mirror of
https://github.com/explosion/spaCy.git
synced 2025-02-02 20:54:10 +03:00
Documentation for spacy-curated-transformers (#12677)
* initial * initial documentation run * fix typo * Remove mentions of Torchscript and quantization Both are disabled in the initial release of `spacy-curated-transformers`. * Fix `piece_encoder` entries * Remove `spacy-transformers`-specific warning * Fix duplicate entries in tables * Doc fixes Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Remove type aliases * Fix copy-paste typo * Change `debug pieces` version tag to `3.7` * Set curated transformers API version to `3.7` * Fix transformer listener naming * Add docs for `init fill-config-transformer` * Update CLI command invocation syntax * Update intro section of the pipeline component docs * Fix source URL * Add a note to the architectures section about the `init fill-config-transformer` CLI command * Apply suggestions from code review Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update CLI command name, args * Remove hyphen from the `curated-transformers.mdx` filename * Fix links * Remove placeholder text * Add text to the model/tokenizer loader sections * Fill in the `DocTransformerOutput` section * Formatting fixes * Add curated transformer page to API docs sidebar * More formatting fixes * Remove TODO comment * Remove outdated info about default config * Apply suggestions from code review Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Add link to HF model hub * `prettier` --------- Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com> Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
This commit is contained in:
parent
869cc4ab0b
commit
c2303858e6
|
@ -481,6 +481,286 @@ The other arguments are shared between all versions.
|
|||
|
||||
</Accordion>
|
||||
|
||||
## Curated Transformer architectures {id="curated-trf",source="https://github.com/explosion/spacy-curated-transformers/blob/main/spacy_curated_transformers/models/architectures.py"}
|
||||
|
||||
The following architectures are provided by the package
|
||||
[`spacy-curated-transformers`](https://github.com/explosion/spacy-curated-transformers).
|
||||
See the [usage documentation](/usage/embeddings-transformers#transformers) for
|
||||
how to integrate the architectures into your training config.
|
||||
|
||||
When loading the model
|
||||
[from the Hugging Face Hub](/api/curatedtransformer#hf_trfencoder_loader), the
|
||||
model config's parameters must be same as the hyperparameters used by the
|
||||
pre-trained model. The
|
||||
[`init fill-curated-transformer`](/api/cli#init-fill-curated-transformer) CLI
|
||||
command can be used to automatically fill in these values.
|
||||
|
||||
### spacy-curated-transformers.AlbertTransformer.v1
|
||||
|
||||
Construct an ALBERT transformer model.
|
||||
|
||||
| Name | Description |
|
||||
| ------------------------------ | ---------------------------------------------------------------------------------------- |
|
||||
| `vocab_size` | Vocabulary size. ~~int~~ |
|
||||
| `with_spans` | Callback that constructs a span generator model. ~~Callable~~ |
|
||||
| `piece_encoder` | The piece encoder to segment input tokens. ~~Model~~ |
|
||||
| `attention_probs_dropout_prob` | Dropout probability of the self-attention layers. ~~float~~ |
|
||||
| `embedding_width` | Width of the embedding representations. ~~int~~ |
|
||||
| `hidden_act` | Activation used by the point-wise feed-forward layers. ~~str~~ |
|
||||
| `hidden_dropout_prob` | Dropout probability of the point-wise feed-forward and embedding layers. ~~float~~ |
|
||||
| `hidden_width` | Width of the final representations. ~~int~~ |
|
||||
| `intermediate_width` | Width of the intermediate projection layer in the point-wise feed-forward layer. ~~int~~ |
|
||||
| `layer_norm_eps` | Epsilon for layer normalization. ~~float~~ |
|
||||
| `max_position_embeddings` | Maximum length of position embeddings. ~~int~~ |
|
||||
| `model_max_length` | Maximum length of model inputs. ~~int~~ |
|
||||
| `num_attention_heads` | Number of self-attention heads. ~~int~~ |
|
||||
| `num_hidden_groups` | Number of layer groups whose constituents share parameters. ~~int~~ |
|
||||
| `num_hidden_layers` | Number of hidden layers. ~~int~~ |
|
||||
| `padding_idx` | Index of the padding meta-token. ~~int~~ |
|
||||
| `type_vocab_size` | Type vocabulary size. ~~int~~ |
|
||||
| `mixed_precision` | Use mixed-precision training. ~~bool~~ |
|
||||
| `grad_scaler_config` | Configuration passed to the PyTorch gradient scaler. ~~dict~~ |
|
||||
| **CREATES** | The model using the architecture ~~Model~~ |
|
||||
|
||||
### spacy-curated-transformers.BertTransformer.v1
|
||||
|
||||
Construct a BERT transformer model.
|
||||
|
||||
| Name | Description |
|
||||
| ------------------------------ | ---------------------------------------------------------------------------------------- |
|
||||
| `vocab_size` | Vocabulary size. ~~int~~ |
|
||||
| `with_spans` | Callback that constructs a span generator model. ~~Callable~~ |
|
||||
| `piece_encoder` | The piece encoder to segment input tokens. ~~Model~~ |
|
||||
| `attention_probs_dropout_prob` | Dropout probability of the self-attention layers. ~~float~~ |
|
||||
| `hidden_act` | Activation used by the point-wise feed-forward layers. ~~str~~ |
|
||||
| `hidden_dropout_prob` | Dropout probability of the point-wise feed-forward and embedding layers. ~~float~~ |
|
||||
| `hidden_width` | Width of the final representations. ~~int~~ |
|
||||
| `intermediate_width` | Width of the intermediate projection layer in the point-wise feed-forward layer. ~~int~~ |
|
||||
| `layer_norm_eps` | Epsilon for layer normalization. ~~float~~ |
|
||||
| `max_position_embeddings` | Maximum length of position embeddings. ~~int~~ |
|
||||
| `model_max_length` | Maximum length of model inputs. ~~int~~ |
|
||||
| `num_attention_heads` | Number of self-attention heads. ~~int~~ |
|
||||
| `num_hidden_layers` | Number of hidden layers. ~~int~~ |
|
||||
| `padding_idx` | Index of the padding meta-token. ~~int~~ |
|
||||
| `type_vocab_size` | Type vocabulary size. ~~int~~ |
|
||||
| `mixed_precision` | Use mixed-precision training. ~~bool~~ |
|
||||
| `grad_scaler_config` | Configuration passed to the PyTorch gradient scaler. ~~dict~~ |
|
||||
| **CREATES** | The model using the architecture ~~Model~~ |
|
||||
|
||||
### spacy-curated-transformers.CamembertTransformer.v1
|
||||
|
||||
Construct a CamemBERT transformer model.
|
||||
|
||||
| Name | Description |
|
||||
| ------------------------------ | ---------------------------------------------------------------------------------------- |
|
||||
| `vocab_size` | Vocabulary size. ~~int~~ |
|
||||
| `with_spans` | Callback that constructs a span generator model. ~~Callable~~ |
|
||||
| `piece_encoder` | The piece encoder to segment input tokens. ~~Model~~ |
|
||||
| `attention_probs_dropout_prob` | Dropout probability of the self-attention layers. ~~float~~ |
|
||||
| `hidden_act` | Activation used by the point-wise feed-forward layers. ~~str~~ |
|
||||
| `hidden_dropout_prob` | Dropout probability of the point-wise feed-forward and embedding layers. ~~float~~ |
|
||||
| `hidden_width` | Width of the final representations. ~~int~~ |
|
||||
| `intermediate_width` | Width of the intermediate projection layer in the point-wise feed-forward layer. ~~int~~ |
|
||||
| `layer_norm_eps` | Epsilon for layer normalization. ~~float~~ |
|
||||
| `max_position_embeddings` | Maximum length of position embeddings. ~~int~~ |
|
||||
| `model_max_length` | Maximum length of model inputs. ~~int~~ |
|
||||
| `num_attention_heads` | Number of self-attention heads. ~~int~~ |
|
||||
| `num_hidden_layers` | Number of hidden layers. ~~int~~ |
|
||||
| `padding_idx` | Index of the padding meta-token. ~~int~~ |
|
||||
| `type_vocab_size` | Type vocabulary size. ~~int~~ |
|
||||
| `mixed_precision` | Use mixed-precision training. ~~bool~~ |
|
||||
| `grad_scaler_config` | Configuration passed to the PyTorch gradient scaler. ~~dict~~ |
|
||||
| **CREATES** | The model using the architecture ~~Model~~ |
|
||||
|
||||
### spacy-curated-transformers.RobertaTransformer.v1
|
||||
|
||||
Construct a RoBERTa transformer model.
|
||||
|
||||
| Name | Description |
|
||||
| ------------------------------ | ---------------------------------------------------------------------------------------- |
|
||||
| `vocab_size` | Vocabulary size. ~~int~~ |
|
||||
| `with_spans` | Callback that constructs a span generator model. ~~Callable~~ |
|
||||
| `piece_encoder` | The piece encoder to segment input tokens. ~~Model~~ |
|
||||
| `attention_probs_dropout_prob` | Dropout probability of the self-attention layers. ~~float~~ |
|
||||
| `hidden_act` | Activation used by the point-wise feed-forward layers. ~~str~~ |
|
||||
| `hidden_dropout_prob` | Dropout probability of the point-wise feed-forward and embedding layers. ~~float~~ |
|
||||
| `hidden_width` | Width of the final representations. ~~int~~ |
|
||||
| `intermediate_width` | Width of the intermediate projection layer in the point-wise feed-forward layer. ~~int~~ |
|
||||
| `layer_norm_eps` | Epsilon for layer normalization. ~~float~~ |
|
||||
| `max_position_embeddings` | Maximum length of position embeddings. ~~int~~ |
|
||||
| `model_max_length` | Maximum length of model inputs. ~~int~~ |
|
||||
| `num_attention_heads` | Number of self-attention heads. ~~int~~ |
|
||||
| `num_hidden_layers` | Number of hidden layers. ~~int~~ |
|
||||
| `padding_idx` | Index of the padding meta-token. ~~int~~ |
|
||||
| `type_vocab_size` | Type vocabulary size. ~~int~~ |
|
||||
| `mixed_precision` | Use mixed-precision training. ~~bool~~ |
|
||||
| `grad_scaler_config` | Configuration passed to the PyTorch gradient scaler. ~~dict~~ |
|
||||
| **CREATES** | The model using the architecture ~~Model~~ |
|
||||
|
||||
### spacy-curated-transformers.XlmrTransformer.v1
|
||||
|
||||
Construct a XLM-RoBERTa transformer model.
|
||||
|
||||
| Name | Description |
|
||||
| ------------------------------ | ---------------------------------------------------------------------------------------- |
|
||||
| `vocab_size` | Vocabulary size. ~~int~~ |
|
||||
| `with_spans` | Callback that constructs a span generator model. ~~Callable~~ |
|
||||
| `piece_encoder` | The piece encoder to segment input tokens. ~~Model~~ |
|
||||
| `attention_probs_dropout_prob` | Dropout probability of the self-attention layers. ~~float~~ |
|
||||
| `hidden_act` | Activation used by the point-wise feed-forward layers. ~~str~~ |
|
||||
| `hidden_dropout_prob` | Dropout probability of the point-wise feed-forward and embedding layers. ~~float~~ |
|
||||
| `hidden_width` | Width of the final representations. ~~int~~ |
|
||||
| `intermediate_width` | Width of the intermediate projection layer in the point-wise feed-forward layer. ~~int~~ |
|
||||
| `layer_norm_eps` | Epsilon for layer normalization. ~~float~~ |
|
||||
| `max_position_embeddings` | Maximum length of position embeddings. ~~int~~ |
|
||||
| `model_max_length` | Maximum length of model inputs. ~~int~~ |
|
||||
| `num_attention_heads` | Number of self-attention heads. ~~int~~ |
|
||||
| `num_hidden_layers` | Number of hidden layers. ~~int~~ |
|
||||
| `padding_idx` | Index of the padding meta-token. ~~int~~ |
|
||||
| `type_vocab_size` | Type vocabulary size. ~~int~~ |
|
||||
| `mixed_precision` | Use mixed-precision training. ~~bool~~ |
|
||||
| `grad_scaler_config` | Configuration passed to the PyTorch gradient scaler. ~~dict~~ |
|
||||
| **CREATES** | The model using the architecture ~~Model~~ |
|
||||
|
||||
### spacy-curated-transformers.ScalarWeight.v1
|
||||
|
||||
Construct a model that accepts a list of transformer layer outputs and returns a
|
||||
weighted representation of the same.
|
||||
|
||||
| Name | Description |
|
||||
| -------------------- | ----------------------------------------------------------------------------- |
|
||||
| `num_layers` | Number of transformer hidden layers. ~~int~~ |
|
||||
| `dropout_prob` | Dropout probability. ~~float~~ |
|
||||
| `mixed_precision` | Use mixed-precision training. ~~bool~~ |
|
||||
| `grad_scaler_config` | Configuration passed to the PyTorch gradient scaler. ~~dict~~ |
|
||||
| **CREATES** | The model using the architecture ~~Model[ScalarWeightInT, ScalarWeightOutT]~~ |
|
||||
|
||||
### spacy-curated-transformers.TransformerLayersListener.v1
|
||||
|
||||
Construct a listener layer that communicates with one or more upstream
|
||||
Transformer components. This layer extracts the output of the last transformer
|
||||
layer and performs pooling over the individual pieces of each `Doc` token,
|
||||
returning their corresponding representations. The upstream name should either
|
||||
be the wildcard string '\*', or the name of the Transformer component.
|
||||
|
||||
In almost all cases, the wildcard string will suffice as there'll only be one
|
||||
upstream Transformer component. But in certain situations, e.g: you have
|
||||
disjoint datasets for certain tasks, or you'd like to use a pre-trained pipeline
|
||||
but a downstream task requires its own token representations, you could end up
|
||||
with more than one Transformer component in the pipeline.
|
||||
|
||||
| Name | Description |
|
||||
| --------------- | ---------------------------------------------------------------------------------------------------------------------- |
|
||||
| `layers` | The number of layers produced by the upstream transformer component, excluding the embedding layer. ~~int~~ |
|
||||
| `width` | The width of the vectors produced by the upstream transformer component. ~~int~~ |
|
||||
| `pooling` | Model that is used to perform pooling over the piece representations. ~~Model~~ |
|
||||
| `upstream_name` | A string to identify the 'upstream' Transformer component to communicate with. ~~str~~ |
|
||||
| `grad_factor` | Factor to multiply gradients with. ~~float~~ |
|
||||
| **CREATES** | A model that returns the relevant vectors from an upstream transformer component. ~~Model[List[Doc], List[Floats2d]]~~ |
|
||||
|
||||
### spacy-curated-transformers.LastTransformerLayerListener.v1
|
||||
|
||||
Construct a listener layer that communicates with one or more upstream
|
||||
Transformer components. This layer extracts the output of the last transformer
|
||||
layer and performs pooling over the individual pieces of each Doc token,
|
||||
returning their corresponding representations. The upstream name should either
|
||||
be the wildcard string '\*', or the name of the Transformer component.
|
||||
|
||||
In almost all cases, the wildcard string will suffice as there'll only be one
|
||||
upstream Transformer component. But in certain situations, e.g: you have
|
||||
disjoint datasets for certain tasks, or you'd like to use a pre-trained pipeline
|
||||
but a downstream task requires its own token representations, you could end up
|
||||
with more than one Transformer component in the pipeline.
|
||||
|
||||
| Name | Description |
|
||||
| --------------- | ---------------------------------------------------------------------------------------------------------------------- |
|
||||
| `width` | The width of the vectors produced by the upstream transformer component. ~~int~~ |
|
||||
| `pooling` | Model that is used to perform pooling over the piece representations. ~~Model~~ |
|
||||
| `upstream_name` | A string to identify the 'upstream' Transformer component to communicate with. ~~str~~ |
|
||||
| `grad_factor` | Factor to multiply gradients with. ~~float~~ |
|
||||
| **CREATES** | A model that returns the relevant vectors from an upstream transformer component. ~~Model[List[Doc], List[Floats2d]]~~ |
|
||||
|
||||
### spacy-curated-transformers.ScalarWeightingListener.v1
|
||||
|
||||
Construct a listener layer that communicates with one or more upstream
|
||||
Transformer components. This layer calculates a weighted representation of all
|
||||
transformer layer outputs and performs pooling over the individual pieces of
|
||||
each Doc token, returning their corresponding representations.
|
||||
|
||||
Requires its upstream Transformer components to return all layer outputs from
|
||||
their models. The upstream name should either be the wildcard string '\*', or
|
||||
the name of the Transformer component.
|
||||
|
||||
In almost all cases, the wildcard string will suffice as there'll only be one
|
||||
upstream Transformer component. But in certain situations, e.g: you have
|
||||
disjoint datasets for certain tasks, or you'd like to use a pre-trained pipeline
|
||||
but a downstream task requires its own token representations, you could end up
|
||||
with more than one Transformer component in the pipeline.
|
||||
|
||||
| Name | Description |
|
||||
| --------------- | ---------------------------------------------------------------------------------------------------------------------- |
|
||||
| `width` | The width of the vectors produced by the upstream transformer component. ~~int~~ |
|
||||
| `weighting` | Model that is used to perform the weighting of the different layer outputs. ~~Model~~ |
|
||||
| `pooling` | Model that is used to perform pooling over the piece representations. ~~Model~~ |
|
||||
| `upstream_name` | A string to identify the 'upstream' Transformer component to communicate with. ~~str~~ |
|
||||
| `grad_factor` | Factor to multiply gradients with. ~~float~~ |
|
||||
| **CREATES** | A model that returns the relevant vectors from an upstream transformer component. ~~Model[List[Doc], List[Floats2d]]~~ |
|
||||
|
||||
### spacy-curated-transformers.BertWordpieceEncoder.v1
|
||||
|
||||
Construct a WordPiece piece encoder model that accepts a list of token sequences
|
||||
or documents and returns a corresponding list of piece identifiers. This encoder
|
||||
also splits each token on punctuation characters, as expected by most BERT
|
||||
models.
|
||||
|
||||
This model must be separately initialized using an appropriate loader.
|
||||
|
||||
### spacy-curated-transformers.ByteBpeEncoder.v1
|
||||
|
||||
Construct a Byte-BPE piece encoder model that accepts a list of token sequences
|
||||
or documents and returns a corresponding list of piece identifiers.
|
||||
|
||||
This model must be separately initialized using an appropriate loader.
|
||||
|
||||
### spacy-curated-transformers.CamembertSentencepieceEncoder.v1
|
||||
|
||||
Construct a SentencePiece piece encoder model that accepts a list of token
|
||||
sequences or documents and returns a corresponding list of piece identifiers
|
||||
with CamemBERT post-processing applied.
|
||||
|
||||
This model must be separately initialized using an appropriate loader.
|
||||
|
||||
### spacy-curated-transformers.CharEncoder.v1
|
||||
|
||||
Construct a character piece encoder model that accepts a list of token sequences
|
||||
or documents and returns a corresponding list of piece identifiers.
|
||||
|
||||
This model must be separately initialized using an appropriate loader.
|
||||
|
||||
### spacy-curated-transformers.SentencepieceEncoder.v1
|
||||
|
||||
Construct a SentencePiece piece encoder model that accepts a list of token
|
||||
sequences or documents and returns a corresponding list of piece identifiers.
|
||||
|
||||
This model must be separately initialized using an appropriate loader.
|
||||
|
||||
### spacy-curated-transformers.WordpieceEncoder.v1
|
||||
|
||||
Construct a WordPiece piece encoder model that accepts a list of token sequences
|
||||
or documents and returns a corresponding list of piece identifiers. This encoder
|
||||
also splits each token on punctuation characters, as expected by most BERT
|
||||
models.
|
||||
|
||||
This model must be separately initialized using an appropriate loader.
|
||||
|
||||
### spacy-curated-transformers.XlmrSentencepieceEncoder.v1
|
||||
|
||||
Construct a SentencePiece piece encoder model that accepts a list of token
|
||||
sequences or documents and returns a corresponding list of piece identifiers
|
||||
with XLM-RoBERTa post-processing applied.
|
||||
|
||||
This model must be separately initialized using an appropriate loader.
|
||||
|
||||
## Pretraining architectures {id="pretrain",source="spacy/ml/models/multi_task.py"}
|
||||
|
||||
The spacy `pretrain` command lets you initialize a `Tok2Vec` layer in your
|
||||
|
|
|
@ -185,6 +185,29 @@ $ python -m spacy init fill-config [base_path] [output_file] [--diff]
|
|||
| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |
|
||||
| **CREATES** | Complete and auto-filled config file for training. |
|
||||
|
||||
### init fill-curated-transformer {id="init-fill-curated-transformer",version="3.7",tag="command"}
|
||||
|
||||
Auto-fill the Hugging Face model hyperpameters and loader parameters of a
|
||||
[Curated Transformer](/api/curatedtransformer) pipeline component in a
|
||||
[.cfg file](/usage/training#config). The name and revision of the
|
||||
[Hugging Face model](https://huggingface.co/models) can either be passed as
|
||||
command-line arguments or read from the
|
||||
`initialize.components.transformer.encoder_loader` config section.
|
||||
|
||||
```bash
|
||||
$ python -m spacy init fill-curated-transformer [base_path] [output_file] [--model-name] [--model-revision] [--pipe-name] [--code]
|
||||
```
|
||||
|
||||
| Name | Description |
|
||||
| ------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| `base_path` | Path to base config to fill, e.g. generated by the [quickstart widget](/usage/training#quickstart). ~~Path (positional)~~ |
|
||||
| `output_file` | Path to output `.cfg` file or "-" to write to stdout so you can pipe it to a file. Defaults to "-" (stdout). ~~Path (positional)~~ |
|
||||
| `--model-name`, `-m` | Name of the Hugging Face model. Defaults to the model name from the encoder loader config. ~~Optional[str] (option)~~ |
|
||||
| `--model-revision`, `-r` | Revision of the Hugging Face model. Defaults to `main`. ~~Optional[str] (option)~~ |
|
||||
| `--pipe-name`, `-n` | Name of the Curated Transformer pipe whose config is to be filled. Defaults to the first transformer pipe. ~~Optional[str] (option)~~ |
|
||||
| `--code`, `-c` | Path to Python file with additional code to be imported. Allows [registering custom functions](/usage/training#custom-functions) for new architectures. ~~Optional[Path] \(option)~~ |
|
||||
| **CREATES** | Complete and auto-filled config file for training. |
|
||||
|
||||
### init vectors {id="init-vectors",version="3",tag="command"}
|
||||
|
||||
Convert [word vectors](/usage/linguistic-features#vectors-similarity) for use
|
||||
|
@ -1019,6 +1042,42 @@ $ python -m spacy debug model ./config.cfg tagger -l "5,15" -DIM -PAR -P0 -P1 -P
|
|||
| overrides | Config parameters to override. Should be options starting with `--` that correspond to the config section and value to override, e.g. `--paths.train ./train.spacy`. ~~Any (option/flag)~~ |
|
||||
| **PRINTS** | Debugging information. |
|
||||
|
||||
### debug pieces {id="debug-pieces",version="3.7",tag="command"}
|
||||
|
||||
Analyze word- or sentencepiece stats.
|
||||
|
||||
```bash
|
||||
$ python -m spacy debug pieces [config_path] [--code] [--name] [overrides]
|
||||
```
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| `config_path` | Path to config file. ~~Union[Path, str] (positional)~~ |
|
||||
| `--code`, `-c` | Path to Python file with additional code to be imported. Allows [registering custom functions](/usage/training#custom-functions) for new architectures. ~~Optional[Path] \(option)~~ |
|
||||
| `--name`, `-n` | Name of the Curated Transformer pipe whose config is to be filled. Defaults to the first transformer pipe. ~~Optional[str] (option)~~ |
|
||||
| overrides | Config parameters to override. Should be options starting with `--` that correspond to the config section and value to override, e.g. `--paths.train ./train.spacy`. ~~Any (option/flag)~~ |
|
||||
| **PRINTS** | Debugging information. |
|
||||
|
||||
<Accordion title="Example outputs" spaced>
|
||||
|
||||
```bash
|
||||
$ python -m spacy debug pieces ./config.cfg
|
||||
```
|
||||
|
||||
```
|
||||
========================= Training corpus statistics =========================
|
||||
Median token length: 1.0
|
||||
Mean token length: 1.54
|
||||
Token length range: [1, 13]
|
||||
|
||||
======================= Development corpus statistics =======================
|
||||
Median token length: 1.0
|
||||
Mean token length: 1.44
|
||||
Token length range: [1, 8]
|
||||
```
|
||||
|
||||
</Accordion>
|
||||
|
||||
## train {id="train",tag="command"}
|
||||
|
||||
Train a pipeline. Expects data in spaCy's
|
||||
|
@ -1651,10 +1710,10 @@ $ python -m spacy huggingface-hub push [whl_path] [--org] [--msg] [--verbose]
|
|||
> $ python -m spacy huggingface-hub push en_ner_fashion-0.0.0-py3-none-any.whl
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `whl_path` | The path to the `.whl` file packaged with [`spacy package`](https://spacy.io/api/cli#package). ~~Path(positional)~~ |
|
||||
| `--org`, `-o` | Optional name of organization to which the pipeline should be uploaded. ~~str (option)~~ |
|
||||
| `--msg`, `-m` | Commit message to use for update. Defaults to `"Update spaCy pipeline"`. ~~str (option)~~ |
|
||||
| `--verbose`, `-V` | Output additional info for debugging, e.g. the full generated hub metadata. ~~bool (flag)~~ |
|
||||
| **UPLOADS** | The pipeline to the hub. |
|
||||
| Name | Description |
|
||||
| ----------------- | ------------------------------------------------------------------------------------------------------------------- |
|
||||
| `whl_path` | The path to the `.whl` file packaged with [`spacy package`](https://spacy.io/api/cli#package). ~~Path(positional)~~ |
|
||||
| `--org`, `-o` | Optional name of organization to which the pipeline should be uploaded. ~~str (option)~~ |
|
||||
| `--msg`, `-m` | Commit message to use for update. Defaults to `"Update spaCy pipeline"`. ~~str (option)~~ |
|
||||
| `--verbose`, `-V` | Output additional info for debugging, e.g. the full generated hub metadata. ~~bool (flag)~~ |
|
||||
| **UPLOADS** | The pipeline to the hub. |
|
||||
|
|
572
website/docs/api/curatedtransformer.mdx
Normal file
572
website/docs/api/curatedtransformer.mdx
Normal file
|
@ -0,0 +1,572 @@
|
|||
---
|
||||
title: CuratedTransformer
|
||||
teaser:
|
||||
Pipeline component for multi-task learning with Curated Transformer models
|
||||
tag: class
|
||||
source: github.com/explosion/spacy-curated-transformers/blob/main/spacy_curated_transformers/pipeline/transformer.py
|
||||
version: 3.7
|
||||
api_base_class: /api/pipe
|
||||
api_string_name: curated_transformer
|
||||
---
|
||||
|
||||
<Infobox title="Important note" variant="warning">
|
||||
|
||||
This component is available via the extension package
|
||||
[`spacy-curated-transformers`](https://github.com/explosion/spacy-curated-transformers).
|
||||
It exposes the component via entry points, so if you have the package installed,
|
||||
using `factory = "curated_transformer"` in your
|
||||
[training config](/usage/training#config) will work out-of-the-box.
|
||||
|
||||
</Infobox>
|
||||
|
||||
This pipeline component lets you use a curated set of transformer models in your
|
||||
pipeline. spaCy Curated Transformers currently supports the following model
|
||||
types:
|
||||
|
||||
- ALBERT
|
||||
- BERT
|
||||
- CamemBERT
|
||||
- RoBERTa
|
||||
- XLM-RoBERT
|
||||
|
||||
If you want to use another type of model, use
|
||||
[spacy-transformers](/api/spacy-transformers), which allows you to use all
|
||||
Hugging Face transformer models with spaCy.
|
||||
|
||||
You will usually connect downstream components to a shared Curated Transformer
|
||||
pipe using one of the Curated Transformer listener layers. This works similarly
|
||||
to spaCy's [Tok2Vec](/api/tok2vec), and the
|
||||
[Tok2VecListener](/api/architectures/#Tok2VecListener) sublayer. The component
|
||||
assigns the output of the transformer to the `Doc`'s extension attributes. To
|
||||
access the values, you can use the custom
|
||||
[`Doc._.trf_data`](#assigned-attributes) attribute.
|
||||
|
||||
For more details, see the [usage documentation](/usage/embeddings-transformers).
|
||||
|
||||
## Assigned Attributes {id="assigned-attributes"}
|
||||
|
||||
The component sets the following
|
||||
[custom extension attribute](/usage/processing-pipeline#custom-components-attributes):
|
||||
|
||||
| Location | Value |
|
||||
| ---------------- | -------------------------------------------------------------------------- |
|
||||
| `Doc._.trf_data` | Curated Transformer outputs for the `Doc` object. ~~DocTransformerOutput~~ |
|
||||
|
||||
## Config and Implementation {id="config"}
|
||||
|
||||
The default config is defined by the pipeline component factory and describes
|
||||
how the component should be configured. You can override its settings via the
|
||||
`config` argument on [`nlp.add_pipe`](/api/language#add_pipe) or in your
|
||||
[`config.cfg` for training](/usage/training#config). See the
|
||||
[model architectures](/api/architectures#curated-trf) documentation for details
|
||||
on the curated transformer architectures and their arguments and
|
||||
hyperparameters.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> from spacy_curated_transformers.pipeline.transformer import DEFAULT_CONFIG
|
||||
>
|
||||
> nlp.add_pipe("curated_transformer", config=DEFAULT_CONFIG)
|
||||
> ```
|
||||
|
||||
| Setting | Description |
|
||||
| ------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `model` | The Thinc [`Model`](https://thinc.ai/docs/api-model) wrapping the transformer. Defaults to [`XlmrTransformer`](/api/architectures#curated-trf). ~~Model~~ |
|
||||
| `frozen` | If `True`, the model's weights are frozen and no backpropagation is performed. ~~bool~~ |
|
||||
| `all_layer_outputs` | If `True`, the model returns the outputs of all the layers. Otherwise, only the output of the last layer is returned. This must be set to `True` if any of the pipe's downstream listeners require the outputs of all transformer layers. ~~bool~~ |
|
||||
|
||||
```python
|
||||
https://github.com/explosion/spacy-curated-transformers/blob/main/spacy_curated_transformers/pipeline/transformer.py
|
||||
```
|
||||
|
||||
## CuratedTransformer.\_\_init\_\_ {id="init",tag="method"}
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> # Construction via add_pipe with default model
|
||||
> trf = nlp.add_pipe("curated_transformer")
|
||||
>
|
||||
> # Construction via add_pipe with custom config
|
||||
> config = {
|
||||
> "model": {
|
||||
> "@architectures": "spacy-curated-transformers.XlmrTransformer.v1",
|
||||
> "vocab_size": 250002,
|
||||
> "num_hidden_layers": 12,
|
||||
> "hidden_width": 768,
|
||||
> "piece_encoder": {
|
||||
> "@architectures": "spacy-curated-transformers.XlmrSentencepieceEncoder.v1"
|
||||
> }
|
||||
> }
|
||||
> }
|
||||
> trf = nlp.add_pipe("curated_transformer", config=config)
|
||||
>
|
||||
> # Construction from class
|
||||
> from spacy_curated_transformers import CuratedTransformer
|
||||
> trf = CuratedTransformer(nlp.vocab, model)
|
||||
> ```
|
||||
|
||||
Construct a `CuratedTransformer` component. One or more subsequent spaCy
|
||||
components can use the transformer outputs as features in its model, with
|
||||
gradients backpropagated to the single shared weights. The activations from the
|
||||
transformer are saved in the [`Doc._.trf_data`](#assigned-attributes) extension
|
||||
attribute. You can also provide a callback to set additional annotations. In
|
||||
your application, you would normally use a shortcut for this and instantiate the
|
||||
component using its string name and [`nlp.add_pipe`](/api/language#create_pipe).
|
||||
|
||||
| Name | Description |
|
||||
| ------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `vocab` | The shared vocabulary. ~~Vocab~~ |
|
||||
| `model` | One of the supported pre-trained transformer models. ~~Model~~ |
|
||||
| _keyword-only_ | |
|
||||
| `name` | The component instance name. ~~str~~ |
|
||||
| `frozen` | If `True`, the model's weights are frozen and no backpropagation is performed. ~~bool~~ |
|
||||
| `all_layer_outputs` | If `True`, the model returns the outputs of all the layers. Otherwise, only the output of the last layer is returned. This must be set to `True` if any of the pipe's downstream listeners require the outputs of all transformer layers. ~~bool~~ |
|
||||
|
||||
## CuratedTransformer.\_\_call\_\_ {id="call",tag="method"}
|
||||
|
||||
Apply the pipe to one document. The document is modified in place, and returned.
|
||||
This usually happens under the hood when the `nlp` object is called on a text
|
||||
and all pipeline components are applied to the `Doc` in order. Both
|
||||
[`__call__`](/api/curatedtransformer#call) and
|
||||
[`pipe`](/api/curatedtransformer#pipe) delegate to the
|
||||
[`predict`](/api/curatedtransformer#predict) and
|
||||
[`set_annotations`](/api/curatedtransformer#set_annotations) methods.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> doc = nlp("This is a sentence.")
|
||||
> trf = nlp.add_pipe("curated_transformer")
|
||||
> # This usually happens under the hood
|
||||
> processed = trf(doc)
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| ----------- | -------------------------------- |
|
||||
| `doc` | The document to process. ~~Doc~~ |
|
||||
| **RETURNS** | The processed document. ~~Doc~~ |
|
||||
|
||||
## CuratedTransformer.pipe {id="pipe",tag="method"}
|
||||
|
||||
Apply the pipe to a stream of documents. This usually happens under the hood
|
||||
when the `nlp` object is called on a text and all pipeline components are
|
||||
applied to the `Doc` in order. Both [`__call__`](/api/curatedtransformer#call)
|
||||
and [`pipe`](/api/curatedtransformer#pipe) delegate to the
|
||||
[`predict`](/api/curatedtransformer#predict) and
|
||||
[`set_annotations`](/api/curatedtransformer#set_annotations) methods.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> trf = nlp.add_pipe("curated_transformer")
|
||||
> for doc in trf.pipe(docs, batch_size=50):
|
||||
> pass
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | ------------------------------------------------------------- |
|
||||
| `stream` | A stream of documents. ~~Iterable[Doc]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `batch_size` | The number of documents to buffer. Defaults to `128`. ~~int~~ |
|
||||
| **YIELDS** | The processed documents in order. ~~Doc~~ |
|
||||
|
||||
## CuratedTransformer.initialize {id="initialize",tag="method"}
|
||||
|
||||
Initialize the component for training and return an
|
||||
[`Optimizer`](https://thinc.ai/docs/api-optimizers). `get_examples` should be a
|
||||
function that returns an iterable of [`Example`](/api/example) objects. **At
|
||||
least one example should be supplied.** The data examples are used to
|
||||
**initialize the model** of the component and can either be the full training
|
||||
data or a representative sample. Initialization includes validating the network,
|
||||
[inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and
|
||||
setting up the label scheme based on the data. This method is typically called
|
||||
by [`Language.initialize`](/api/language#initialize).
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> trf = nlp.add_pipe("curated_transformer")
|
||||
> trf.initialize(lambda: examples, nlp=nlp)
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| ---------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. Must contain at least one `Example`. ~~Callable[[], Iterable[Example]]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ |
|
||||
| `encoder_loader` | Initialization callback for the transformer model. ~~Optional[Callable]~~ |
|
||||
| `piece_loader` | Initialization callback for the input piece encoder. ~~Optional[Callable]~~ |
|
||||
|
||||
## CuratedTransformer.predict {id="predict",tag="method"}
|
||||
|
||||
Apply the component's model to a batch of [`Doc`](/api/doc) objects without
|
||||
modifying them.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> trf = nlp.add_pipe("curated_transformer")
|
||||
> scores = trf.predict([doc1, doc2])
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| ----------- | ------------------------------------------- |
|
||||
| `docs` | The documents to predict. ~~Iterable[Doc]~~ |
|
||||
| **RETURNS** | The model's prediction for each document. |
|
||||
|
||||
## CuratedTransformer.set_annotations {id="set_annotations",tag="method"}
|
||||
|
||||
Assign the extracted features to the `Doc` objects. By default, the
|
||||
[`DocTransformerOutput`](/api/curatedtransformer#doctransformeroutput) object is
|
||||
written to the [`Doc._.trf_data`](#assigned-attributes) attribute. Your
|
||||
`set_extra_annotations` callback is then called, if provided.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> trf = nlp.add_pipe("curated_transformer")
|
||||
> scores = trf.predict(docs)
|
||||
> trf.set_annotations(docs, scores)
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------- | ------------------------------------------------------------ |
|
||||
| `docs` | The documents to modify. ~~Iterable[Doc]~~ |
|
||||
| `scores` | The scores to set, produced by `CuratedTransformer.predict`. |
|
||||
|
||||
## CuratedTransformer.update {id="update",tag="method"}
|
||||
|
||||
Prepare for an update to the transformer.
|
||||
|
||||
Like the [`Tok2Vec`](api/tok2vec) component, the `CuratedTransformer` component
|
||||
is unusual in that it does not receive "gold standard" annotations to calculate
|
||||
a weight update. The optimal output of the transformer data is unknown; it's a
|
||||
hidden layer inside the network that is updated by backpropagating from output
|
||||
layers.
|
||||
|
||||
The `CuratedTransformer` component therefore does not perform a weight update
|
||||
during its own `update` method. Instead, it runs its transformer model and
|
||||
communicates the output and the backpropagation callback to any downstream
|
||||
components that have been connected to it via the transformer listener sublayer.
|
||||
If there are multiple listeners, the last layer will actually backprop to the
|
||||
transformer and call the optimizer, while the others simply increment the
|
||||
gradients.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> trf = nlp.add_pipe("curated_transformer")
|
||||
> optimizer = nlp.initialize()
|
||||
> losses = trf.update(examples, sgd=optimizer)
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `examples` | A batch of [`Example`](/api/example) objects. Only the [`Example.predicted`](/api/example#predicted) `Doc` object is used, the reference `Doc` is ignored. ~~Iterable[Example]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `drop` | The dropout rate. ~~float~~ |
|
||||
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
|
||||
| `losses` | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
|
||||
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
|
||||
|
||||
## CuratedTransformer.create_optimizer {id="create_optimizer",tag="method"}
|
||||
|
||||
Create an optimizer for the pipeline component.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> trf = nlp.add_pipe("curated_transformer")
|
||||
> optimizer = trf.create_optimizer()
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| ----------- | ---------------------------- |
|
||||
| **RETURNS** | The optimizer. ~~Optimizer~~ |
|
||||
|
||||
## CuratedTransformer.use_params {id="use_params",tag="method, contextmanager"}
|
||||
|
||||
Modify the pipe's model to use the given parameter values. At the end of the
|
||||
context, the original parameters are restored.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> trf = nlp.add_pipe("curated_transformer")
|
||||
> with trf.use_params(optimizer.averages):
|
||||
> trf.to_disk("/best_model")
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------- | -------------------------------------------------- |
|
||||
| `params` | The parameter values to use in the model. ~~dict~~ |
|
||||
|
||||
## CuratedTransformer.to_disk {id="to_disk",tag="method"}
|
||||
|
||||
Serialize the pipe to disk.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> trf = nlp.add_pipe("curated_transformer")
|
||||
> trf.to_disk("/path/to/transformer")
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| `path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
||||
|
||||
## CuratedTransformer.from_disk {id="from_disk",tag="method"}
|
||||
|
||||
Load the pipe from disk. Modifies the object in place and returns it.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> trf = nlp.add_pipe("curated_transformer")
|
||||
> trf.from_disk("/path/to/transformer")
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | ----------------------------------------------------------------------------------------------- |
|
||||
| `path` | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
||||
| **RETURNS** | The modified `CuratedTransformer` object. ~~CuratedTransformer~~ |
|
||||
|
||||
## CuratedTransformer.to_bytes {id="to_bytes",tag="method"}
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> trf = nlp.add_pipe("curated_transformer")
|
||||
> trf_bytes = trf.to_bytes()
|
||||
> ```
|
||||
|
||||
Serialize the pipe to a bytestring.
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | ------------------------------------------------------------------------------------------- |
|
||||
| _keyword-only_ | |
|
||||
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
||||
| **RETURNS** | The serialized form of the `CuratedTransformer` object. ~~bytes~~ |
|
||||
|
||||
## CuratedTransformer.from_bytes {id="from_bytes",tag="method"}
|
||||
|
||||
Load the pipe from a bytestring. Modifies the object in place and returns it.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> trf_bytes = trf.to_bytes()
|
||||
> trf = nlp.add_pipe("curated_transformer")
|
||||
> trf.from_bytes(trf_bytes)
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | ------------------------------------------------------------------------------------------- |
|
||||
| `bytes_data` | The data to load from. ~~bytes~~ |
|
||||
| _keyword-only_ | |
|
||||
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
||||
| **RETURNS** | The `CuratedTransformer` object. ~~CuratedTransformer~~ |
|
||||
|
||||
## Serialization Fields {id="serialization-fields"}
|
||||
|
||||
During serialization, spaCy will export several data fields used to restore
|
||||
different aspects of the object. If needed, you can exclude them from
|
||||
serialization by passing in the string names via the `exclude` argument.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> data = trf.to_disk("/path", exclude=["vocab"])
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| ------- | -------------------------------------------------------------- |
|
||||
| `vocab` | The shared [`Vocab`](/api/vocab). |
|
||||
| `cfg` | The config file. You usually don't want to exclude this. |
|
||||
| `model` | The binary model data. You usually don't want to exclude this. |
|
||||
|
||||
## DocTransformerOutput {id="doctransformeroutput",tag="dataclass"}
|
||||
|
||||
Curated Transformer outputs for one `Doc` object. Stores the dense
|
||||
representations generated by the transformer for each piece identifier. Piece
|
||||
identifiers are grouped by token. Instances of this class are typically assigned
|
||||
to the [`Doc._.trf_data`](/api/curatedtransformer#assigned-attributes) extension
|
||||
attribute.
|
||||
|
||||
| Name | Description |
|
||||
| ----------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `all_outputs` | List of `Ragged` tensors that correspends to outputs of the different transformer layers. Each tensor element corresponds to a piece identifier's representation. ~~List[Ragged]~~ |
|
||||
| `last_layer_only` | If only the last transformer layer's outputs are preserved. ~~bool~~ |
|
||||
|
||||
### DocTransformerOutput.embedding_layer {id="doctransformeroutput-embeddinglayer",tag="property"}
|
||||
|
||||
Return the output of the transformer's embedding layer or `None` if
|
||||
`last_layer_only` is `True`.
|
||||
|
||||
| Name | Description |
|
||||
| ----------- | -------------------------------------------- |
|
||||
| **RETURNS** | Embedding layer output. ~~Optional[Ragged]~~ |
|
||||
|
||||
### DocTransformerOutput.last_hidden_layer_state {id="doctransformeroutput-lasthiddenlayerstate",tag="property"}
|
||||
|
||||
Return the output of the transformer's last hidden layer.
|
||||
|
||||
| Name | Description |
|
||||
| ----------- | ------------------------------------ |
|
||||
| **RETURNS** | Last hidden layer output. ~~Ragged~~ |
|
||||
|
||||
### DocTransformerOutput.all_hidden_layer_states {id="doctransformeroutput-allhiddenlayerstates",tag="property"}
|
||||
|
||||
Return the outputs of all transformer layers (excluding the embedding layer).
|
||||
|
||||
| Name | Description |
|
||||
| ----------- | -------------------------------------- |
|
||||
| **RETURNS** | Hidden layer outputs. ~~List[Ragged]~~ |
|
||||
|
||||
### DocTransformerOutput.num_outputs {id="doctransformeroutput-numoutputs",tag="property"}
|
||||
|
||||
Return the number of layer outputs stored in the `DocTransformerOutput` instance
|
||||
(including the embedding layer).
|
||||
|
||||
| Name | Description |
|
||||
| ----------- | -------------------------- |
|
||||
| **RETURNS** | Numbef of outputs. ~~int~~ |
|
||||
|
||||
## Span Getters {id="span_getters",source="github.com/explosion/spacy-transformers/blob/master/spacy_curated_transformers/span_getters.py"}
|
||||
|
||||
Span getters are functions that take a batch of [`Doc`](/api/doc) objects and
|
||||
return a lists of [`Span`](/api/span) objects for each doc to be processed by
|
||||
the transformer. This is used to manage long documents by cutting them into
|
||||
smaller sequences before running the transformer. The spans are allowed to
|
||||
overlap, and you can also omit sections of the `Doc` if they are not relevant.
|
||||
Span getters can be referenced in the
|
||||
`[components.transformer.model.with_spans]` block of the config to customize the
|
||||
sequences processed by the transformer.
|
||||
|
||||
| Name | Description |
|
||||
| ----------- | ------------------------------------------------------------- |
|
||||
| `docs` | A batch of `Doc` objects. ~~Iterable[Doc]~~ |
|
||||
| **RETURNS** | The spans to process by the transformer. ~~List[List[Span]]~~ |
|
||||
|
||||
### WithStridedSpans.v1 {id="strided_spans",tag="registered function"}
|
||||
|
||||
> #### Example config
|
||||
>
|
||||
> ```ini
|
||||
> [transformer.model.with_spans]
|
||||
> @architectures = "spacy-curated-transformers.WithStridedSpans.v1"
|
||||
> stride = 96
|
||||
> window = 128
|
||||
> ```
|
||||
|
||||
Create a span getter for strided spans. If you set the `window` and `stride` to
|
||||
the same value, the spans will cover each token once. Setting `stride` lower
|
||||
than `window` will allow for an overlap, so that some tokens are counted twice.
|
||||
This can be desirable, because it allows all tokens to have both a left and
|
||||
right context.
|
||||
|
||||
| Name | Description |
|
||||
| -------- | ------------------------ |
|
||||
| `window` | The window size. ~~int~~ |
|
||||
| `stride` | The stride size. ~~int~~ |
|
||||
|
||||
## Model Loaders
|
||||
|
||||
[Curated Transformer models](/api/architectures#curated-trf) are constructed
|
||||
with default hyperparameters and randomized weights when the pipeline is
|
||||
created. To load the weights of an existing pre-trained model into the pipeline,
|
||||
one of the following loader callbacks can be used. The pre-trained model must
|
||||
have the same hyperparameters as the model used by the pipeline.
|
||||
|
||||
### HFTransformerEncoderLoader.v1 {id="hf_trfencoder_loader",tag="registered_function"}
|
||||
|
||||
Construct a callback that initializes a supported transformer model with weights
|
||||
from a corresponding HuggingFace model.
|
||||
|
||||
| Name | Description |
|
||||
| ---------- | ------------------------------------------ |
|
||||
| `name` | Name of the HuggingFace model. ~~str~~ |
|
||||
| `revision` | Name of the model revision/branch. ~~str~~ |
|
||||
|
||||
### PyTorchCheckpointLoader.v1 {id="pytorch_checkpoint_loader",tag="registered_function"}
|
||||
|
||||
Construct a callback that initializes a supported transformer model with weights
|
||||
from a PyTorch checkpoint.
|
||||
|
||||
| Name | Description |
|
||||
| ------ | ---------------------------------------- |
|
||||
| `path` | Path to the PyTorch checkpoint. ~~Path~~ |
|
||||
|
||||
## Tokenizer Loaders
|
||||
|
||||
[Curated Transformer models](/api/architectures#curated-trf) must be paired with
|
||||
a matching tokenizer (piece encoder) model in a spaCy pipeline. As with the
|
||||
transformer models, tokenizers are constructed with an empty vocabulary during
|
||||
pipeline creation - They need to be initialized with an appropriate loader
|
||||
before use in training/inference.
|
||||
|
||||
### ByteBPELoader.v1 {id="bytebpe_loader",tag="registered_function"}
|
||||
|
||||
Construct a callback that initializes a Byte-BPE piece encoder model.
|
||||
|
||||
| Name | Description |
|
||||
| ------------- | ------------------------------------- |
|
||||
| `vocab_path` | Path to the vocabulary file. ~~Path~~ |
|
||||
| `merges_path` | Path to the merges file. ~~Path~~ |
|
||||
|
||||
### CharEncoderLoader.v1 {id="charencoder_loader",tag="registered_function"}
|
||||
|
||||
Construct a callback that initializes a character piece encoder model.
|
||||
|
||||
| Name | Description |
|
||||
| ----------- | --------------------------------------------------------------------------- |
|
||||
| `path` | Path to the serialized character model. ~~Path~~ |
|
||||
| `bos_piece` | Piece used as a beginning-of-sentence token. Defaults to `"[BOS]"`. ~~str~~ |
|
||||
| `eos_piece` | Piece used as a end-of-sentence token. Defaults to `"[EOS]"`. ~~str~~ |
|
||||
| `unk_piece` | Piece used as a stand-in for unknown tokens. Defaults to `"[UNK]"`. ~~str~~ |
|
||||
| `normalize` | Unicode normalization form to use. Defaults to `"NFKC"`. ~~str~~ |
|
||||
|
||||
### HFPieceEncoderLoader.v1 {id="hf_pieceencoder_loader",tag="registered_function"}
|
||||
|
||||
Construct a callback that initializes a HuggingFace piece encoder model. Used in
|
||||
conjunction with the HuggingFace model loader.
|
||||
|
||||
| Name | Description |
|
||||
| ---------- | ------------------------------------------ |
|
||||
| `name` | Name of the HuggingFace model. ~~str~~ |
|
||||
| `revision` | Name of the model revision/branch. ~~str~~ |
|
||||
|
||||
### SentencepieceLoader.v1 {id="sentencepiece_loader",tag="registered_function"}
|
||||
|
||||
Construct a callback that initializes a SentencePiece piece encoder model.
|
||||
|
||||
| Name | Description |
|
||||
| ------ | ---------------------------------------------------- |
|
||||
| `path` | Path to the serialized SentencePiece model. ~~Path~~ |
|
||||
|
||||
### WordpieceLoader.v1 {id="wordpiece_loader",tag="registered_function"}
|
||||
|
||||
Construct a callback that initializes a WordPiece piece encoder model.
|
||||
|
||||
| Name | Description |
|
||||
| ------ | ------------------------------------------------ |
|
||||
| `path` | Path to the serialized WordPiece model. ~~Path~~ |
|
||||
|
||||
## Callbacks
|
||||
|
||||
### gradual_transformer_unfreezing.v1 {id="gradual_transformer_unfreezing",tag="registered_function"}
|
||||
|
||||
Construct a callback that can be used to gradually unfreeze the weights of one
|
||||
or more Transformer components during training. This can be used to prevent
|
||||
catastrophic forgetting during fine-tuning.
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `target_pipes` | A dictionary whose keys and values correspond to the names of Transformer components and the training step at which they should be unfrozen respectively. ~~Dict[str, int]~~ |
|
|
@ -97,6 +97,7 @@
|
|||
"items": [
|
||||
{ "text": "AttributeRuler", "url": "/api/attributeruler" },
|
||||
{ "text": "CoreferenceResolver", "url": "/api/coref" },
|
||||
{ "text": "CuratedTransformer", "url": "/api/curatedtransformer" },
|
||||
{ "text": "DependencyParser", "url": "/api/dependencyparser" },
|
||||
{ "text": "EditTreeLemmatizer", "url": "/api/edittreelemmatizer" },
|
||||
{ "text": "EntityLinker", "url": "/api/entitylinker" },
|
||||
|
|
Loading…
Reference in New Issue
Block a user