mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-25 00:34:20 +03:00
component tests single or multiple prediction
This commit is contained in:
parent
1f49300862
commit
c23041ae60
46
spacy/tests/pipeline/test_models.py
Normal file
46
spacy/tests/pipeline/test_models.py
Normal file
|
@ -0,0 +1,46 @@
|
|||
from typing import List
|
||||
import pytest
|
||||
from numpy.testing import assert_equal
|
||||
from thinc.api import get_current_ops, Model, data_validation
|
||||
from thinc.types import Array2d
|
||||
|
||||
from spacy.lang.en import English
|
||||
from spacy.tokens import Doc
|
||||
|
||||
OPS = get_current_ops()
|
||||
|
||||
texts = ["These are 4 words", "These just three"]
|
||||
l0 = [[1, 2], [3, 4], [5, 6], [7, 8]]
|
||||
l1 = [[9, 8], [7, 6], [5, 4]]
|
||||
out_list = [OPS.xp.asarray(l0, dtype="f"), OPS.xp.asarray(l1, dtype="f")]
|
||||
a1 = OPS.xp.asarray(l1, dtype="f")
|
||||
|
||||
# Test components with a model of type Model[List[Doc], List[Floats2d]]
|
||||
@pytest.mark.parametrize("name", ["tagger", "tok2vec", "morphologizer", "senter"])
|
||||
def test_layers_batching_all_list(name):
|
||||
nlp = English()
|
||||
in_data = [nlp(text) for text in texts]
|
||||
proc = nlp.create_pipe(name)
|
||||
util_batch_unbatch_List(proc.model, in_data, out_list)
|
||||
|
||||
def util_batch_unbatch_List(model: Model[List[Doc], List[Array2d]], in_data: List[Doc], out_data: List[Array2d]):
|
||||
with data_validation(True):
|
||||
model.initialize(in_data, out_data)
|
||||
Y_batched = model.predict(in_data)
|
||||
Y_not_batched = [model.predict([u])[0] for u in in_data]
|
||||
assert_equal(Y_batched, Y_not_batched)
|
||||
|
||||
# Test components with a model of type Model[List[Doc], Floats2d]
|
||||
@pytest.mark.parametrize("name", ["textcat"])
|
||||
def test_layers_batching_all_array(name):
|
||||
nlp = English()
|
||||
in_data = [nlp(text) for text in texts]
|
||||
proc = nlp.create_pipe(name)
|
||||
util_batch_unbatch_Array(proc.model, in_data, a1)
|
||||
|
||||
def util_batch_unbatch_Array(model: Model[List[Doc], Array2d], in_data: List[Doc], out_data: Array2d):
|
||||
with data_validation(True):
|
||||
model.initialize(in_data, out_data)
|
||||
Y_batched = model.predict(in_data)
|
||||
Y_not_batched = [model.predict([u])[0] for u in in_data]
|
||||
assert_equal(Y_batched, Y_not_batched)
|
Loading…
Reference in New Issue
Block a user