mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 17:24:41 +03:00
Add customizing tokenizer and training workflow
This commit is contained in:
parent
5e4e5b600f
commit
c20abc8a6d
|
@ -12,7 +12,9 @@
|
|||
"Custom pipelines": "customizing-pipeline",
|
||||
"Rule-based matching": "rule-based-matching",
|
||||
"Word vectors": "word-vectors-similarities",
|
||||
"Deep learning": "deep-learning"
|
||||
"Deep learning": "deep-learning",
|
||||
"Custom tokenization": "customizing-tokenizer",
|
||||
"Training": "training"
|
||||
},
|
||||
"Examples": {
|
||||
"Tutorials": "tutorials",
|
||||
|
@ -35,7 +37,8 @@
|
|||
},
|
||||
|
||||
"customizing-pipeline": {
|
||||
"title": "Customizing the pipeline"
|
||||
"title": "Customizing the pipeline",
|
||||
"next": "customizing-tokenizer"
|
||||
},
|
||||
|
||||
"processing-text": {
|
||||
|
@ -63,6 +66,15 @@
|
|||
"title": "Hooking a deep learning model into spaCy"
|
||||
},
|
||||
|
||||
"customizing-tokenizer": {
|
||||
"title": "Customizing the tokenizer",
|
||||
"next": "training"
|
||||
},
|
||||
|
||||
"training": {
|
||||
"title": "Training the tagger, parser and entity recognizer"
|
||||
},
|
||||
|
||||
"showcase": {
|
||||
"title": "Showcase",
|
||||
|
||||
|
|
242
website/docs/usage/customizing-tokenizer.jade
Normal file
242
website/docs/usage/customizing-tokenizer.jade
Normal file
|
@ -0,0 +1,242 @@
|
|||
//- <U+1F4AB> DOCS > USAGE > TOKENIZER
|
||||
|
||||
include ../../_includes/_mixins
|
||||
|
||||
p
|
||||
| Tokenization is the task of splitting a text into meaningful segments,
|
||||
| called #[em tokens]. The input to the tokenizer is a unicode text, and
|
||||
| the output is a #[+api("doc") #[code Doc]] object. To construct a
|
||||
| #[code Doc] object, you need a #[+api("vocab") #[code Vocab]] instance,
|
||||
| a sequence of #[code word] strings, and optionally a sequence of
|
||||
| #[code spaces] booleans, which allow you to maintain alignment of the
|
||||
| tokens into the original string.
|
||||
|
||||
+aside("See Also")
|
||||
| If you haven't read up on spaCy's #[+a("data-model") data model] yet,
|
||||
| you should probably have a look. The main point to keep in mind is that
|
||||
| spaCy's #[code Doc] doesn't copy or refer to the original string. The
|
||||
| string is reconstructed from the tokens when required.
|
||||
|
||||
|
||||
+h(2, "special-cases") Adding special case tokenization rules
|
||||
|
||||
p
|
||||
| Most domains have at least some idiosyncracies that require custom
|
||||
| tokenization rules. Here's how to add a special case rule to an existing
|
||||
| #[+api("tokenizer") #[code Tokenizer]] instance:
|
||||
|
||||
+code.
|
||||
nlp = spacy.load('en')
|
||||
assert [w.text for w in nlp(u'gimme that')] == [u'gimme', u'that']
|
||||
nlp.tokenizer.add_special_case(u'gimme',
|
||||
[
|
||||
{
|
||||
ORTH: u'gim',
|
||||
LEMMA: u'give',
|
||||
POS: u'VERB'},
|
||||
{
|
||||
ORTH: u'me'}])
|
||||
assert [w.text for w in nlp(u'gimme that')] == [u'gim', u'me', u'that']
|
||||
assert [w.lemma_ for w in nlp(u'gimme that')] == [u'give', u'-PRON-', u'that']
|
||||
|
||||
p
|
||||
| The special case doesn't have to match an entire whitespace-delimited
|
||||
| substring. The tokenizer will incrementally split off punctuation, and
|
||||
| keep looking up the remaining substring:
|
||||
|
||||
+code.
|
||||
assert 'gimme' not in [w.text for w in nlp(u'gimme!')]
|
||||
assert 'gimme' not in [w.text for w in nlp(u'("...gimme...?")')]
|
||||
|
||||
p
|
||||
| The special case rules have precedence over the punctuation splitting:
|
||||
|
||||
+code.
|
||||
nlp.tokenizer.add_special_case(u"...gimme...?",
|
||||
[{
|
||||
ORTH: u'...gimme...?", LEMMA: "give", TAG: "VB"}])
|
||||
assert len(nlp(u'...gimme...?')) == 1
|
||||
|
||||
p
|
||||
| Because the special-case rules allow you to set arbitrary token
|
||||
| attributes, such as the part-of-speech, lemma, etc, they make a good
|
||||
| mechanism for arbitrary fix-up rules. Having this logic live in the
|
||||
| tokenizer isn't very satisfying from a design perspective, however, so
|
||||
| the API may eventually be exposed on the
|
||||
| #[+api("language") #[code Language]] class itself.
|
||||
|
||||
|
||||
+h(2, "how-tokenizer-works") How spaCy's tokenizer works
|
||||
|
||||
p
|
||||
| spaCy introduces a novel tokenization algorithm, that gives a better
|
||||
| balance between performance, ease of definition, and ease of alignment
|
||||
| into the original string.
|
||||
|
||||
p
|
||||
| After consuming a prefix or infix, we consult the special cases again.
|
||||
| We want the special cases to handle things like "don't" in English, and
|
||||
| we want the same rule to work for "(don't)!". We do this by splitting
|
||||
| off the open bracket, then the exclamation, then the close bracket, and
|
||||
| finally matching the special-case. Here's an implementation of the
|
||||
| algorithm in Python, optimized for readability rather than performance:
|
||||
|
||||
+code.
|
||||
def tokenizer_pseudo_code(text, find_prefix, find_suffix,
|
||||
find_infixes, special_cases):
|
||||
tokens = []
|
||||
for substring in text.split(' '):
|
||||
suffixes = []
|
||||
while substring:
|
||||
if substring in special_cases:
|
||||
tokens.extend(special_cases[substring])
|
||||
substring = ''
|
||||
elif find_prefix(substring) is not None:
|
||||
split = find_prefix(substring)
|
||||
tokens.append(substring[:split])
|
||||
substring = substring[split:]
|
||||
elif find_suffix(substring) is not None:
|
||||
split = find_suffix(substring)
|
||||
suffixes.append(substring[split:])
|
||||
substring = substring[:split]
|
||||
elif find_infixes(substring):
|
||||
infixes = find_infixes(substring)
|
||||
offset = 0
|
||||
for match in infixes:
|
||||
tokens.append(substring[i : match.start()])
|
||||
tokens.append(substring[match.start() : match.end()])
|
||||
offset = match.end()
|
||||
substring = substring[offset:]
|
||||
else:
|
||||
tokens.append(substring)
|
||||
substring = ''
|
||||
tokens.extend(suffixes)
|
||||
return tokens
|
||||
|
||||
p
|
||||
| The algorithm can be summarized as follows:
|
||||
|
||||
+list("numbers")
|
||||
+item Iterate over space-separated substrings
|
||||
+item
|
||||
| Check whether we have an explicitly defined rule for this substring.
|
||||
| If we do, use it.
|
||||
+item Otherwise, try to consume a prefix.
|
||||
+item
|
||||
| If we consumed a prefix, go back to the beginning of the loop, so
|
||||
| that special-cases always get priority.
|
||||
+item If we didn't consume a prefix, try to consume a suffix.
|
||||
+item
|
||||
| If we can't consume a prefix or suffix, look for "infixes" — stuff
|
||||
| like hyphens etc.
|
||||
+item Once we can't consume any more of the string, handle it as a single token.
|
||||
|
||||
+h(2, "native-tokenizers") Customizing spaCy's Tokenizer class
|
||||
|
||||
p
|
||||
| Let's imagine you wanted to create a tokenizer for a new language. There
|
||||
| are four things you would need to define:
|
||||
|
||||
+list("numbers")
|
||||
+item
|
||||
| A dictionary of #[strong special cases]. This handles things like
|
||||
| contractions, units of measurement, emoticons, certain
|
||||
| abbreviations, etc.
|
||||
|
||||
+item
|
||||
| A function #[code prefix_search], to handle
|
||||
| #[strong preceding punctuation], such as open quotes, open brackets,
|
||||
| etc
|
||||
|
||||
+item
|
||||
| A function #[code suffix_search], to handle
|
||||
| #[strong succeeding punctuation], such as commas, periods, close
|
||||
| quotes, etc.
|
||||
|
||||
+item
|
||||
| A function #[code infixes_finditer], to handle non-whitespace
|
||||
| separators, such as hyphens etc.
|
||||
|
||||
p
|
||||
| You shouldn't usually need to create a #[code Tokenizer] subclass.
|
||||
| Standard usage is to use #[code re.compile()] to build a regular
|
||||
| expression object, and pass its #[code .search()] and
|
||||
| #[code .finditer()] methods:
|
||||
|
||||
+code.
|
||||
import re
|
||||
from spacy.tokenizer import Tokenizer
|
||||
|
||||
prefix_re = re.compile(r'''[\[\("']''')
|
||||
suffix_re = re.compile(r'''[\]\)"']''')
|
||||
def create_tokenizer(nlp):
|
||||
return Tokenizer(nlp.vocab,
|
||||
prefix_search=prefix_re.search,
|
||||
suffix_search=suffix_re.search)
|
||||
|
||||
nlp = spacy.load('en', tokenizer=create_make_doc)
|
||||
|
||||
p
|
||||
| If you need to subclass the tokenizer instead, the relevant methods to
|
||||
| specialize are #[code find_prefix], #[code find_suffix] and
|
||||
| #[code find_infix].
|
||||
|
||||
+h(2, "custom-tokenizer") Hooking an arbitrary tokenizer into the pipeline
|
||||
|
||||
p
|
||||
| You can pass a custom tokenizer using the #[code make_doc] keyword, when
|
||||
| you're creating the pipeline:
|
||||
|
||||
+code.
|
||||
import spacy
|
||||
|
||||
nlp = spacy.load('en', make_doc=my_tokenizer)
|
||||
|
||||
p
|
||||
| However, this approach often leaves us with a chicken-and-egg problem.
|
||||
| To construct the tokenizer, we usually want attributes of the #[code nlp]
|
||||
| pipeline. Specifically, we want the tokenizer to hold a reference to the
|
||||
| pipeline's vocabulary object. Let's say we have the following class as
|
||||
| our tokenizer:
|
||||
|
||||
|
||||
+code.
|
||||
import spacy
|
||||
from spacy.tokens import Doc
|
||||
|
||||
class WhitespaceTokenizer(object):
|
||||
def __init__(self, nlp):
|
||||
self.vocab = nlp.vocab
|
||||
|
||||
def __call__(self, text):
|
||||
words = text.split(' ')
|
||||
# All tokens 'own' a subsequent space character in this tokenizer
|
||||
spaces = [True] * len(word)
|
||||
return Doc(self.vocab, words=words, spaces=spaces)
|
||||
|
||||
p
|
||||
| As you can see, we need a #[code vocab] instance to construct this — but
|
||||
| we won't get the #[code vocab] instance until we get back the #[code nlp]
|
||||
| object from #[code spacy.load()]. The simplest solution is to build the
|
||||
| object in two steps:
|
||||
|
||||
+code.
|
||||
nlp = spacy.load('en')
|
||||
nlp.make_doc = WhitespaceTokenizer(nlp)
|
||||
|
||||
p
|
||||
| You can instead pass the class to the #[code create_make_doc] keyword,
|
||||
| which is invoked as callback once the #[code nlp] object is ready:
|
||||
|
||||
+code.
|
||||
nlp = spacy.load('en', create_make_doc=WhitespaceTokenizer)
|
||||
|
||||
p
|
||||
| Finally, you can of course create your own subclasses, and create a bound
|
||||
| #[code make_doc] method. The disadvantage of this approach is that spaCy
|
||||
| uses inheritance to give each language-specific pipeline its own class.
|
||||
| If you're working with multiple languages, a naive solution will
|
||||
| therefore require one custom class per language you're working with.
|
||||
| This might be at least annoying. You may be able to do something more
|
||||
| generic by doing some clever magic with metaclasses or mixins, if that's
|
||||
| the sort of thing you're into.
|
118
website/docs/usage/training.jade
Normal file
118
website/docs/usage/training.jade
Normal file
|
@ -0,0 +1,118 @@
|
|||
include ../../_includes/_mixins
|
||||
|
||||
p
|
||||
| This tutorial describes how to train new statistical models for spaCy's
|
||||
| part-of-speech tagger, named entity recognizer and dependency parser.
|
||||
|
||||
p
|
||||
| I'll start with some quick code examples, that describe how to train
|
||||
| each model. I'll then provide a bit of background about the algorithms,
|
||||
| and explain how the data and feature templates work.
|
||||
|
||||
+h(2, "train-pos-tagger") Training the part-of-speech tagger
|
||||
|
||||
+code.
|
||||
from spacy.vocab import Vocab
|
||||
from spacy.pipeline import Tagger
|
||||
from spacy.tokens import Doc
|
||||
|
||||
vocab = Vocab(tag_map={'N': {'pos': 'NOUN'}, 'V': {'pos': 'VERB'}})
|
||||
tagger = Tagger(vocab)
|
||||
|
||||
doc = Doc(vocab, words=['I', 'like', 'stuff'])
|
||||
tagger.update(doc, ['N', 'V', 'N'])
|
||||
|
||||
tagger.model.end_training()
|
||||
|
||||
p
|
||||
+button(gh("spaCy", "examples/training/train_tagger.py"), false, "secondary") Full example
|
||||
|
||||
+h(2, "train-entity") Training the named entity recognizer
|
||||
|
||||
+code.
|
||||
from spacy.vocab import Vocab
|
||||
from spacy.pipeline import EntityRecognizer
|
||||
from spacy.tokens import Doc
|
||||
|
||||
vocab = Vocab()
|
||||
entity = EntityRecognizer(vocab, entity_types=['PERSON', 'LOC'])
|
||||
|
||||
doc = Doc(vocab, words=['Who', 'is', 'Shaka', 'Khan', '?'])
|
||||
entity.update(doc, ['O', 'O', 'B-PERSON', 'L-PERSON', 'O'])
|
||||
|
||||
entity.model.end_training()
|
||||
|
||||
p
|
||||
+button(gh("spaCy", "examples/training/train_ner.py"), false, "secondary") Full example
|
||||
|
||||
+h(2, "train-entity") Training the dependency parser
|
||||
|
||||
+code.
|
||||
from spacy.vocab import Vocab
|
||||
from spacy.pipeline import DependencyParser
|
||||
from spacy.tokens import Doc
|
||||
|
||||
vocab = Vocab()
|
||||
parser = DependencyParser(vocab, labels=['nsubj', 'compound', 'dobj', 'punct'])
|
||||
|
||||
doc = Doc(vocab, words=['Who', 'is', 'Shaka', 'Khan', '?'])
|
||||
parser.update(doc, [(1, 'nsubj'), (1, 'ROOT'), (3, 'compound'), (1, 'dobj'),
|
||||
(1, 'punct')])
|
||||
|
||||
parser.model.end_training()
|
||||
|
||||
p
|
||||
+button(gh("spaCy", "examples/training/train_parser.py"), false, "secondary") Full example
|
||||
|
||||
+h(2, 'feature-templates') Customizing the feature extraction
|
||||
|
||||
p
|
||||
| spaCy currently uses linear models for the tagger, parser and entity
|
||||
| recognizer, with weights learned using the
|
||||
| #[+a("https://explosion.ai/blog/part-of-speech-pos-tagger-in-python") Averaged Perceptron algorithm].
|
||||
|
||||
p
|
||||
| Because it's a linear model, it's important for accuracy to build
|
||||
| conjunction features out of the atomic predictors. Let's say you have
|
||||
| two atomic predictors asking, "What is the part-of-speech of the
|
||||
| previous token?", and "What is the part-of-speech of the previous
|
||||
| previous token?". These ppredictors will introduce a number of features,
|
||||
| e.g. #[code Prev-pos=NN], #[code Prev-pos=VBZ], etc. A conjunction
|
||||
| template introduces features such as #[code Prev-pos=NN&Prev-pos=VBZ].
|
||||
|
||||
p
|
||||
| The feature extraction proceeds in two passes. In the first pass, we
|
||||
| fill an array with the values of all of the atomic predictors. In the
|
||||
| second pass, we iterate over the feature templates, and fill a small
|
||||
| temporary array with the predictors that will be combined into a
|
||||
| conjunction feature. Finally, we hash this array into a 64-bit integer,
|
||||
| using the MurmurHash algorithm. You can see this at work in the
|
||||
| #[+a(gh("thinc", "thinc/linear/features.pyx", "94dbe06fd3c8f24d86ab0f5c7984e52dbfcdc6cb")) #[code thinc.linear.features]] module.
|
||||
|
||||
p
|
||||
| It's very easy to change the feature templates, to create novel
|
||||
| combinations of the existing atomic predictors. There's currently no API
|
||||
| available to add new atomic predictors, though. You'll have to create a
|
||||
| subclass of the model, and write your own #[code set_featuresC] method.
|
||||
|
||||
p
|
||||
| The feature templates are passed in using the #[code features] keyword
|
||||
| argument to the constructors of the #[+api("tagger") #[code Tagger]],
|
||||
| #[+api("dependencyparser") #[code DependencyParser]] and
|
||||
| #[+api("entityrecognizer") #[code EntityRecognizer]]:
|
||||
|
||||
+code.
|
||||
from spacy.vocab import Vocab
|
||||
from spacy.pipeline import Tagger
|
||||
from spacy.tagger import P2_orth, P1_orth
|
||||
from spacy.tagger import P2_cluster, P1_cluster, W_orth, N1_orth, N2_orth
|
||||
|
||||
vocab = Vocab(tag_map={'N': {'pos': 'NOUN'}, 'V': {'pos': 'VERB'}})
|
||||
tagger = Tagger(vocab, features=[(P2_orth, P2_cluster), (P1_orth, P1_cluster),
|
||||
(P2_orth,), (P1_orth,), (W_orth,),
|
||||
(N1_orth,), (N2_orth,)])
|
||||
|
||||
p
|
||||
| Custom feature templates can be passed to the #[code DependencyParser]
|
||||
| and #[code EntityRecognizer] as well, also using the #[code features]
|
||||
| keyword argument of the constructor.
|
Loading…
Reference in New Issue
Block a user