mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 09:14:32 +03:00
Merge branch 'develop' into feature/vectors
This commit is contained in:
commit
c27309f839
|
@ -387,7 +387,7 @@ class EntityLinker(Pipe):
|
|||
docs (Iterable[Doc]): The documents to modify.
|
||||
kb_ids (List[str]): The IDs to set, produced by EntityLinker.predict.
|
||||
|
||||
DOCS: https://spacy.io/api/entitylinker#predict
|
||||
DOCS: https://spacy.io/api/entitylinker#set_annotations
|
||||
"""
|
||||
count_ents = len([ent for doc in docs for ent in doc.ents])
|
||||
if count_ents != len(kb_ids):
|
||||
|
|
|
@ -165,7 +165,7 @@ class Morphologizer(Tagger):
|
|||
docs (Iterable[Doc]): The documents to modify.
|
||||
batch_tag_ids: The IDs to set, produced by Morphologizer.predict.
|
||||
|
||||
DOCS: https://spacy.io/api/morphologizer#predict
|
||||
DOCS: https://spacy.io/api/morphologizer#set_annotations
|
||||
"""
|
||||
if isinstance(docs, Doc):
|
||||
docs = [docs]
|
||||
|
|
|
@ -32,7 +32,9 @@ class Pipe:
|
|||
raise NotImplementedError
|
||||
|
||||
def __call__(self, Doc doc):
|
||||
"""Add context-sensitive embeddings to the Doc.tensor attribute.
|
||||
"""Apply the pipe to one document. The document is modified in place,
|
||||
and returned. This usually happens under the hood when the nlp object
|
||||
is called on a text and all components are applied to the Doc.
|
||||
|
||||
docs (Doc): The Doc to preocess.
|
||||
RETURNS (Doc): The processed Doc.
|
||||
|
@ -74,9 +76,9 @@ class Pipe:
|
|||
"""Modify a batch of documents, using pre-computed scores.
|
||||
|
||||
docs (Iterable[Doc]): The documents to modify.
|
||||
tokvecses: The tensors to set, produced by Pipe.predict.
|
||||
scores: The scores to assign.
|
||||
|
||||
DOCS: https://spacy.io/api/pipe#predict
|
||||
DOCS: https://spacy.io/api/pipe#set_annotations
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
|
|
|
@ -76,7 +76,7 @@ class SentenceRecognizer(Tagger):
|
|||
docs (Iterable[Doc]): The documents to modify.
|
||||
batch_tag_ids: The IDs to set, produced by SentenceRecognizer.predict.
|
||||
|
||||
DOCS: https://spacy.io/api/sentencerecognizer#predict
|
||||
DOCS: https://spacy.io/api/sentencerecognizer#set_annotations
|
||||
"""
|
||||
if isinstance(docs, Doc):
|
||||
docs = [docs]
|
||||
|
|
|
@ -145,7 +145,7 @@ class Tagger(Pipe):
|
|||
docs (Iterable[Doc]): The documents to modify.
|
||||
batch_tag_ids: The IDs to set, produced by Tagger.predict.
|
||||
|
||||
DOCS: https://spacy.io/api/tagger#predict
|
||||
DOCS: https://spacy.io/api/tagger#set_annotations
|
||||
"""
|
||||
if isinstance(docs, Doc):
|
||||
docs = [docs]
|
||||
|
|
|
@ -163,7 +163,7 @@ class TextCategorizer(Pipe):
|
|||
docs (Iterable[Doc]): The documents to modify.
|
||||
scores: The scores to set, produced by TextCategorizer.predict.
|
||||
|
||||
DOCS: https://spacy.io/api/textcategorizer#predict
|
||||
DOCS: https://spacy.io/api/textcategorizer#set_annotations
|
||||
"""
|
||||
for i, doc in enumerate(docs):
|
||||
for j, label in enumerate(self.labels):
|
||||
|
|
|
@ -109,7 +109,7 @@ class Tok2Vec(Pipe):
|
|||
docs (Iterable[Doc]): The documents to modify.
|
||||
tokvecses: The tensors to set, produced by Tok2Vec.predict.
|
||||
|
||||
DOCS: https://spacy.io/api/tok2vec#predict
|
||||
DOCS: https://spacy.io/api/tok2vec#set_annotations
|
||||
"""
|
||||
for doc, tokvecs in zip(docs, tokvecses):
|
||||
assert tokvecs.shape[0] == len(doc)
|
||||
|
|
|
@ -50,7 +50,7 @@ class DocBin:
|
|||
self,
|
||||
attrs: Iterable[str] = ALL_ATTRS,
|
||||
store_user_data: bool = False,
|
||||
docs: Iterable[Doc]=[],
|
||||
docs: Iterable[Doc] = tuple(),
|
||||
) -> None:
|
||||
"""Create a DocBin object to hold serialized annotations.
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user