not isinstance(meta, dict):
|
if not isinstance(meta, dict):
|
||||||
prints("Expected dict but got: {}".format(type(meta)),
|
prints("Expected dict but got: {}".format(type(meta)),
|
||||||
title="Not a valid meta.json format", exits=1)
|
title="Not a valid meta.json format", exits=1)
|
||||||
|
meta.setdefault('lang', lang)
|
||||||
|
meta.setdefault('name', 'unnamed')
|
||||||
|
|
||||||
pipeline = ['tagger', 'parser', 'ner']
|
pipeline = ['tagger', 'parser', 'ner']
|
||||||
if no_tagger and 'tagger' in pipeline: pipeline.remove('tagger')
|
if no_tagger and 'tagger' in pipeline: pipeline.remove('tagger')
|
||||||
|
@ -89,6 +91,8 @@ def train(cmd, lang, output_dir, train_data, dev_data, n_iter=10, n_sents=0,
|
||||||
|
|
||||||
lang_class = util.get_lang_class(lang)
|
lang_class = util.get_lang_class(lang)
|
||||||
nlp = lang_class()
|
nlp = lang_class()
|
||||||
|
meta['pipeline'] = pipeline
|
||||||
|
nlp.meta.update(meta)
|
||||||
if vectors:
|
if vectors:
|
||||||
util.load_model(vectors, vocab=nlp.vocab)
|
util.load_model(vectors, vocab=nlp.vocab)
|
||||||
for name in pipeline:
|
for name in pipeline:
|
||||||
|
|
|
@ -213,7 +213,7 @@ class GoldCorpus(object):
|
||||||
train_tuples = self.train_tuples
|
train_tuples = self.train_tuples
|
||||||
if projectivize:
|
if projectivize:
|
||||||
train_tuples = nonproj.preprocess_training_data(
|
train_tuples = nonproj.preprocess_training_data(
|
||||||
self.train_tuples)
|
self.train_tuples, label_freq_cutoff=100)
|
||||||
random.shuffle(train_tuples)
|
random.shuffle(train_tuples)
|
||||||
gold_docs = self.iter_gold_docs(nlp, train_tuples, gold_preproc,
|
gold_docs = self.iter_gold_docs(nlp, train_tuples, gold_preproc,
|
||||||
max_length=max_length,
|
max_length=max_length,
|
||||||
|
|
|
@ -239,13 +239,13 @@ cdef class Parser:
|
||||||
"""
|
"""
|
||||||
@classmethod
|
@classmethod
|
||||||
def Model(cls, nr_class, **cfg):
|
def Model(cls, nr_class, **cfg):
|
||||||
depth = util.env_opt('parser_hidden_depth', cfg.get('hidden_depth', 0))
|
depth = util.env_opt('parser_hidden_depth', cfg.get('hidden_depth', 1))
|
||||||
token_vector_width = util.env_opt('token_vector_width', cfg.get('token_vector_width', 128))
|
token_vector_width = util.env_opt('token_vector_width', cfg.get('token_vector_width', 64))
|
||||||
hidden_width = util.env_opt('hidden_width', cfg.get('hidden_width', 128))
|
hidden_width = util.env_opt('hidden_width', cfg.get('hidden_width', 64))
|
||||||
parser_maxout_pieces = util.env_opt('parser_maxout_pieces', cfg.get('maxout_pieces', 3))
|
parser_maxout_pieces = util.env_opt('parser_maxout_pieces', cfg.get('maxout_pieces', 2))
|
||||||
embed_size = util.env_opt('embed_size', cfg.get('embed_size', 7000))
|
embed_size = util.env_opt('embed_size', cfg.get('embed_size', 7000))
|
||||||
hist_size = util.env_opt('history_feats', cfg.get('hist_size', 0))
|
hist_size = util.env_opt('history_feats', cfg.get('hist_size', 4))
|
||||||
hist_width = util.env_opt('history_width', cfg.get('hist_width', 0))
|
hist_width = util.env_opt('history_width', cfg.get('hist_width', 16))
|
||||||
if hist_size >= 1 and depth == 0:
|
if hist_size >= 1 and depth == 0:
|
||||||
raise ValueError("Inconsistent hyper-params: "
|
raise ValueError("Inconsistent hyper-params: "
|
||||||
"history_feats >= 1 but parser_hidden_depth==0")
|
"history_feats >= 1 but parser_hidden_depth==0")
|
||||||
|
@ -800,6 +800,15 @@ cdef class Parser:
|
||||||
if self.model not in (True, False, None) and resized:
|
if self.model not in (True, False, None) and resized:
|
||||||
# Weights are stored in (nr_out, nr_in) format, so we're basically
|
# Weights are stored in (nr_out, nr_in) format, so we're basically
|
||||||
# just adding rows here.
|
# just adding rows here.
|
||||||
|
if self.model[-1].is_noop:
|
||||||
|
smaller = self.model[1]
|
||||||
|
dims = dict(self.model[1]._dims)
|
||||||
|
dims['nO'] = self.moves.n_moves
|
||||||
|
larger = self.model[1].__class__(**dims)
|
||||||
|
copy_array(larger.W[:, :smaller.nO], smaller.W)
|
||||||
|
copy_array(larger.b[:smaller.nO], smaller.b)
|
||||||
|
self.model = (self.model[0], larger, self.model[2])
|
||||||
|
else:
|
||||||
smaller = self.model[-1]._layers[-1]
|
smaller = self.model[-1]._layers[-1]
|
||||||
larger = Affine(self.moves.n_moves, smaller.nI)
|
larger = Affine(self.moves.n_moves, smaller.nI)
|
||||||
copy_array(larger.W[:smaller.nO], smaller.W)
|
copy_array(larger.W[:smaller.nO], smaller.W)
|
||||||
|
@ -809,7 +818,7 @@ cdef class Parser:
|
||||||
def begin_training(self, gold_tuples, pipeline=None, **cfg):
|
def begin_training(self, gold_tuples, pipeline=None, **cfg):
|
||||||
if 'model' in cfg:
|
if 'model' in cfg:
|
||||||
self.model = cfg['model']
|
self.model = cfg['model']
|
||||||
gold_tuples = nonproj.preprocess_training_data(gold_tuples)
|
gold_tuples = nonproj.preprocess_training_data(gold_tuples, label_freq_cutoff=100)
|
||||||
actions = self.moves.get_actions(gold_parses=gold_tuples)
|
actions = self.moves.get_actions(gold_parses=gold_tuples)
|
||||||
for action, labels in actions.items():
|
for action, labels in actions.items():
|
||||||
for label in labels:
|
for label in labels:
|
||||||
|
|
|
@ -22,14 +22,14 @@ def vocab():
|
||||||
@pytest.fixture
|
@pytest.fixture
|
||||||
def parser(vocab):
|
def parser(vocab):
|
||||||
parser = NeuralDependencyParser(vocab)
|
parser = NeuralDependencyParser(vocab)
|
||||||
parser.cfg['token_vector_width'] = 4
|
parser.cfg['token_vector_width'] = 8
|
||||||
parser.cfg['hidden_width'] = 6
|
parser.cfg['hidden_width'] = 30
|
||||||
parser.cfg['hist_size'] = 0
|
parser.cfg['hist_size'] = 0
|
||||||
parser.add_label('left')
|
parser.add_label('left')
|
||||||
parser.begin_training([], **parser.cfg)
|
parser.begin_training([], **parser.cfg)
|
||||||
sgd = Adam(NumpyOps(), 0.001)
|
sgd = Adam(NumpyOps(), 0.001)
|
||||||
|
|
||||||
for i in range(30):
|
for i in range(10):
|
||||||
losses = {}
|
losses = {}
|
||||||
doc = Doc(vocab, words=['a', 'b', 'c', 'd'])
|
doc = Doc(vocab, words=['a', 'b', 'c', 'd'])
|
||||||
gold = GoldParse(doc, heads=[1, 1, 3, 3],
|
gold = GoldParse(doc, heads=[1, 1, 3, 3],
|
||||||
|
@ -37,6 +37,8 @@ def parser(vocab):
|
||||||
parser.update([doc], [gold], sgd=sgd, losses=losses)
|
parser.update([doc], [gold], sgd=sgd, losses=losses)
|
||||||
return parser
|
return parser
|
||||||
|
|
||||||
|
def test_init_parser(parser):
|
||||||
|
pass
|
||||||
|
|
||||||
def test_add_label(parser):
|
def test_add_label(parser):
|
||||||
doc = Doc(parser.vocab, words=['a', 'b', 'c', 'd'])
|
doc = Doc(parser.vocab, words=['a', 'b', 'c', 'd'])
|
||||||
|
|
|
@ -64,7 +64,7 @@ def test_sents_1_3(parser):
|
||||||
doc[1].sent_start = True
|
doc[1].sent_start = True
|
||||||
doc[3].sent_start = True
|
doc[3].sent_start = True
|
||||||
doc = parser(doc)
|
doc = parser(doc)
|
||||||
assert len(list(doc.sents)) == 4
|
assert len(list(doc.sents)) >= 3
|
||||||
doc = Doc(parser.vocab, words=['a', 'b', 'c', 'd'])
|
doc = Doc(parser.vocab, words=['a', 'b', 'c', 'd'])
|
||||||
doc[1].sent_start = True
|
doc[1].sent_start = True
|
||||||
doc[2].sent_start = False
|
doc[2].sent_start = False
|
||||||
|
|
Loading…
Reference in New Issue
Block a user