Rebatch parser inputs, with mid-sentence states

This commit is contained in:
Matthew Honnibal 2017-05-25 11:18:59 -05:00
parent 679efe79c8
commit c245ff6b27

View File

@ -426,9 +426,11 @@ cdef class Parser:
golds = [golds] golds = [golds]
cuda_stream = get_cuda_stream() cuda_stream = get_cuda_stream()
golds = [self.moves.preprocess_gold(g) for g in golds]
states = self.moves.init_batch(docs) states, golds = self._init_gold_batch(docs, golds)
max_length = min([len(doc) for doc in docs])
#golds = [self.moves.preprocess_gold(g) for g in golds]
#states = self.moves.init_batch(docs)
state2vec, vec2scores = self.get_batch_model(len(states), tokvecs, cuda_stream, state2vec, vec2scores = self.get_batch_model(len(states), tokvecs, cuda_stream,
0.0) 0.0)
@ -438,6 +440,7 @@ cdef class Parser:
backprops = [] backprops = []
d_tokvecs = state2vec.ops.allocate(tokvecs.shape) d_tokvecs = state2vec.ops.allocate(tokvecs.shape)
cdef float loss = 0. cdef float loss = 0.
#while len(todo and len(todo) >= len(states):
while todo: while todo:
states, golds = zip(*todo) states, golds = zip(*todo)
@ -467,10 +470,54 @@ cdef class Parser:
todo = [st for st in todo if not st[0].is_final()] todo = [st for st in todo if not st[0].is_final()]
if losses is not None: if losses is not None:
losses[self.name] += (d_scores**2).sum() losses[self.name] += (d_scores**2).sum()
if len(backprops) >= (max_length * 2):
break
self._make_updates(d_tokvecs, self._make_updates(d_tokvecs,
backprops, sgd, cuda_stream) backprops, sgd, cuda_stream)
return self.model[0].ops.unflatten(d_tokvecs, [len(d) for d in docs]) return self.model[0].ops.unflatten(d_tokvecs, [len(d) for d in docs])
def _init_gold_batch(self, docs, golds):
"""Make a square batch, of length equal to the shortest doc. A long
doc will get multiple states. Let's say we have a doc of length 2*N,
where N is the shortest doc. We'll make two states, one representing
long_doc[:N], and another representing long_doc[N:]."""
cdef StateClass state
lengths = [len(doc) for doc in docs]
# Cap to min length
min_length = min(lengths)
offset = 0
states = []
extra_golds = []
cdef np.ndarray py_costs = numpy.zeros((self.moves.n_moves,), dtype='f')
cdef np.ndarray py_is_valid = numpy.zeros((self.moves.n_moves,), dtype='i')
costs = <float*>py_costs.data
is_valid = <int*>py_is_valid.data
for doc, gold in zip(docs, golds):
gold = self.moves.preprocess_gold(gold)
state = StateClass(doc, offset=offset)
self.moves.initialize_state(state.c)
states.append(state)
extra_golds.append(gold)
start = min(min_length, len(doc))
while start < len(doc):
length = min(min_length, len(doc)-start)
state = StateClass(doc, offset=offset)
self.moves.initialize_state(state.c)
while state.B(0) < start and not state.is_final():
py_is_valid.fill(0)
py_costs.fill(0)
self.moves.set_costs(is_valid, costs, state, gold)
for i in range(self.moves.n_moves):
if is_valid[i] and costs[i] <= 0:
self.moves.c[i].do(state.c, self.moves.c[i].label)
break
start += length
if not state.is_final():
states.append(state)
extra_golds.append(gold)
offset += len(doc)
return states, extra_golds
def _make_updates(self, d_tokvecs, backprops, sgd, cuda_stream=None): def _make_updates(self, d_tokvecs, backprops, sgd, cuda_stream=None):
# Tells CUDA to block, so our async copies complete. # Tells CUDA to block, so our async copies complete.
if cuda_stream is not None: if cuda_stream is not None: