mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-11 17:56:30 +03:00
Fixing reproducible training (#5735)
* Add initial reproducibility tests * failing test for default_text_classifier (WIP) * track trouble to underlying tok2vec layer * add regression test for Issue 5551 * tests go green with https://github.com/explosion/thinc/pull/359 * update test * adding fixed seeds to HashEmbed layers, seems to fix the reproducility issue Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
This commit is contained in:
parent
1827f22f56
commit
c1ea55307b
|
@ -87,16 +87,16 @@ def build_text_classifier(
|
|||
cols = [ORTH, LOWER, PREFIX, SUFFIX, SHAPE, ID]
|
||||
with Model.define_operators({">>": chain, "|": concatenate, "**": clone}):
|
||||
lower = HashEmbed(
|
||||
nO=width, nV=embed_size, column=cols.index(LOWER), dropout=dropout
|
||||
nO=width, nV=embed_size, column=cols.index(LOWER), dropout=dropout, seed=10
|
||||
)
|
||||
prefix = HashEmbed(
|
||||
nO=width // 2, nV=embed_size, column=cols.index(PREFIX), dropout=dropout
|
||||
nO=width // 2, nV=embed_size, column=cols.index(PREFIX), dropout=dropout, seed=11
|
||||
)
|
||||
suffix = HashEmbed(
|
||||
nO=width // 2, nV=embed_size, column=cols.index(SUFFIX), dropout=dropout
|
||||
nO=width // 2, nV=embed_size, column=cols.index(SUFFIX), dropout=dropout, seed=12
|
||||
)
|
||||
shape = HashEmbed(
|
||||
nO=width // 2, nV=embed_size, column=cols.index(SHAPE), dropout=dropout
|
||||
nO=width // 2, nV=embed_size, column=cols.index(SHAPE), dropout=dropout, seed=13
|
||||
)
|
||||
|
||||
width_nI = sum(layer.get_dim("nO") for layer in [lower, prefix, suffix, shape])
|
||||
|
|
|
@ -154,16 +154,16 @@ def LayerNormalizedMaxout(width, maxout_pieces):
|
|||
def MultiHashEmbed(
|
||||
columns, width, rows, use_subwords, pretrained_vectors, mix, dropout
|
||||
):
|
||||
norm = HashEmbed(nO=width, nV=rows, column=columns.index("NORM"), dropout=dropout)
|
||||
norm = HashEmbed(nO=width, nV=rows, column=columns.index("NORM"), dropout=dropout, seed=6)
|
||||
if use_subwords:
|
||||
prefix = HashEmbed(
|
||||
nO=width, nV=rows // 2, column=columns.index("PREFIX"), dropout=dropout
|
||||
nO=width, nV=rows // 2, column=columns.index("PREFIX"), dropout=dropout, seed=7
|
||||
)
|
||||
suffix = HashEmbed(
|
||||
nO=width, nV=rows // 2, column=columns.index("SUFFIX"), dropout=dropout
|
||||
nO=width, nV=rows // 2, column=columns.index("SUFFIX"), dropout=dropout, seed=8
|
||||
)
|
||||
shape = HashEmbed(
|
||||
nO=width, nV=rows // 2, column=columns.index("SHAPE"), dropout=dropout
|
||||
nO=width, nV=rows // 2, column=columns.index("SHAPE"), dropout=dropout, seed=9
|
||||
)
|
||||
|
||||
if pretrained_vectors:
|
||||
|
@ -192,7 +192,7 @@ def MultiHashEmbed(
|
|||
|
||||
@registry.architectures.register("spacy.CharacterEmbed.v1")
|
||||
def CharacterEmbed(columns, width, rows, nM, nC, features, dropout):
|
||||
norm = HashEmbed(nO=width, nV=rows, column=columns.index("NORM"), dropout=dropout)
|
||||
norm = HashEmbed(nO=width, nV=rows, column=columns.index("NORM"), dropout=dropout, seed=5)
|
||||
chr_embed = _character_embed.CharacterEmbed(nM=nM, nC=nC)
|
||||
with Model.define_operators({">>": chain, "|": concatenate}):
|
||||
embed_layer = chr_embed | features >> with_array(norm)
|
||||
|
|
31
spacy/tests/regression/test_issue5551.py
Normal file
31
spacy/tests/regression/test_issue5551.py
Normal file
|
@ -0,0 +1,31 @@
|
|||
from spacy.lang.en import English
|
||||
from spacy.util import fix_random_seed
|
||||
|
||||
|
||||
def test_issue5551():
|
||||
"""Test that after fixing the random seed, the results of the pipeline are truly identical"""
|
||||
component = "textcat"
|
||||
pipe_cfg = {"exclusive_classes": False}
|
||||
|
||||
results = []
|
||||
for i in range(3):
|
||||
fix_random_seed(0)
|
||||
nlp = English()
|
||||
example = (
|
||||
"Once hot, form ping-pong-ball-sized balls of the mixture, each weighing roughly 25 g.",
|
||||
{"cats": {"Labe1": 1.0, "Label2": 0.0, "Label3": 0.0}},
|
||||
)
|
||||
nlp.add_pipe(nlp.create_pipe(component, config=pipe_cfg), last=True)
|
||||
pipe = nlp.get_pipe(component)
|
||||
for label in set(example[1]["cats"]):
|
||||
pipe.add_label(label)
|
||||
nlp.begin_training(component_cfg={component: pipe_cfg})
|
||||
|
||||
# Store the result of each iteration
|
||||
result = pipe.model.predict([nlp.make_doc(example[0])])
|
||||
results.append(list(result[0]))
|
||||
|
||||
# All results should be the same because of the fixed seed
|
||||
assert len(results) == 3
|
||||
assert results[0] == results[1]
|
||||
assert results[0] == results[2]
|
156
spacy/tests/test_models.py
Normal file
156
spacy/tests/test_models.py
Normal file
|
@ -0,0 +1,156 @@
|
|||
from typing import List
|
||||
|
||||
import pytest
|
||||
from thinc.api import fix_random_seed, Adam, set_dropout_rate
|
||||
from numpy.testing import assert_array_equal
|
||||
import numpy
|
||||
|
||||
from spacy.ml.models import build_Tok2Vec_model
|
||||
from spacy.ml.models import build_text_classifier, build_simple_cnn_text_classifier
|
||||
from spacy.lang.en import English
|
||||
from spacy.lang.en.examples import sentences as EN_SENTENCES
|
||||
|
||||
|
||||
def get_all_params(model):
|
||||
params = []
|
||||
for node in model.walk():
|
||||
for name in node.param_names:
|
||||
params.append(node.get_param(name).ravel())
|
||||
return node.ops.xp.concatenate(params)
|
||||
|
||||
|
||||
def get_docs():
|
||||
nlp = English()
|
||||
return list(nlp.pipe(EN_SENTENCES + [" ".join(EN_SENTENCES)]))
|
||||
|
||||
|
||||
def get_gradient(model, Y):
|
||||
if isinstance(Y, model.ops.xp.ndarray):
|
||||
dY = model.ops.alloc(Y.shape, dtype=Y.dtype)
|
||||
dY += model.ops.xp.random.uniform(-1.0, 1.0, Y.shape)
|
||||
return dY
|
||||
elif isinstance(Y, List):
|
||||
return [get_gradient(model, y) for y in Y]
|
||||
else:
|
||||
raise ValueError(f"Could not compare type {type(Y)}")
|
||||
|
||||
|
||||
def default_tok2vec():
|
||||
return build_Tok2Vec_model(**TOK2VEC_KWARGS)
|
||||
|
||||
|
||||
TOK2VEC_KWARGS = {
|
||||
"width": 96,
|
||||
"embed_size": 2000,
|
||||
"subword_features": True,
|
||||
"char_embed": False,
|
||||
"conv_depth": 4,
|
||||
"bilstm_depth": 0,
|
||||
"maxout_pieces": 4,
|
||||
"window_size": 1,
|
||||
"dropout": 0.1,
|
||||
"nM": 0,
|
||||
"nC": 0,
|
||||
"pretrained_vectors": None,
|
||||
}
|
||||
|
||||
TEXTCAT_KWARGS = {
|
||||
"width": 64,
|
||||
"embed_size": 2000,
|
||||
"pretrained_vectors": None,
|
||||
"exclusive_classes": False,
|
||||
"ngram_size": 1,
|
||||
"window_size": 1,
|
||||
"conv_depth": 2,
|
||||
"dropout": None,
|
||||
"nO": 7
|
||||
}
|
||||
|
||||
TEXTCAT_CNN_KWARGS = {
|
||||
"tok2vec": default_tok2vec(),
|
||||
"exclusive_classes": False,
|
||||
"nO": 13,
|
||||
}
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"seed,model_func,kwargs",
|
||||
[
|
||||
(0, build_Tok2Vec_model, TOK2VEC_KWARGS),
|
||||
(0, build_text_classifier, TEXTCAT_KWARGS),
|
||||
(0, build_simple_cnn_text_classifier, TEXTCAT_CNN_KWARGS),
|
||||
],
|
||||
)
|
||||
def test_models_initialize_consistently(seed, model_func, kwargs):
|
||||
fix_random_seed(seed)
|
||||
model1 = model_func(**kwargs)
|
||||
model1.initialize()
|
||||
fix_random_seed(seed)
|
||||
model2 = model_func(**kwargs)
|
||||
model2.initialize()
|
||||
params1 = get_all_params(model1)
|
||||
params2 = get_all_params(model2)
|
||||
assert_array_equal(params1, params2)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"seed,model_func,kwargs,get_X",
|
||||
[
|
||||
(0, build_Tok2Vec_model, TOK2VEC_KWARGS, get_docs),
|
||||
(0, build_text_classifier, TEXTCAT_KWARGS, get_docs),
|
||||
(0, build_simple_cnn_text_classifier, TEXTCAT_CNN_KWARGS, get_docs),
|
||||
],
|
||||
)
|
||||
def test_models_predict_consistently(seed, model_func, kwargs, get_X):
|
||||
fix_random_seed(seed)
|
||||
model1 = model_func(**kwargs).initialize()
|
||||
Y1 = model1.predict(get_X())
|
||||
fix_random_seed(seed)
|
||||
model2 = model_func(**kwargs).initialize()
|
||||
Y2 = model2.predict(get_X())
|
||||
|
||||
if model1.has_ref("tok2vec"):
|
||||
tok2vec1 = model1.get_ref("tok2vec").predict(get_X())
|
||||
tok2vec2 = model2.get_ref("tok2vec").predict(get_X())
|
||||
for i in range(len(tok2vec1)):
|
||||
for j in range(len(tok2vec1[i])):
|
||||
assert_array_equal(numpy.asarray(tok2vec1[i][j]), numpy.asarray(tok2vec2[i][j]))
|
||||
|
||||
if isinstance(Y1, numpy.ndarray):
|
||||
assert_array_equal(Y1, Y2)
|
||||
elif isinstance(Y1, List):
|
||||
assert len(Y1) == len(Y2)
|
||||
for y1, y2 in zip(Y1, Y2):
|
||||
assert_array_equal(y1, y2)
|
||||
else:
|
||||
raise ValueError(f"Could not compare type {type(Y1)}")
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"seed,dropout,model_func,kwargs,get_X",
|
||||
[
|
||||
(0, 0.2, build_Tok2Vec_model, TOK2VEC_KWARGS, get_docs),
|
||||
(0, 0.2, build_text_classifier, TEXTCAT_KWARGS, get_docs),
|
||||
(0, 0.2, build_simple_cnn_text_classifier, TEXTCAT_CNN_KWARGS, get_docs),
|
||||
],
|
||||
)
|
||||
def test_models_update_consistently(seed, dropout, model_func, kwargs, get_X):
|
||||
def get_updated_model():
|
||||
fix_random_seed(seed)
|
||||
optimizer = Adam(0.001)
|
||||
model = model_func(**kwargs).initialize()
|
||||
initial_params = get_all_params(model)
|
||||
set_dropout_rate(model, dropout)
|
||||
for _ in range(5):
|
||||
Y, get_dX = model.begin_update(get_X())
|
||||
dY = get_gradient(model, Y)
|
||||
_ = get_dX(dY)
|
||||
model.finish_update(optimizer)
|
||||
updated_params = get_all_params(model)
|
||||
with pytest.raises(AssertionError):
|
||||
assert_array_equal(initial_params, updated_params)
|
||||
return model
|
||||
|
||||
model1 = get_updated_model()
|
||||
model2 = get_updated_model()
|
||||
assert_array_equal(get_all_params(model1), get_all_params(model2))
|
Loading…
Reference in New Issue
Block a user