mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-01 00:17:44 +03:00 
			
		
		
		
	Add reference version
This commit is contained in:
		
							parent
							
								
									385b669c5d
								
							
						
					
					
						commit
						c1ead81691
					
				|  | @ -1,5 +1,6 @@ | |||
| from typing import List, Tuple, Any, Optional | ||||
| from thinc.api import Ops, Model, normal_init, chain, list2array, Linear | ||||
| from thinc.api import uniform_init | ||||
| from thinc.types import Floats1d, Floats2d, Floats3d, Ints2d, Floats4d | ||||
| import numpy | ||||
| from ..tokens.doc import Doc | ||||
|  | @ -27,7 +28,7 @@ def TransitionModel( | |||
| 
 | ||||
|     return Model( | ||||
|         name="parser_model", | ||||
|         forward=forward, | ||||
|         forward=_forward_reference, | ||||
|         init=init, | ||||
|         layers=[tok2vec_projected], | ||||
|         refs={"tok2vec": tok2vec_projected}, | ||||
|  | @ -184,6 +185,137 @@ def forward(model, docs_moves: Tuple[List[Doc], TransitionSystem], is_train: boo | |||
|         d_statevecs = model.ops.gemm(d_scores, upper_W) | ||||
|         # Backprop through the maxout activation | ||||
|         d_preacts = model.ops.backprop_maxout(d_statevecs, which, model.get_dim("nP")) | ||||
|         d_preacts2f = model.ops.reshape2f(d_preacts, d_preacts.shape[0], -1) | ||||
|         model.inc_grad("lower_b", d_preacts2f.sum(axis=0)) | ||||
|         model.inc_grad("lower_W", model.ops.gemm(d_preacts2f, tokfeats, trans1=True)) | ||||
|         d_tokfeats = model.ops.gemm(d_preacts2f, lower_W) | ||||
|         d_tokfeats3f = model.ops.reshape3f(d_tokfeats, nS, nF, nI) | ||||
|         d_lower_pad = model.ops.alloc2f(nF, nI) | ||||
|         for i in range(ids.shape[0]): | ||||
|             for j in range(ids.shape[1]): | ||||
|                 if ids[i, j] == -1: | ||||
|                     d_lower_pad[j] += d_tokfeats3f[i, j] | ||||
|                 else: | ||||
|                     d_tokvecs[ids[i, j]] += d_tokfeats3f[i, j] | ||||
|         model.inc_grad("lower_pad", d_lower_pad) | ||||
|         # We don't need to backprop the summation, because we pass back the IDs instead | ||||
|         # d_state_features = backprop_feats((d_preacts, all_ids)) | ||||
|         # ids1d = model.ops.xp.vstack(all_ids).flatten() | ||||
|         # d_state_features = d_state_features.reshape((ids1d.size, -1)) | ||||
|         # d_tokvecs = model.ops.alloc((tokvecs.shape[0] + 1, tokvecs.shape[1])) | ||||
|         # model.ops.scatter_add(d_tokvecs, ids1d, d_state_features) | ||||
|         return (backprop_tok2vec(d_tokvecs), None) | ||||
| 
 | ||||
|     return (states, all_scores), backprop_parser | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| def _forward_reference(model, docs_moves: Tuple[List[Doc], TransitionSystem], is_train: bool): | ||||
|     """Slow reference implementation, without the precomputation""" | ||||
|     nF = model.get_dim("nF") | ||||
|     tok2vec = model.get_ref("tok2vec") | ||||
|     lower_pad = model.get_param("lower_pad") | ||||
|     lower_W = model.get_param("lower_W") | ||||
|     lower_b = model.get_param("lower_b") | ||||
|     upper_W = model.get_param("upper_W") | ||||
|     upper_b = model.get_param("upper_b") | ||||
|     nH = model.get_dim("nH") | ||||
|     nP = model.get_dim("nP") | ||||
|     nO = model.get_dim("nO") | ||||
|     nI = model.get_dim("nI") | ||||
| 
 | ||||
|     ops = model.ops | ||||
|     docs, moves = docs_moves | ||||
|     states = moves.init_batch(docs) | ||||
|     tokvecs, backprop_tok2vec = tok2vec(docs, is_train) | ||||
|     all_ids = [] | ||||
|     all_which = [] | ||||
|     all_statevecs = [] | ||||
|     all_scores = [] | ||||
|     all_tokfeats = [] | ||||
|     next_states = [s for s in states if not s.is_final()] | ||||
|     unseen_mask = _get_unseen_mask(model) | ||||
|     assert unseen_mask.all()  # TODO unhack | ||||
|     ids = numpy.zeros((len(states), nF), dtype="i") | ||||
|     while next_states: | ||||
|         ids = ids[: len(next_states)] | ||||
|         for i, state in enumerate(next_states): | ||||
|             state.set_context_tokens(ids, i, nF) | ||||
|         # Sum the state features, add the bias and apply the activation (maxout) | ||||
|         # to create the state vectors. | ||||
|         tokfeats3f = model.ops.alloc3f(ids.shape[0], nF, nI) | ||||
|         for i in range(ids.shape[0]): | ||||
|             for j in range(nF): | ||||
|                 if ids[i, j] == -1: | ||||
|                     tokfeats3f[i, j] = lower_pad | ||||
|                 else: | ||||
|                     tokfeats3f[i, j] = tokvecs[ids[i, j]] | ||||
|         tokfeats = model.ops.reshape2f(tokfeats3f, tokfeats3f.shape[0], -1) | ||||
|         preacts2f = model.ops.gemm(tokfeats, lower_W, trans2=True) | ||||
|         preacts2f += lower_b | ||||
|         preacts = model.ops.reshape3f(preacts2f, preacts2f.shape[0], nH, nP) | ||||
|         statevecs, which = ops.maxout(preacts) | ||||
|         # Multiply the state-vector by the scores weights and add the bias, | ||||
|         # to get the logits. | ||||
|         scores = model.ops.gemm(statevecs, upper_W, trans2=True) | ||||
|         scores += upper_b | ||||
|         scores[:, unseen_mask == 0] = model.ops.xp.nanmin(scores) | ||||
|         # Transition the states, filtering out any that are finished. | ||||
|         next_states = moves.transition_states(next_states, scores) | ||||
|         all_scores.append(scores) | ||||
|         if is_train: | ||||
|             # Remember intermediate results for the backprop. | ||||
|             all_tokfeats.append(tokfeats) | ||||
|             all_ids.append(ids.copy()) | ||||
|             all_statevecs.append(statevecs) | ||||
|             all_which.append(which) | ||||
| 
 | ||||
|     nS = sum(len(s.history) for s in states) | ||||
| 
 | ||||
|     def backprop_parser(d_states_d_scores): | ||||
|         d_tokvecs = model.ops.alloc2f(tokvecs.shape[0], tokvecs.shape[1]) | ||||
|         ids = model.ops.xp.vstack(all_ids) | ||||
|         which = ops.xp.vstack(all_which) | ||||
|         statevecs = model.ops.xp.vstack(all_statevecs) | ||||
|         tokfeats = model.ops.xp.vstack(all_tokfeats) | ||||
|         _, d_scores = d_states_d_scores | ||||
|         if model.attrs.get("unseen_classes"): | ||||
|             # If we have a negative gradient (i.e. the probability should | ||||
|             # increase) on any classes we filtered out as unseen, mark | ||||
|             # them as seen. | ||||
|             for clas in set(model.attrs["unseen_classes"]): | ||||
|                 if (d_scores[:, clas] < 0).any(): | ||||
|                     model.attrs["unseen_classes"].remove(clas) | ||||
|         d_scores *= unseen_mask | ||||
|         assert statevecs.shape == (nS, nH), statevecs.shape | ||||
|         assert d_scores.shape == (nS, nO), d_scores.shape | ||||
|         # Calculate the gradients for the parameters of the upper layer. | ||||
|         # The weight gemm is (nS, nO) @ (nS, nH).T | ||||
|         model.inc_grad("upper_b", d_scores.sum(axis=0)) | ||||
|         model.inc_grad("upper_W", model.ops.gemm(d_scores, statevecs, trans1=True)) | ||||
|         # Now calculate d_statevecs, by backproping through the upper linear layer. | ||||
|         # This gemm is (nS, nO) @ (nO, nH) | ||||
|         d_statevecs = model.ops.gemm(d_scores, upper_W) | ||||
|         # Backprop through the maxout activation | ||||
|         d_preacts = model.ops.backprop_maxout(d_statevecs, which, nP) | ||||
|         d_preacts2f = model.ops.reshape2f(d_preacts, d_preacts.shape[0], nH*nP) | ||||
|         # Now increment the gradients for the lower layer. | ||||
|         # The gemm here is (nS, nH*nP) @ (nS, nF*nI) | ||||
|         model.inc_grad("lower_b", d_preacts2f.sum(axis=0)) | ||||
|         model.inc_grad("lower_W", model.ops.gemm(d_preacts2f, tokfeats, trans1=True)) | ||||
|         # Caclulate d_tokfeats | ||||
|         # The gemm here is (nS, nH*nP) @ (nH*nP, nF*nI) | ||||
|         d_tokfeats = model.ops.gemm(d_preacts2f, lower_W) | ||||
|         # Get the gradients of the tokvecs and the padding | ||||
|         d_tokfeats3f = model.ops.reshape3f(d_tokfeats, nS, nF, nI) | ||||
|         d_lower_pad = model.ops.alloc1f(nI) | ||||
|         for i in range(ids.shape[0]): | ||||
|             for j in range(ids.shape[1]): | ||||
|                 if ids[i, j] == -1: | ||||
|                     d_lower_pad += d_tokfeats3f[i, j] | ||||
|                 else: | ||||
|                     d_tokvecs[ids[i, j]] += d_tokfeats3f[i, j] | ||||
|         model.inc_grad("lower_pad", d_lower_pad) | ||||
|         # We don't need to backprop the summation, because we pass back the IDs instead | ||||
|         d_state_features = backprop_feats((d_preacts, all_ids)) | ||||
|         ids1d = model.ops.xp.vstack(all_ids).flatten() | ||||
|  |  | |||
		Loading…
	
		Reference in New Issue
	
	Block a user