Merge branch 'develop' into feature/vectors

This commit is contained in:
Matthew Honnibal 2020-07-29 14:54:10 +02:00 committed by GitHub
commit c27309f839
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 12 additions and 10 deletions

View File

@ -387,7 +387,7 @@ class EntityLinker(Pipe):
docs (Iterable[Doc]): The documents to modify.
kb_ids (List[str]): The IDs to set, produced by EntityLinker.predict.
DOCS: https://spacy.io/api/entitylinker#predict
DOCS: https://spacy.io/api/entitylinker#set_annotations
"""
count_ents = len([ent for doc in docs for ent in doc.ents])
if count_ents != len(kb_ids):

View File

@ -165,7 +165,7 @@ class Morphologizer(Tagger):
docs (Iterable[Doc]): The documents to modify.
batch_tag_ids: The IDs to set, produced by Morphologizer.predict.
DOCS: https://spacy.io/api/morphologizer#predict
DOCS: https://spacy.io/api/morphologizer#set_annotations
"""
if isinstance(docs, Doc):
docs = [docs]

View File

@ -32,7 +32,9 @@ class Pipe:
raise NotImplementedError
def __call__(self, Doc doc):
"""Add context-sensitive embeddings to the Doc.tensor attribute.
"""Apply the pipe to one document. The document is modified in place,
and returned. This usually happens under the hood when the nlp object
is called on a text and all components are applied to the Doc.
docs (Doc): The Doc to preocess.
RETURNS (Doc): The processed Doc.
@ -74,9 +76,9 @@ class Pipe:
"""Modify a batch of documents, using pre-computed scores.
docs (Iterable[Doc]): The documents to modify.
tokvecses: The tensors to set, produced by Pipe.predict.
scores: The scores to assign.
DOCS: https://spacy.io/api/pipe#predict
DOCS: https://spacy.io/api/pipe#set_annotations
"""
raise NotImplementedError

View File

@ -76,7 +76,7 @@ class SentenceRecognizer(Tagger):
docs (Iterable[Doc]): The documents to modify.
batch_tag_ids: The IDs to set, produced by SentenceRecognizer.predict.
DOCS: https://spacy.io/api/sentencerecognizer#predict
DOCS: https://spacy.io/api/sentencerecognizer#set_annotations
"""
if isinstance(docs, Doc):
docs = [docs]

View File

@ -145,7 +145,7 @@ class Tagger(Pipe):
docs (Iterable[Doc]): The documents to modify.
batch_tag_ids: The IDs to set, produced by Tagger.predict.
DOCS: https://spacy.io/api/tagger#predict
DOCS: https://spacy.io/api/tagger#set_annotations
"""
if isinstance(docs, Doc):
docs = [docs]

View File

@ -163,7 +163,7 @@ class TextCategorizer(Pipe):
docs (Iterable[Doc]): The documents to modify.
scores: The scores to set, produced by TextCategorizer.predict.
DOCS: https://spacy.io/api/textcategorizer#predict
DOCS: https://spacy.io/api/textcategorizer#set_annotations
"""
for i, doc in enumerate(docs):
for j, label in enumerate(self.labels):

View File

@ -109,7 +109,7 @@ class Tok2Vec(Pipe):
docs (Iterable[Doc]): The documents to modify.
tokvecses: The tensors to set, produced by Tok2Vec.predict.
DOCS: https://spacy.io/api/tok2vec#predict
DOCS: https://spacy.io/api/tok2vec#set_annotations
"""
for doc, tokvecs in zip(docs, tokvecses):
assert tokvecs.shape[0] == len(doc)

View File

@ -50,7 +50,7 @@ class DocBin:
self,
attrs: Iterable[str] = ALL_ATTRS,
store_user_data: bool = False,
docs: Iterable[Doc]=[],
docs: Iterable[Doc] = tuple(),
) -> None:
"""Create a DocBin object to hold serialized annotations.