Merge pull request #12351 from adrianeboyd/backport/v3.5.1-1

Backports for v3.5.1
This commit is contained in:
Adriane Boyd 2023-03-09 11:29:51 +01:00 committed by GitHub
commit c2810575c0
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
34 changed files with 883 additions and 191 deletions

View File

@ -59,6 +59,11 @@ steps:
displayName: 'Test download CLI' displayName: 'Test download CLI'
condition: eq(variables['python_version'], '3.8') condition: eq(variables['python_version'], '3.8')
- script: |
python -W error -m spacy info ca_core_news_sm | grep -q download_url
displayName: 'Test download_url in info CLI'
condition: eq(variables['python_version'], '3.8')
- script: | - script: |
python -W error -c "import ca_core_news_sm; nlp = ca_core_news_sm.load(); doc=nlp('test')" python -W error -c "import ca_core_news_sm; nlp = ca_core_news_sm.load(); doc=nlp('test')"
displayName: 'Test no warnings on load (#11713)' displayName: 'Test no warnings on load (#11713)'

View File

@ -16,6 +16,9 @@ production-ready [**training system**](https://spacy.io/usage/training) and easy
model packaging, deployment and workflow management. spaCy is commercial model packaging, deployment and workflow management. spaCy is commercial
open-source software, released under the [MIT license](https://github.com/explosion/spaCy/blob/master/LICENSE). open-source software, released under the [MIT license](https://github.com/explosion/spaCy/blob/master/LICENSE).
💥 **We'd love to hear more about your experience with spaCy!**
[Fill out our survey here.](https://form.typeform.com/to/aMel9q9f)
💫 **Version 3.5 out now!** 💫 **Version 3.5 out now!**
[Check out the release notes here.](https://github.com/explosion/spaCy/releases) [Check out the release notes here.](https://github.com/explosion/spaCy/releases)

View File

@ -5,7 +5,7 @@ requires = [
"cymem>=2.0.2,<2.1.0", "cymem>=2.0.2,<2.1.0",
"preshed>=3.0.2,<3.1.0", "preshed>=3.0.2,<3.1.0",
"murmurhash>=0.28.0,<1.1.0", "murmurhash>=0.28.0,<1.1.0",
"thinc>=8.1.0,<8.2.0", "thinc>=8.1.8,<8.2.0",
"numpy>=1.15.0", "numpy>=1.15.0",
] ]
build-backend = "setuptools.build_meta" build-backend = "setuptools.build_meta"

View File

@ -3,7 +3,7 @@ spacy-legacy>=3.0.11,<3.1.0
spacy-loggers>=1.0.0,<2.0.0 spacy-loggers>=1.0.0,<2.0.0
cymem>=2.0.2,<2.1.0 cymem>=2.0.2,<2.1.0
preshed>=3.0.2,<3.1.0 preshed>=3.0.2,<3.1.0
thinc>=8.1.0,<8.2.0 thinc>=8.1.8,<8.2.0
ml_datasets>=0.2.0,<0.3.0 ml_datasets>=0.2.0,<0.3.0
murmurhash>=0.28.0,<1.1.0 murmurhash>=0.28.0,<1.1.0
wasabi>=0.9.1,<1.2.0 wasabi>=0.9.1,<1.2.0

View File

@ -39,7 +39,7 @@ setup_requires =
cymem>=2.0.2,<2.1.0 cymem>=2.0.2,<2.1.0
preshed>=3.0.2,<3.1.0 preshed>=3.0.2,<3.1.0
murmurhash>=0.28.0,<1.1.0 murmurhash>=0.28.0,<1.1.0
thinc>=8.1.0,<8.2.0 thinc>=8.1.8,<8.2.0
install_requires = install_requires =
# Our libraries # Our libraries
spacy-legacy>=3.0.11,<3.1.0 spacy-legacy>=3.0.11,<3.1.0
@ -47,7 +47,7 @@ install_requires =
murmurhash>=0.28.0,<1.1.0 murmurhash>=0.28.0,<1.1.0
cymem>=2.0.2,<2.1.0 cymem>=2.0.2,<2.1.0
preshed>=3.0.2,<3.1.0 preshed>=3.0.2,<3.1.0
thinc>=8.1.0,<8.2.0 thinc>=8.1.8,<8.2.0
wasabi>=0.9.1,<1.2.0 wasabi>=0.9.1,<1.2.0
srsly>=2.4.3,<3.0.0 srsly>=2.4.3,<3.0.0
catalogue>=2.0.6,<2.1.0 catalogue>=2.0.6,<2.1.0

View File

@ -1,6 +1,5 @@
from typing import Optional, Dict, Any, Union, List from typing import Optional, Dict, Any, Union, List
import platform import platform
import pkg_resources
import json import json
from pathlib import Path from pathlib import Path
from wasabi import Printer, MarkdownRenderer from wasabi import Printer, MarkdownRenderer
@ -10,6 +9,7 @@ from ._util import app, Arg, Opt, string_to_list
from .download import get_model_filename, get_latest_version from .download import get_model_filename, get_latest_version
from .. import util from .. import util
from .. import about from .. import about
from ..compat import importlib_metadata
@app.command("info") @app.command("info")
@ -137,14 +137,13 @@ def info_installed_model_url(model: str) -> Optional[str]:
dist-info available. dist-info available.
""" """
try: try:
dist = pkg_resources.get_distribution(model) dist = importlib_metadata.distribution(model)
data = json.loads(dist.get_metadata("direct_url.json")) text = dist.read_text("direct_url.json")
if isinstance(text, str):
data = json.loads(text)
return data["url"] return data["url"]
except pkg_resources.DistributionNotFound:
# no such package
return None
except Exception: except Exception:
# something else, like no file or invalid JSON pass
return None return None

View File

@ -2,7 +2,6 @@ from typing import Optional, List, Dict, Sequence, Any, Iterable, Tuple
import os.path import os.path
from pathlib import Path from pathlib import Path
import pkg_resources
from wasabi import msg from wasabi import msg
from wasabi.util import locale_escape from wasabi.util import locale_escape
import sys import sys
@ -331,6 +330,7 @@ def _check_requirements(requirements: List[str]) -> Tuple[bool, bool]:
RETURNS (Tuple[bool, bool]): Whether (1) any packages couldn't be imported, (2) any packages with version conflicts RETURNS (Tuple[bool, bool]): Whether (1) any packages couldn't be imported, (2) any packages with version conflicts
exist. exist.
""" """
import pkg_resources
failed_pkgs_msgs: List[str] = [] failed_pkgs_msgs: List[str] = []
conflicting_pkgs_msgs: List[str] = [] conflicting_pkgs_msgs: List[str] = []

View File

@ -3,7 +3,7 @@ the docs and the init config command. It encodes various best practices and
can help generate the best possible configuration, given a user's requirements. #} can help generate the best possible configuration, given a user's requirements. #}
{%- set use_transformer = hardware != "cpu" and transformer_data -%} {%- set use_transformer = hardware != "cpu" and transformer_data -%}
{%- set transformer = transformer_data[optimize] if use_transformer else {} -%} {%- set transformer = transformer_data[optimize] if use_transformer else {} -%}
{%- set listener_components = ["tagger", "morphologizer", "parser", "ner", "textcat", "textcat_multilabel", "entity_linker", "spancat", "trainable_lemmatizer"] -%} {%- set listener_components = ["tagger", "morphologizer", "parser", "ner", "textcat", "textcat_multilabel", "entity_linker", "spancat", "spancat_singlelabel", "trainable_lemmatizer"] -%}
[paths] [paths]
train = null train = null
dev = null dev = null
@ -24,8 +24,11 @@ gpu_allocator = null
lang = "{{ lang }}" lang = "{{ lang }}"
{%- set has_textcat = ("textcat" in components or "textcat_multilabel" in components) -%} {%- set has_textcat = ("textcat" in components or "textcat_multilabel" in components) -%}
{%- set with_accuracy = optimize == "accuracy" -%} {%- set with_accuracy = optimize == "accuracy" -%}
{%- set has_accurate_textcat = has_textcat and with_accuracy -%} {# The BOW textcat doesn't need a source of features, so it can omit the
{%- if ("tagger" in components or "morphologizer" in components or "parser" in components or "ner" in components or "spancat" in components or "trainable_lemmatizer" in components or "entity_linker" in components or has_accurate_textcat) -%} tok2vec/transformer. #}
{%- set with_accuracy_or_transformer = (use_transformer or with_accuracy) -%}
{%- set textcat_needs_features = has_textcat and with_accuracy_or_transformer -%}
{%- if ("tagger" in components or "morphologizer" in components or "parser" in components or "ner" in components or "spancat" in components or "spancat_singlelabel" in components or "trainable_lemmatizer" in components or "entity_linker" in components or textcat_needs_features) -%}
{%- set full_pipeline = ["transformer" if use_transformer else "tok2vec"] + components -%} {%- set full_pipeline = ["transformer" if use_transformer else "tok2vec"] + components -%}
{%- else -%} {%- else -%}
{%- set full_pipeline = components -%} {%- set full_pipeline = components -%}
@ -156,6 +159,36 @@ grad_factor = 1.0
sizes = [1,2,3] sizes = [1,2,3]
{% endif -%} {% endif -%}
{% if "spancat_singlelabel" in components %}
[components.spancat_singlelabel]
factory = "spancat_singlelabel"
negative_weight = 1.0
allow_overlap = true
scorer = {"@scorers":"spacy.spancat_scorer.v1"}
spans_key = "sc"
[components.spancat_singlelabel.model]
@architectures = "spacy.SpanCategorizer.v1"
[components.spancat_singlelabel.model.reducer]
@layers = "spacy.mean_max_reducer.v1"
hidden_size = 128
[components.spancat_singlelabel.model.scorer]
@layers = "Softmax.v2"
[components.spancat_singlelabel.model.tok2vec]
@architectures = "spacy-transformers.TransformerListener.v1"
grad_factor = 1.0
[components.spancat_singlelabel.model.tok2vec.pooling]
@layers = "reduce_mean.v1"
[components.spancat_singlelabel.suggester]
@misc = "spacy.ngram_suggester.v1"
sizes = [1,2,3]
{% endif %}
{% if "trainable_lemmatizer" in components -%} {% if "trainable_lemmatizer" in components -%}
[components.trainable_lemmatizer] [components.trainable_lemmatizer]
factory = "trainable_lemmatizer" factory = "trainable_lemmatizer"
@ -221,10 +254,16 @@ no_output_layer = false
{% else -%} {% else -%}
[components.textcat.model] [components.textcat.model]
@architectures = "spacy.TextCatBOW.v2" @architectures = "spacy.TextCatCNN.v2"
exclusive_classes = true exclusive_classes = true
ngram_size = 1 nO = null
no_output_layer = false
[components.textcat.model.tok2vec]
@architectures = "spacy-transformers.TransformerListener.v1"
grad_factor = 1.0
[components.textcat.model.tok2vec.pooling]
@layers = "reduce_mean.v1"
{%- endif %} {%- endif %}
{%- endif %} {%- endif %}
@ -252,10 +291,16 @@ no_output_layer = false
{% else -%} {% else -%}
[components.textcat_multilabel.model] [components.textcat_multilabel.model]
@architectures = "spacy.TextCatBOW.v2" @architectures = "spacy.TextCatCNN.v2"
exclusive_classes = false exclusive_classes = false
ngram_size = 1 nO = null
no_output_layer = false
[components.textcat_multilabel.model.tok2vec]
@architectures = "spacy-transformers.TransformerListener.v1"
grad_factor = 1.0
[components.textcat_multilabel.model.tok2vec.pooling]
@layers = "reduce_mean.v1"
{%- endif %} {%- endif %}
{%- endif %} {%- endif %}
@ -374,6 +419,33 @@ width = ${components.tok2vec.model.encode.width}
sizes = [1,2,3] sizes = [1,2,3]
{% endif %} {% endif %}
{% if "spancat_singlelabel" in components %}
[components.spancat_singlelabel]
factory = "spancat_singlelabel"
negative_weight = 1.0
allow_overlap = true
scorer = {"@scorers":"spacy.spancat_scorer.v1"}
spans_key = "sc"
[components.spancat_singlelabel.model]
@architectures = "spacy.SpanCategorizer.v1"
[components.spancat_singlelabel.model.reducer]
@layers = "spacy.mean_max_reducer.v1"
hidden_size = 128
[components.spancat_singlelabel.model.scorer]
@layers = "Softmax.v2"
[components.spancat_singlelabel.model.tok2vec]
@architectures = "spacy.Tok2VecListener.v1"
width = ${components.tok2vec.model.encode.width}
[components.spancat_singlelabel.suggester]
@misc = "spacy.ngram_suggester.v1"
sizes = [1,2,3]
{% endif %}
{% if "trainable_lemmatizer" in components -%} {% if "trainable_lemmatizer" in components -%}
[components.trainable_lemmatizer] [components.trainable_lemmatizer]
factory = "trainable_lemmatizer" factory = "trainable_lemmatizer"

View File

@ -444,8 +444,7 @@ class Errors(metaclass=ErrorsWithCodes):
E133 = ("The sum of prior probabilities for alias '{alias}' should not " E133 = ("The sum of prior probabilities for alias '{alias}' should not "
"exceed 1, but found {sum}.") "exceed 1, but found {sum}.")
E134 = ("Entity '{entity}' is not defined in the Knowledge Base.") E134 = ("Entity '{entity}' is not defined in the Knowledge Base.")
E139 = ("Knowledge base for component '{name}' is empty. Use the methods " E139 = ("Knowledge base for component '{name}' is empty.")
"`kb.add_entity` and `kb.add_alias` to add entries.")
E140 = ("The list of entities, prior probabilities and entity vectors " E140 = ("The list of entities, prior probabilities and entity vectors "
"should be of equal length.") "should be of equal length.")
E141 = ("Entity vectors should be of length {required} instead of the " E141 = ("Entity vectors should be of length {required} instead of the "
@ -550,6 +549,8 @@ class Errors(metaclass=ErrorsWithCodes):
"during training, make sure to include it in 'annotating components'") "during training, make sure to include it in 'annotating components'")
# New errors added in v3.x # New errors added in v3.x
E850 = ("The PretrainVectors objective currently only supports default "
"vectors, not {mode} vectors.")
E851 = ("The 'textcat' component labels should only have values of 0 or 1, " E851 = ("The 'textcat' component labels should only have values of 0 or 1, "
"but found value of '{val}'.") "but found value of '{val}'.")
E852 = ("The tar file pulled from the remote attempted an unsafe path " E852 = ("The tar file pulled from the remote attempted an unsafe path "
@ -967,7 +968,8 @@ class Errors(metaclass=ErrorsWithCodes):
E1049 = ("No available port found for displaCy on host {host}. Please specify an available port " E1049 = ("No available port found for displaCy on host {host}. Please specify an available port "
"with `displacy.serve(doc, port=port)`") "with `displacy.serve(doc, port=port)`")
E1050 = ("Port {port} is already in use. Please specify an available port with `displacy.serve(doc, port=port)` " E1050 = ("Port {port} is already in use. Please specify an available port with `displacy.serve(doc, port=port)` "
"or use `auto_switch_port=True` to pick an available port automatically.") "or use `auto_select_port=True` to pick an available port automatically.")
E1051 = ("'allow_overlap' can only be False when max_positive is 1, but found 'max_positive': {max_positive}.")
# Deprecated model shortcuts, only used in errors and warnings # Deprecated model shortcuts, only used in errors and warnings

View File

@ -46,6 +46,9 @@ cdef class InMemoryLookupKB(KnowledgeBase):
self._alias_index = PreshMap(nr_aliases + 1) self._alias_index = PreshMap(nr_aliases + 1)
self._aliases_table = alias_vec(nr_aliases + 1) self._aliases_table = alias_vec(nr_aliases + 1)
def is_empty(self):
return len(self) == 0
def __len__(self): def __len__(self):
return self.get_size_entities() return self.get_size_entities()

View File

@ -25,7 +25,8 @@ class Lexeme:
def orth_(self) -> str: ... def orth_(self) -> str: ...
@property @property
def text(self) -> str: ... def text(self) -> str: ...
lower: str orth: int
lower: int
norm: int norm: int
shape: int shape: int
prefix: int prefix: int

View File

@ -199,7 +199,7 @@ cdef class Lexeme:
return self.orth_ return self.orth_
property lower: property lower:
"""RETURNS (str): Lowercase form of the lexeme.""" """RETURNS (uint64): Lowercase form of the lexeme."""
def __get__(self): def __get__(self):
return self.c.lower return self.c.lower

View File

@ -82,8 +82,12 @@ cdef class DependencyMatcher:
"$-": self._imm_left_sib, "$-": self._imm_left_sib,
"$++": self._right_sib, "$++": self._right_sib,
"$--": self._left_sib, "$--": self._left_sib,
">+": self._imm_right_child,
">-": self._imm_left_child,
">++": self._right_child, ">++": self._right_child,
">--": self._left_child, ">--": self._left_child,
"<+": self._imm_right_parent,
"<-": self._imm_left_parent,
"<++": self._right_parent, "<++": self._right_parent,
"<--": self._left_parent, "<--": self._left_parent,
} }
@ -427,12 +431,34 @@ cdef class DependencyMatcher:
def _left_sib(self, doc, node): def _left_sib(self, doc, node):
return [doc[child.i] for child in doc[node].head.children if child.i < node] return [doc[child.i] for child in doc[node].head.children if child.i < node]
def _imm_right_child(self, doc, node):
for child in doc[node].children:
if child.i == node + 1:
return [doc[child.i]]
return []
def _imm_left_child(self, doc, node):
for child in doc[node].children:
if child.i == node - 1:
return [doc[child.i]]
return []
def _right_child(self, doc, node): def _right_child(self, doc, node):
return [doc[child.i] for child in doc[node].children if child.i > node] return [doc[child.i] for child in doc[node].children if child.i > node]
def _left_child(self, doc, node): def _left_child(self, doc, node):
return [doc[child.i] for child in doc[node].children if child.i < node] return [doc[child.i] for child in doc[node].children if child.i < node]
def _imm_right_parent(self, doc, node):
if doc[node].head.i == node + 1:
return [doc[node].head]
return []
def _imm_left_parent(self, doc, node):
if doc[node].head.i == node - 1:
return [doc[node].head]
return []
def _right_parent(self, doc, node): def _right_parent(self, doc, node):
if doc[node].head.i > node: if doc[node].head.i > node:
return [doc[node].head] return [doc[node].head]

View File

@ -89,6 +89,14 @@ def load_kb(
return kb_from_file return kb_from_file
@registry.misc("spacy.EmptyKB.v2")
def empty_kb_for_config() -> Callable[[Vocab, int], KnowledgeBase]:
def empty_kb_factory(vocab: Vocab, entity_vector_length: int):
return InMemoryLookupKB(vocab=vocab, entity_vector_length=entity_vector_length)
return empty_kb_factory
@registry.misc("spacy.EmptyKB.v1") @registry.misc("spacy.EmptyKB.v1")
def empty_kb( def empty_kb(
entity_vector_length: int, entity_vector_length: int,

View File

@ -8,6 +8,7 @@ from thinc.loss import Loss
from ...util import registry, OOV_RANK from ...util import registry, OOV_RANK
from ...errors import Errors from ...errors import Errors
from ...attrs import ID from ...attrs import ID
from ...vectors import Mode as VectorsMode
import numpy import numpy
from functools import partial from functools import partial
@ -23,6 +24,8 @@ def create_pretrain_vectors(
maxout_pieces: int, hidden_size: int, loss: str maxout_pieces: int, hidden_size: int, loss: str
) -> Callable[["Vocab", Model], Model]: ) -> Callable[["Vocab", Model], Model]:
def create_vectors_objective(vocab: "Vocab", tok2vec: Model) -> Model: def create_vectors_objective(vocab: "Vocab", tok2vec: Model) -> Model:
if vocab.vectors.mode != VectorsMode.default:
raise ValueError(Errors.E850.format(mode=vocab.vectors.mode))
if vocab.vectors.shape[1] == 0: if vocab.vectors.shape[1] == 0:
raise ValueError(Errors.E875) raise ValueError(Errors.E875)
model = build_cloze_multi_task_model( model = build_cloze_multi_task_model(

View File

@ -54,6 +54,7 @@ DEFAULT_NEL_MODEL = Config().from_str(default_model_config)["model"]
"entity_vector_length": 64, "entity_vector_length": 64,
"get_candidates": {"@misc": "spacy.CandidateGenerator.v1"}, "get_candidates": {"@misc": "spacy.CandidateGenerator.v1"},
"get_candidates_batch": {"@misc": "spacy.CandidateBatchGenerator.v1"}, "get_candidates_batch": {"@misc": "spacy.CandidateBatchGenerator.v1"},
"generate_empty_kb": {"@misc": "spacy.EmptyKB.v2"},
"overwrite": True, "overwrite": True,
"scorer": {"@scorers": "spacy.entity_linker_scorer.v1"}, "scorer": {"@scorers": "spacy.entity_linker_scorer.v1"},
"use_gold_ents": True, "use_gold_ents": True,
@ -80,6 +81,7 @@ def make_entity_linker(
get_candidates_batch: Callable[ get_candidates_batch: Callable[
[KnowledgeBase, Iterable[Span]], Iterable[Iterable[Candidate]] [KnowledgeBase, Iterable[Span]], Iterable[Iterable[Candidate]]
], ],
generate_empty_kb: Callable[[Vocab, int], KnowledgeBase],
overwrite: bool, overwrite: bool,
scorer: Optional[Callable], scorer: Optional[Callable],
use_gold_ents: bool, use_gold_ents: bool,
@ -101,6 +103,7 @@ def make_entity_linker(
get_candidates_batch ( get_candidates_batch (
Callable[[KnowledgeBase, Iterable[Span]], Iterable[Iterable[Candidate]]], Iterable[Candidate]] Callable[[KnowledgeBase, Iterable[Span]], Iterable[Iterable[Candidate]]], Iterable[Candidate]]
): Function that produces a list of candidates, given a certain knowledge base and several textual mentions. ): Function that produces a list of candidates, given a certain knowledge base and several textual mentions.
generate_empty_kb (Callable[[Vocab, int], KnowledgeBase]): Callable returning empty KnowledgeBase.
scorer (Optional[Callable]): The scoring method. scorer (Optional[Callable]): The scoring method.
use_gold_ents (bool): Whether to copy entities from gold docs or not. If false, another use_gold_ents (bool): Whether to copy entities from gold docs or not. If false, another
component must provide entity annotations. component must provide entity annotations.
@ -135,6 +138,7 @@ def make_entity_linker(
entity_vector_length=entity_vector_length, entity_vector_length=entity_vector_length,
get_candidates=get_candidates, get_candidates=get_candidates,
get_candidates_batch=get_candidates_batch, get_candidates_batch=get_candidates_batch,
generate_empty_kb=generate_empty_kb,
overwrite=overwrite, overwrite=overwrite,
scorer=scorer, scorer=scorer,
use_gold_ents=use_gold_ents, use_gold_ents=use_gold_ents,
@ -175,6 +179,7 @@ class EntityLinker(TrainablePipe):
get_candidates_batch: Callable[ get_candidates_batch: Callable[
[KnowledgeBase, Iterable[Span]], Iterable[Iterable[Candidate]] [KnowledgeBase, Iterable[Span]], Iterable[Iterable[Candidate]]
], ],
generate_empty_kb: Callable[[Vocab, int], KnowledgeBase],
overwrite: bool = BACKWARD_OVERWRITE, overwrite: bool = BACKWARD_OVERWRITE,
scorer: Optional[Callable] = entity_linker_score, scorer: Optional[Callable] = entity_linker_score,
use_gold_ents: bool, use_gold_ents: bool,
@ -198,6 +203,7 @@ class EntityLinker(TrainablePipe):
Callable[[KnowledgeBase, Iterable[Span]], Iterable[Iterable[Candidate]]], Callable[[KnowledgeBase, Iterable[Span]], Iterable[Iterable[Candidate]]],
Iterable[Candidate]] Iterable[Candidate]]
): Function that produces a list of candidates, given a certain knowledge base and several textual mentions. ): Function that produces a list of candidates, given a certain knowledge base and several textual mentions.
generate_empty_kb (Callable[[Vocab, int], KnowledgeBase]): Callable returning empty KnowledgeBase.
scorer (Optional[Callable]): The scoring method. Defaults to Scorer.score_links. scorer (Optional[Callable]): The scoring method. Defaults to Scorer.score_links.
use_gold_ents (bool): Whether to copy entities from gold docs or not. If false, another use_gold_ents (bool): Whether to copy entities from gold docs or not. If false, another
component must provide entity annotations. component must provide entity annotations.
@ -220,6 +226,7 @@ class EntityLinker(TrainablePipe):
self.model = model self.model = model
self.name = name self.name = name
self.labels_discard = list(labels_discard) self.labels_discard = list(labels_discard)
# how many neighbour sentences to take into account
self.n_sents = n_sents self.n_sents = n_sents
self.incl_prior = incl_prior self.incl_prior = incl_prior
self.incl_context = incl_context self.incl_context = incl_context
@ -227,9 +234,7 @@ class EntityLinker(TrainablePipe):
self.get_candidates_batch = get_candidates_batch self.get_candidates_batch = get_candidates_batch
self.cfg: Dict[str, Any] = {"overwrite": overwrite} self.cfg: Dict[str, Any] = {"overwrite": overwrite}
self.distance = CosineDistance(normalize=False) self.distance = CosineDistance(normalize=False)
# how many neighbour sentences to take into account self.kb = generate_empty_kb(self.vocab, entity_vector_length)
# create an empty KB by default
self.kb = empty_kb(entity_vector_length)(self.vocab)
self.scorer = scorer self.scorer = scorer
self.use_gold_ents = use_gold_ents self.use_gold_ents = use_gold_ents
self.candidates_batch_size = candidates_batch_size self.candidates_batch_size = candidates_batch_size
@ -250,7 +255,7 @@ class EntityLinker(TrainablePipe):
# Raise an error if the knowledge base is not initialized. # Raise an error if the knowledge base is not initialized.
if self.kb is None: if self.kb is None:
raise ValueError(Errors.E1018.format(name=self.name)) raise ValueError(Errors.E1018.format(name=self.name))
if len(self.kb) == 0: if hasattr(self.kb, "is_empty") and self.kb.is_empty():
raise ValueError(Errors.E139.format(name=self.name)) raise ValueError(Errors.E139.format(name=self.name))
def initialize( def initialize(

View File

@ -1,4 +1,5 @@
from typing import List, Dict, Callable, Tuple, Optional, Iterable, Any from typing import List, Dict, Callable, Tuple, Optional, Iterable, Any, cast, Union
from dataclasses import dataclass
from thinc.api import Config, Model, get_current_ops, set_dropout_rate, Ops from thinc.api import Config, Model, get_current_ops, set_dropout_rate, Ops
from thinc.api import Optimizer from thinc.api import Optimizer
from thinc.types import Ragged, Ints2d, Floats2d from thinc.types import Ragged, Ints2d, Floats2d
@ -43,7 +44,36 @@ maxout_pieces = 3
depth = 4 depth = 4
""" """
spancat_singlelabel_default_config = """
[model]
@architectures = "spacy.SpanCategorizer.v1"
scorer = {"@layers": "Softmax.v2"}
[model.reducer]
@layers = spacy.mean_max_reducer.v1
hidden_size = 128
[model.tok2vec]
@architectures = "spacy.Tok2Vec.v2"
[model.tok2vec.embed]
@architectures = "spacy.MultiHashEmbed.v1"
width = 96
rows = [5000, 1000, 2500, 1000]
attrs = ["NORM", "PREFIX", "SUFFIX", "SHAPE"]
include_static_vectors = false
[model.tok2vec.encode]
@architectures = "spacy.MaxoutWindowEncoder.v2"
width = ${model.tok2vec.embed.width}
window_size = 1
maxout_pieces = 3
depth = 4
"""
DEFAULT_SPANCAT_MODEL = Config().from_str(spancat_default_config)["model"] DEFAULT_SPANCAT_MODEL = Config().from_str(spancat_default_config)["model"]
DEFAULT_SPANCAT_SINGLELABEL_MODEL = Config().from_str(
spancat_singlelabel_default_config
)["model"]
@runtime_checkable @runtime_checkable
@ -119,10 +149,14 @@ def make_spancat(
threshold: float, threshold: float,
max_positive: Optional[int], max_positive: Optional[int],
) -> "SpanCategorizer": ) -> "SpanCategorizer":
"""Create a SpanCategorizer component. The span categorizer consists of two """Create a SpanCategorizer component and configure it for multi-label
classification to be able to assign multiple labels for each span.
The span categorizer consists of two
parts: a suggester function that proposes candidate spans, and a labeller parts: a suggester function that proposes candidate spans, and a labeller
model that predicts one or more labels for each span. model that predicts one or more labels for each span.
name (str): The component instance name, used to add entries to the
losses during training.
suggester (Callable[[Iterable[Doc], Optional[Ops]], Ragged]): A function that suggests spans. suggester (Callable[[Iterable[Doc], Optional[Ops]], Ragged]): A function that suggests spans.
Spans are returned as a ragged array with two integer columns, for the Spans are returned as a ragged array with two integer columns, for the
start and end positions. start and end positions.
@ -144,12 +178,80 @@ def make_spancat(
""" """
return SpanCategorizer( return SpanCategorizer(
nlp.vocab, nlp.vocab,
suggester=suggester,
model=model, model=model,
spans_key=spans_key, suggester=suggester,
threshold=threshold,
max_positive=max_positive,
name=name, name=name,
spans_key=spans_key,
negative_weight=None,
allow_overlap=True,
max_positive=max_positive,
threshold=threshold,
scorer=scorer,
add_negative_label=False,
)
@Language.factory(
"spancat_singlelabel",
assigns=["doc.spans"],
default_config={
"spans_key": "sc",
"model": DEFAULT_SPANCAT_SINGLELABEL_MODEL,
"negative_weight": 1.0,
"suggester": {"@misc": "spacy.ngram_suggester.v1", "sizes": [1, 2, 3]},
"scorer": {"@scorers": "spacy.spancat_scorer.v1"},
"allow_overlap": True,
},
default_score_weights={"spans_sc_f": 1.0, "spans_sc_p": 0.0, "spans_sc_r": 0.0},
)
def make_spancat_singlelabel(
nlp: Language,
name: str,
suggester: Suggester,
model: Model[Tuple[List[Doc], Ragged], Floats2d],
spans_key: str,
negative_weight: float,
allow_overlap: bool,
scorer: Optional[Callable],
) -> "SpanCategorizer":
"""Create a SpanCategorizer component and configure it for multi-class
classification. With this configuration each span can get at most one
label. The span categorizer consists of two
parts: a suggester function that proposes candidate spans, and a labeller
model that predicts one or more labels for each span.
name (str): The component instance name, used to add entries to the
losses during training.
suggester (Callable[[Iterable[Doc], Optional[Ops]], Ragged]): A function that suggests spans.
Spans are returned as a ragged array with two integer columns, for the
start and end positions.
model (Model[Tuple[List[Doc], Ragged], Floats2d]): A model instance that
is given a list of documents and (start, end) indices representing
candidate span offsets. The model predicts a probability for each category
for each span.
spans_key (str): Key of the doc.spans dict to save the spans under. During
initialization and training, the component will look for spans on the
reference document under the same key.
scorer (Optional[Callable]): The scoring method. Defaults to
Scorer.score_spans for the Doc.spans[spans_key] with overlapping
spans allowed.
negative_weight (float): Multiplier for the loss terms.
Can be used to downweight the negative samples if there are too many.
allow_overlap (bool): If True the data is assumed to contain overlapping spans.
Otherwise it produces non-overlapping spans greedily prioritizing
higher assigned label scores.
"""
return SpanCategorizer(
nlp.vocab,
model=model,
suggester=suggester,
name=name,
spans_key=spans_key,
negative_weight=negative_weight,
allow_overlap=allow_overlap,
max_positive=1,
add_negative_label=True,
threshold=None,
scorer=scorer, scorer=scorer,
) )
@ -172,6 +274,27 @@ def make_spancat_scorer():
return spancat_score return spancat_score
@dataclass
class _Intervals:
"""
Helper class to avoid storing overlapping spans.
"""
def __init__(self):
self.ranges = set()
def add(self, i, j):
for e in range(i, j):
self.ranges.add(e)
def __contains__(self, rang):
i, j = rang
for e in range(i, j):
if e in self.ranges:
return True
return False
class SpanCategorizer(TrainablePipe): class SpanCategorizer(TrainablePipe):
"""Pipeline component to label spans of text. """Pipeline component to label spans of text.
@ -185,25 +308,43 @@ class SpanCategorizer(TrainablePipe):
suggester: Suggester, suggester: Suggester,
name: str = "spancat", name: str = "spancat",
*, *,
add_negative_label: bool = False,
spans_key: str = "spans", spans_key: str = "spans",
threshold: float = 0.5, negative_weight: Optional[float] = 1.0,
allow_overlap: Optional[bool] = True,
max_positive: Optional[int] = None, max_positive: Optional[int] = None,
threshold: Optional[float] = 0.5,
scorer: Optional[Callable] = spancat_score, scorer: Optional[Callable] = spancat_score,
) -> None: ) -> None:
"""Initialize the span categorizer. """Initialize the multi-label or multi-class span categorizer.
vocab (Vocab): The shared vocabulary. vocab (Vocab): The shared vocabulary.
model (thinc.api.Model): The Thinc Model powering the pipeline component. model (thinc.api.Model): The Thinc Model powering the pipeline component.
For multi-class classification (single label per span) we recommend
using a Softmax classifier as a the final layer, while for multi-label
classification (multiple possible labels per span) we recommend Logistic.
suggester (Callable[[Iterable[Doc], Optional[Ops]], Ragged]): A function that suggests spans.
Spans are returned as a ragged array with two integer columns, for the
start and end positions.
name (str): The component instance name, used to add entries to the name (str): The component instance name, used to add entries to the
losses during training. losses during training.
spans_key (str): Key of the Doc.spans dict to save the spans under. spans_key (str): Key of the Doc.spans dict to save the spans under.
During initialization and training, the component will look for During initialization and training, the component will look for
spans on the reference document under the same key. Defaults to spans on the reference document under the same key. Defaults to
`"spans"`. `"spans"`.
threshold (float): Minimum probability to consider a prediction add_negative_label (bool): Learn to predict a special 'negative_label'
positive. Spans with a positive prediction will be saved on the Doc. when a Span is not annotated.
Defaults to 0.5. threshold (Optional[float]): Minimum probability to consider a prediction
positive. Defaults to 0.5. Spans with a positive prediction will be saved
on the Doc.
max_positive (Optional[int]): Maximum number of labels to consider max_positive (Optional[int]): Maximum number of labels to consider
positive per span. Defaults to None, indicating no limit. positive per span. Defaults to None, indicating no limit.
negative_weight (float): Multiplier for the loss terms.
Can be used to downweight the negative samples if there are too many
when add_negative_label is True. Otherwise its unused.
allow_overlap (bool): If True the data is assumed to contain overlapping spans.
Otherwise it produces non-overlapping spans greedily prioritizing
higher assigned label scores. Only used when max_positive is 1.
scorer (Optional[Callable]): The scoring method. Defaults to scorer (Optional[Callable]): The scoring method. Defaults to
Scorer.score_spans for the Doc.spans[spans_key] with overlapping Scorer.score_spans for the Doc.spans[spans_key] with overlapping
spans allowed. spans allowed.
@ -215,12 +356,17 @@ class SpanCategorizer(TrainablePipe):
"spans_key": spans_key, "spans_key": spans_key,
"threshold": threshold, "threshold": threshold,
"max_positive": max_positive, "max_positive": max_positive,
"negative_weight": negative_weight,
"allow_overlap": allow_overlap,
} }
self.vocab = vocab self.vocab = vocab
self.suggester = suggester self.suggester = suggester
self.model = model self.model = model
self.name = name self.name = name
self.scorer = scorer self.scorer = scorer
self.add_negative_label = add_negative_label
if not allow_overlap and max_positive is not None and max_positive > 1:
raise ValueError(Errors.E1051.format(max_positive=max_positive))
@property @property
def key(self) -> str: def key(self) -> str:
@ -230,6 +376,21 @@ class SpanCategorizer(TrainablePipe):
""" """
return str(self.cfg["spans_key"]) return str(self.cfg["spans_key"])
def _allow_extra_label(self) -> None:
"""Raise an error if the component can not add any more labels."""
nO = None
if self.model.has_dim("nO"):
nO = self.model.get_dim("nO")
elif self.model.has_ref("output_layer") and self.model.get_ref(
"output_layer"
).has_dim("nO"):
nO = self.model.get_ref("output_layer").get_dim("nO")
if nO is not None and nO == self._n_labels:
if not self.is_resizable:
raise ValueError(
Errors.E922.format(name=self.name, nO=self.model.get_dim("nO"))
)
def add_label(self, label: str) -> int: def add_label(self, label: str) -> int:
"""Add a new label to the pipe. """Add a new label to the pipe.
@ -263,6 +424,27 @@ class SpanCategorizer(TrainablePipe):
""" """
return list(self.labels) return list(self.labels)
@property
def _label_map(self) -> Dict[str, int]:
"""RETURNS (Dict[str, int]): The label map."""
return {label: i for i, label in enumerate(self.labels)}
@property
def _n_labels(self) -> int:
"""RETURNS (int): Number of labels."""
if self.add_negative_label:
return len(self.labels) + 1
else:
return len(self.labels)
@property
def _negative_label_i(self) -> Union[int, None]:
"""RETURNS (Union[int, None]): Index of the negative label."""
if self.add_negative_label:
return len(self.label_data)
else:
return None
def predict(self, docs: Iterable[Doc]): def predict(self, docs: Iterable[Doc]):
"""Apply the pipeline's model to a batch of docs, without modifying them. """Apply the pipeline's model to a batch of docs, without modifying them.
@ -304,13 +486,23 @@ class SpanCategorizer(TrainablePipe):
DOCS: https://spacy.io/api/spancategorizer#set_annotations DOCS: https://spacy.io/api/spancategorizer#set_annotations
""" """
labels = self.labels
indices, scores = indices_scores indices, scores = indices_scores
offset = 0 offset = 0
for i, doc in enumerate(docs): for i, doc in enumerate(docs):
indices_i = indices[i].dataXd indices_i = indices[i].dataXd
doc.spans[self.key] = self._make_span_group( allow_overlap = cast(bool, self.cfg["allow_overlap"])
doc, indices_i, scores[offset : offset + indices.lengths[i]], labels # type: ignore[arg-type] if self.cfg["max_positive"] == 1:
doc.spans[self.key] = self._make_span_group_singlelabel(
doc,
indices_i,
scores[offset : offset + indices.lengths[i]],
allow_overlap,
)
else:
doc.spans[self.key] = self._make_span_group_multilabel(
doc,
indices_i,
scores[offset : offset + indices.lengths[i]],
) )
offset += indices.lengths[i] offset += indices.lengths[i]
@ -371,9 +563,11 @@ class SpanCategorizer(TrainablePipe):
spans = Ragged( spans = Ragged(
self.model.ops.to_numpy(spans.data), self.model.ops.to_numpy(spans.lengths) self.model.ops.to_numpy(spans.data), self.model.ops.to_numpy(spans.lengths)
) )
label_map = {label: i for i, label in enumerate(self.labels)}
target = numpy.zeros(scores.shape, dtype=scores.dtype) target = numpy.zeros(scores.shape, dtype=scores.dtype)
if self.add_negative_label:
negative_spans = numpy.ones((scores.shape[0]))
offset = 0 offset = 0
label_map = self._label_map
for i, eg in enumerate(examples): for i, eg in enumerate(examples):
# Map (start, end) offset of spans to the row in the d_scores array, # Map (start, end) offset of spans to the row in the d_scores array,
# so that we can adjust the gradient for predictions that were # so that we can adjust the gradient for predictions that were
@ -390,10 +584,16 @@ class SpanCategorizer(TrainablePipe):
row = spans_index[key] row = spans_index[key]
k = label_map[gold_span.label_] k = label_map[gold_span.label_]
target[row, k] = 1.0 target[row, k] = 1.0
if self.add_negative_label:
# delete negative label target.
negative_spans[row] = 0.0
# The target is a flat array for all docs. Track the position # The target is a flat array for all docs. Track the position
# we're at within the flat array. # we're at within the flat array.
offset += spans.lengths[i] offset += spans.lengths[i]
target = self.model.ops.asarray(target, dtype="f") # type: ignore target = self.model.ops.asarray(target, dtype="f") # type: ignore
if self.add_negative_label:
negative_samples = numpy.nonzero(negative_spans)[0]
target[negative_samples, self._negative_label_i] = 1.0 # type: ignore
# The target will have the values 0 (for untrue predictions) or 1 # The target will have the values 0 (for untrue predictions) or 1
# (for true predictions). # (for true predictions).
# The scores should be in the range [0, 1]. # The scores should be in the range [0, 1].
@ -402,6 +602,10 @@ class SpanCategorizer(TrainablePipe):
# If the prediction is 0.9 and it's false, the gradient will be # If the prediction is 0.9 and it's false, the gradient will be
# 0.9 (0.9 - 0.0) # 0.9 (0.9 - 0.0)
d_scores = scores - target d_scores = scores - target
if self.add_negative_label:
neg_weight = cast(float, self.cfg["negative_weight"])
if neg_weight != 1.0:
d_scores[negative_samples] *= neg_weight
loss = float((d_scores**2).sum()) loss = float((d_scores**2).sum())
return loss, d_scores return loss, d_scores
@ -438,7 +642,7 @@ class SpanCategorizer(TrainablePipe):
if subbatch: if subbatch:
docs = [eg.x for eg in subbatch] docs = [eg.x for eg in subbatch]
spans = build_ngram_suggester(sizes=[1])(docs) spans = build_ngram_suggester(sizes=[1])(docs)
Y = self.model.ops.alloc2f(spans.dataXd.shape[0], len(self.labels)) Y = self.model.ops.alloc2f(spans.dataXd.shape[0], self._n_labels)
self.model.initialize(X=(docs, spans), Y=Y) self.model.initialize(X=(docs, spans), Y=Y)
else: else:
self.model.initialize() self.model.initialize()
@ -452,31 +656,96 @@ class SpanCategorizer(TrainablePipe):
eg.reference.spans.get(self.key, []), allow_overlap=True eg.reference.spans.get(self.key, []), allow_overlap=True
) )
def _make_span_group( def _make_span_group_multilabel(
self, doc: Doc, indices: Ints2d, scores: Floats2d, labels: List[str] self,
doc: Doc,
indices: Ints2d,
scores: Floats2d,
) -> SpanGroup: ) -> SpanGroup:
"""Find the top-k labels for each span (k=max_positive)."""
spans = SpanGroup(doc, name=self.key) spans = SpanGroup(doc, name=self.key)
max_positive = self.cfg["max_positive"] if scores.size == 0:
return spans
scores = self.model.ops.to_numpy(scores)
indices = self.model.ops.to_numpy(indices)
threshold = self.cfg["threshold"] threshold = self.cfg["threshold"]
max_positive = self.cfg["max_positive"]
keeps = scores >= threshold keeps = scores >= threshold
ranked = (scores * -1).argsort() # type: ignore
if max_positive is not None: if max_positive is not None:
assert isinstance(max_positive, int) assert isinstance(max_positive, int)
if self.add_negative_label:
negative_scores = numpy.copy(scores[:, self._negative_label_i])
scores[:, self._negative_label_i] = -numpy.inf
ranked = (scores * -1).argsort() # type: ignore
scores[:, self._negative_label_i] = negative_scores
else:
ranked = (scores * -1).argsort() # type: ignore
span_filter = ranked[:, max_positive:] span_filter = ranked[:, max_positive:]
for i, row in enumerate(span_filter): for i, row in enumerate(span_filter):
keeps[i, row] = False keeps[i, row] = False
spans.attrs["scores"] = scores[keeps].flatten()
indices = self.model.ops.to_numpy(indices)
keeps = self.model.ops.to_numpy(keeps)
attrs_scores = []
for i in range(indices.shape[0]): for i in range(indices.shape[0]):
start = indices[i, 0] start = indices[i, 0]
end = indices[i, 1] end = indices[i, 1]
for j, keep in enumerate(keeps[i]): for j, keep in enumerate(keeps[i]):
if keep: if keep:
spans.append(Span(doc, start, end, label=labels[j])) if j != self._negative_label_i:
spans.append(Span(doc, start, end, label=self.labels[j]))
attrs_scores.append(scores[i, j])
spans.attrs["scores"] = numpy.array(attrs_scores)
return spans
def _make_span_group_singlelabel(
self,
doc: Doc,
indices: Ints2d,
scores: Floats2d,
allow_overlap: bool = True,
) -> SpanGroup:
"""Find the argmax label for each span."""
# Handle cases when there are zero suggestions
if scores.size == 0:
return SpanGroup(doc, name=self.key)
scores = self.model.ops.to_numpy(scores)
indices = self.model.ops.to_numpy(indices)
predicted = scores.argmax(axis=1)
argmax_scores = numpy.take_along_axis(
scores, numpy.expand_dims(predicted, 1), axis=1
)
keeps = numpy.ones(predicted.shape, dtype=bool)
# Remove samples where the negative label is the argmax.
if self.add_negative_label:
keeps = numpy.logical_and(keeps, predicted != self._negative_label_i)
# Filter samples according to threshold.
threshold = self.cfg["threshold"]
if threshold is not None:
keeps = numpy.logical_and(keeps, (argmax_scores >= threshold).squeeze())
# Sort spans according to argmax probability
if not allow_overlap:
# Get the probabilities
sort_idx = (argmax_scores.squeeze() * -1).argsort()
predicted = predicted[sort_idx]
indices = indices[sort_idx]
keeps = keeps[sort_idx]
seen = _Intervals()
spans = SpanGroup(doc, name=self.key)
attrs_scores = []
for i in range(indices.shape[0]):
if not keeps[i]:
continue
label = predicted[i]
start = indices[i, 0]
end = indices[i, 1]
if not allow_overlap:
if (start, end) in seen:
continue
else:
seen.add(start, end)
attrs_scores.append(argmax_scores[i])
spans.append(Span(doc, start, end, label=self.labels[label]))
return spans return spans

View File

@ -316,16 +316,32 @@ def test_dependency_matcher_precedence_ops(en_vocab, op, num_matches):
("the", "brown", "$--", 0), ("the", "brown", "$--", 0),
("brown", "the", "$--", 1), ("brown", "the", "$--", 1),
("brown", "brown", "$--", 0), ("brown", "brown", "$--", 0),
("over", "jumped", "<+", 0),
("quick", "fox", "<+", 0),
("the", "quick", "<+", 0),
("brown", "fox", "<+", 1),
("quick", "fox", "<++", 1), ("quick", "fox", "<++", 1),
("quick", "over", "<++", 0), ("quick", "over", "<++", 0),
("over", "jumped", "<++", 0), ("over", "jumped", "<++", 0),
("the", "fox", "<++", 2), ("the", "fox", "<++", 2),
("brown", "fox", "<-", 0),
("fox", "over", "<-", 0),
("the", "over", "<-", 0),
("over", "jumped", "<-", 1),
("brown", "fox", "<--", 0), ("brown", "fox", "<--", 0),
("fox", "jumped", "<--", 0), ("fox", "jumped", "<--", 0),
("fox", "over", "<--", 1), ("fox", "over", "<--", 1),
("fox", "brown", ">+", 0),
("over", "fox", ">+", 0),
("over", "the", ">+", 0),
("jumped", "over", ">+", 1),
("jumped", "over", ">++", 1), ("jumped", "over", ">++", 1),
("fox", "lazy", ">++", 0), ("fox", "lazy", ">++", 0),
("over", "the", ">++", 0), ("over", "the", ">++", 0),
("jumped", "over", ">-", 0),
("fox", "quick", ">-", 0),
("brown", "quick", ">-", 0),
("fox", "brown", ">-", 1),
("brown", "fox", ">--", 0), ("brown", "fox", ">--", 0),
("fox", "brown", ">--", 1), ("fox", "brown", ">--", 1),
("jumped", "fox", ">--", 1), ("jumped", "fox", ">--", 1),

View File

@ -9,6 +9,8 @@ from spacy.lang.en import English
from spacy.lang.it import Italian from spacy.lang.it import Italian
from spacy.language import Language from spacy.language import Language
from spacy.lookups import Lookups from spacy.lookups import Lookups
from spacy.pipeline import EntityRecognizer
from spacy.pipeline.ner import DEFAULT_NER_MODEL
from spacy.pipeline._parser_internals.ner import BiluoPushDown from spacy.pipeline._parser_internals.ner import BiluoPushDown
from spacy.training import Example, iob_to_biluo, split_bilu_label from spacy.training import Example, iob_to_biluo, split_bilu_label
from spacy.tokens import Doc, Span from spacy.tokens import Doc, Span
@ -16,8 +18,6 @@ from spacy.vocab import Vocab
import logging import logging
from ..util import make_tempdir from ..util import make_tempdir
from ...pipeline import EntityRecognizer
from ...pipeline.ner import DEFAULT_NER_MODEL
TRAIN_DATA = [ TRAIN_DATA = [
("Who is Shaka Khan?", {"entities": [(7, 17, "PERSON")]}), ("Who is Shaka Khan?", {"entities": [(7, 17, "PERSON")]}),

View File

@ -8,11 +8,11 @@ from spacy.lang.en import English
from spacy.tokens import Doc from spacy.tokens import Doc
from spacy.training import Example from spacy.training import Example
from spacy.vocab import Vocab from spacy.vocab import Vocab
from spacy.pipeline import DependencyParser
from spacy.pipeline.dep_parser import DEFAULT_PARSER_MODEL
from spacy.pipeline.tok2vec import DEFAULT_TOK2VEC_MODEL
from ...pipeline import DependencyParser
from ...pipeline.dep_parser import DEFAULT_PARSER_MODEL
from ..util import apply_transition_sequence, make_tempdir from ..util import apply_transition_sequence, make_tempdir
from ...pipeline.tok2vec import DEFAULT_TOK2VEC_MODEL
TRAIN_DATA = [ TRAIN_DATA = [
( (

View File

@ -353,6 +353,9 @@ def test_kb_default(nlp):
"""Test that the default (empty) KB is loaded upon construction""" """Test that the default (empty) KB is loaded upon construction"""
entity_linker = nlp.add_pipe("entity_linker", config={}) entity_linker = nlp.add_pipe("entity_linker", config={})
assert len(entity_linker.kb) == 0 assert len(entity_linker.kb) == 0
with pytest.raises(ValueError, match="E139"):
# this raises an error because the KB is empty
entity_linker.validate_kb()
assert entity_linker.kb.get_size_entities() == 0 assert entity_linker.kb.get_size_entities() == 0
assert entity_linker.kb.get_size_aliases() == 0 assert entity_linker.kb.get_size_aliases() == 0
# 64 is the default value from pipeline.entity_linker # 64 is the default value from pipeline.entity_linker

View File

@ -15,6 +15,8 @@ OPS = get_current_ops()
SPAN_KEY = "labeled_spans" SPAN_KEY = "labeled_spans"
SPANCAT_COMPONENTS = ["spancat", "spancat_singlelabel"]
TRAIN_DATA = [ TRAIN_DATA = [
("Who is Shaka Khan?", {"spans": {SPAN_KEY: [(7, 17, "PERSON")]}}), ("Who is Shaka Khan?", {"spans": {SPAN_KEY: [(7, 17, "PERSON")]}}),
( (
@ -41,38 +43,42 @@ def make_examples(nlp, data=TRAIN_DATA):
return train_examples return train_examples
def test_no_label(): @pytest.mark.parametrize("name", SPANCAT_COMPONENTS)
def test_no_label(name):
nlp = Language() nlp = Language()
nlp.add_pipe("spancat", config={"spans_key": SPAN_KEY}) nlp.add_pipe(name, config={"spans_key": SPAN_KEY})
with pytest.raises(ValueError): with pytest.raises(ValueError):
nlp.initialize() nlp.initialize()
def test_no_resize(): @pytest.mark.parametrize("name", SPANCAT_COMPONENTS)
def test_no_resize(name):
nlp = Language() nlp = Language()
spancat = nlp.add_pipe("spancat", config={"spans_key": SPAN_KEY}) spancat = nlp.add_pipe(name, config={"spans_key": SPAN_KEY})
spancat.add_label("Thing") spancat.add_label("Thing")
spancat.add_label("Phrase") spancat.add_label("Phrase")
assert spancat.labels == ("Thing", "Phrase") assert spancat.labels == ("Thing", "Phrase")
nlp.initialize() nlp.initialize()
assert spancat.model.get_dim("nO") == 2 assert spancat.model.get_dim("nO") == spancat._n_labels
# this throws an error because the spancat can't be resized after initialization # this throws an error because the spancat can't be resized after initialization
with pytest.raises(ValueError): with pytest.raises(ValueError):
spancat.add_label("Stuff") spancat.add_label("Stuff")
def test_implicit_labels(): @pytest.mark.parametrize("name", SPANCAT_COMPONENTS)
def test_implicit_labels(name):
nlp = Language() nlp = Language()
spancat = nlp.add_pipe("spancat", config={"spans_key": SPAN_KEY}) spancat = nlp.add_pipe(name, config={"spans_key": SPAN_KEY})
assert len(spancat.labels) == 0 assert len(spancat.labels) == 0
train_examples = make_examples(nlp) train_examples = make_examples(nlp)
nlp.initialize(get_examples=lambda: train_examples) nlp.initialize(get_examples=lambda: train_examples)
assert spancat.labels == ("PERSON", "LOC") assert spancat.labels == ("PERSON", "LOC")
def test_explicit_labels(): @pytest.mark.parametrize("name", SPANCAT_COMPONENTS)
def test_explicit_labels(name):
nlp = Language() nlp = Language()
spancat = nlp.add_pipe("spancat", config={"spans_key": SPAN_KEY}) spancat = nlp.add_pipe(name, config={"spans_key": SPAN_KEY})
assert len(spancat.labels) == 0 assert len(spancat.labels) == 0
spancat.add_label("PERSON") spancat.add_label("PERSON")
spancat.add_label("LOC") spancat.add_label("LOC")
@ -102,13 +108,13 @@ def test_doc_gc():
# XXX This fails with length 0 sometimes # XXX This fails with length 0 sometimes
assert len(spangroup) > 0 assert len(spangroup) > 0
with pytest.raises(RuntimeError): with pytest.raises(RuntimeError):
span = spangroup[0] spangroup[0]
@pytest.mark.parametrize( @pytest.mark.parametrize(
"max_positive,nr_results", [(None, 4), (1, 2), (2, 3), (3, 4), (4, 4)] "max_positive,nr_results", [(None, 4), (1, 2), (2, 3), (3, 4), (4, 4)]
) )
def test_make_spangroup(max_positive, nr_results): def test_make_spangroup_multilabel(max_positive, nr_results):
fix_random_seed(0) fix_random_seed(0)
nlp = Language() nlp = Language()
spancat = nlp.add_pipe( spancat = nlp.add_pipe(
@ -120,10 +126,12 @@ def test_make_spangroup(max_positive, nr_results):
indices = ngram_suggester([doc])[0].dataXd indices = ngram_suggester([doc])[0].dataXd
assert_array_equal(OPS.to_numpy(indices), numpy.asarray([[0, 1], [1, 2], [0, 2]])) assert_array_equal(OPS.to_numpy(indices), numpy.asarray([[0, 1], [1, 2], [0, 2]]))
labels = ["Thing", "City", "Person", "GreatCity"] labels = ["Thing", "City", "Person", "GreatCity"]
for label in labels:
spancat.add_label(label)
scores = numpy.asarray( scores = numpy.asarray(
[[0.2, 0.4, 0.3, 0.1], [0.1, 0.6, 0.2, 0.4], [0.8, 0.7, 0.3, 0.9]], dtype="f" [[0.2, 0.4, 0.3, 0.1], [0.1, 0.6, 0.2, 0.4], [0.8, 0.7, 0.3, 0.9]], dtype="f"
) )
spangroup = spancat._make_span_group(doc, indices, scores, labels) spangroup = spancat._make_span_group_multilabel(doc, indices, scores)
assert len(spangroup) == nr_results assert len(spangroup) == nr_results
# first span is always the second token "London" # first span is always the second token "London"
@ -154,6 +162,118 @@ def test_make_spangroup(max_positive, nr_results):
assert_almost_equal(0.9, spangroup.attrs["scores"][-1], 5) assert_almost_equal(0.9, spangroup.attrs["scores"][-1], 5)
@pytest.mark.parametrize(
"threshold,allow_overlap,nr_results",
[(0.05, True, 3), (0.05, False, 1), (0.5, True, 2), (0.5, False, 1)],
)
def test_make_spangroup_singlelabel(threshold, allow_overlap, nr_results):
fix_random_seed(0)
nlp = Language()
spancat = nlp.add_pipe(
"spancat",
config={
"spans_key": SPAN_KEY,
"threshold": threshold,
"max_positive": 1,
},
)
doc = nlp.make_doc("Greater London")
ngram_suggester = registry.misc.get("spacy.ngram_suggester.v1")(sizes=[1, 2])
indices = ngram_suggester([doc])[0].dataXd
assert_array_equal(OPS.to_numpy(indices), numpy.asarray([[0, 1], [1, 2], [0, 2]]))
labels = ["Thing", "City", "Person", "GreatCity"]
for label in labels:
spancat.add_label(label)
scores = numpy.asarray(
[[0.2, 0.4, 0.3, 0.1], [0.1, 0.6, 0.2, 0.4], [0.8, 0.7, 0.3, 0.9]], dtype="f"
)
spangroup = spancat._make_span_group_singlelabel(
doc, indices, scores, allow_overlap
)
assert len(spangroup) == nr_results
if threshold > 0.4:
if allow_overlap:
assert spangroup[0].text == "London"
assert spangroup[0].label_ == "City"
assert spangroup[1].text == "Greater London"
assert spangroup[1].label_ == "GreatCity"
else:
assert spangroup[0].text == "Greater London"
assert spangroup[0].label_ == "GreatCity"
else:
if allow_overlap:
assert spangroup[0].text == "Greater"
assert spangroup[0].label_ == "City"
assert spangroup[1].text == "London"
assert spangroup[1].label_ == "City"
assert spangroup[2].text == "Greater London"
assert spangroup[2].label_ == "GreatCity"
else:
assert spangroup[0].text == "Greater London"
def test_make_spangroup_negative_label():
fix_random_seed(0)
nlp_single = Language()
nlp_multi = Language()
spancat_single = nlp_single.add_pipe(
"spancat",
config={
"spans_key": SPAN_KEY,
"threshold": 0.1,
"max_positive": 1,
},
)
spancat_multi = nlp_multi.add_pipe(
"spancat",
config={
"spans_key": SPAN_KEY,
"threshold": 0.1,
"max_positive": 2,
},
)
spancat_single.add_negative_label = True
spancat_multi.add_negative_label = True
doc = nlp_single.make_doc("Greater London")
labels = ["Thing", "City", "Person", "GreatCity"]
for label in labels:
spancat_multi.add_label(label)
spancat_single.add_label(label)
ngram_suggester = registry.misc.get("spacy.ngram_suggester.v1")(sizes=[1, 2])
indices = ngram_suggester([doc])[0].dataXd
assert_array_equal(OPS.to_numpy(indices), numpy.asarray([[0, 1], [1, 2], [0, 2]]))
scores = numpy.asarray(
[
[0.2, 0.4, 0.3, 0.1, 0.1],
[0.1, 0.6, 0.2, 0.4, 0.9],
[0.8, 0.7, 0.3, 0.9, 0.1],
],
dtype="f",
)
spangroup_multi = spancat_multi._make_span_group_multilabel(doc, indices, scores)
spangroup_single = spancat_single._make_span_group_singlelabel(doc, indices, scores)
assert len(spangroup_single) == 2
assert spangroup_single[0].text == "Greater"
assert spangroup_single[0].label_ == "City"
assert spangroup_single[1].text == "Greater London"
assert spangroup_single[1].label_ == "GreatCity"
assert len(spangroup_multi) == 6
assert spangroup_multi[0].text == "Greater"
assert spangroup_multi[0].label_ == "City"
assert spangroup_multi[1].text == "Greater"
assert spangroup_multi[1].label_ == "Person"
assert spangroup_multi[2].text == "London"
assert spangroup_multi[2].label_ == "City"
assert spangroup_multi[3].text == "London"
assert spangroup_multi[3].label_ == "GreatCity"
assert spangroup_multi[4].text == "Greater London"
assert spangroup_multi[4].label_ == "Thing"
assert spangroup_multi[5].text == "Greater London"
assert spangroup_multi[5].label_ == "GreatCity"
def test_ngram_suggester(en_tokenizer): def test_ngram_suggester(en_tokenizer):
# test different n-gram lengths # test different n-gram lengths
for size in [1, 2, 3]: for size in [1, 2, 3]:
@ -371,9 +491,9 @@ def test_overfitting_IO_overlapping():
assert set([span.label_ for span in spans2]) == {"LOC", "DOUBLE_LOC"} assert set([span.label_ for span in spans2]) == {"LOC", "DOUBLE_LOC"}
def test_zero_suggestions(): @pytest.mark.parametrize("name", SPANCAT_COMPONENTS)
def test_zero_suggestions(name):
# Test with a suggester that can return 0 suggestions # Test with a suggester that can return 0 suggestions
@registry.misc("test_mixed_zero_suggester") @registry.misc("test_mixed_zero_suggester")
def make_mixed_zero_suggester(): def make_mixed_zero_suggester():
def mixed_zero_suggester(docs, *, ops=None): def mixed_zero_suggester(docs, *, ops=None):
@ -400,7 +520,7 @@ def test_zero_suggestions():
fix_random_seed(0) fix_random_seed(0)
nlp = English() nlp = English()
spancat = nlp.add_pipe( spancat = nlp.add_pipe(
"spancat", name,
config={ config={
"suggester": {"@misc": "test_mixed_zero_suggester"}, "suggester": {"@misc": "test_mixed_zero_suggester"},
"spans_key": SPAN_KEY, "spans_key": SPAN_KEY,
@ -408,7 +528,7 @@ def test_zero_suggestions():
) )
train_examples = make_examples(nlp) train_examples = make_examples(nlp)
optimizer = nlp.initialize(get_examples=lambda: train_examples) optimizer = nlp.initialize(get_examples=lambda: train_examples)
assert spancat.model.get_dim("nO") == 2 assert spancat.model.get_dim("nO") == spancat._n_labels
assert set(spancat.labels) == {"LOC", "PERSON"} assert set(spancat.labels) == {"LOC", "PERSON"}
nlp.update(train_examples, sgd=optimizer) nlp.update(train_examples, sgd=optimizer)
@ -424,9 +544,10 @@ def test_zero_suggestions():
list(nlp.pipe(["", "one", "three three three"])) list(nlp.pipe(["", "one", "three three three"]))
def test_set_candidates(): @pytest.mark.parametrize("name", SPANCAT_COMPONENTS)
def test_set_candidates(name):
nlp = Language() nlp = Language()
spancat = nlp.add_pipe("spancat", config={"spans_key": SPAN_KEY}) spancat = nlp.add_pipe(name, config={"spans_key": SPAN_KEY})
train_examples = make_examples(nlp) train_examples = make_examples(nlp)
nlp.initialize(get_examples=lambda: train_examples) nlp.initialize(get_examples=lambda: train_examples)
texts = [ texts = [

View File

@ -1,7 +1,10 @@
from typing import Callable from pathlib import Path
from typing import Callable, Iterable, Any, Dict
from spacy import util import srsly
from spacy.util import ensure_path, registry, load_model_from_config
from spacy import util, Errors
from spacy.util import ensure_path, registry, load_model_from_config, SimpleFrozenList
from spacy.kb.kb_in_memory import InMemoryLookupKB from spacy.kb.kb_in_memory import InMemoryLookupKB
from spacy.vocab import Vocab from spacy.vocab import Vocab
from thinc.api import Config from thinc.api import Config
@ -92,6 +95,9 @@ def test_serialize_subclassed_kb():
[components.entity_linker] [components.entity_linker]
factory = "entity_linker" factory = "entity_linker"
[components.entity_linker.generate_empty_kb]
@misc = "kb_test.CustomEmptyKB.v1"
[initialize] [initialize]
[initialize.components] [initialize.components]
@ -99,7 +105,7 @@ def test_serialize_subclassed_kb():
[initialize.components.entity_linker] [initialize.components.entity_linker]
[initialize.components.entity_linker.kb_loader] [initialize.components.entity_linker.kb_loader]
@misc = "spacy.CustomKB.v1" @misc = "kb_test.CustomKB.v1"
entity_vector_length = 342 entity_vector_length = 342
custom_field = 666 custom_field = 666
""" """
@ -109,10 +115,57 @@ def test_serialize_subclassed_kb():
super().__init__(vocab, entity_vector_length) super().__init__(vocab, entity_vector_length)
self.custom_field = custom_field self.custom_field = custom_field
@registry.misc("spacy.CustomKB.v1") def to_disk(self, path, exclude: Iterable[str] = SimpleFrozenList()):
"""We overwrite InMemoryLookupKB.to_disk() to ensure that self.custom_field is stored as well."""
path = ensure_path(path)
if not path.exists():
path.mkdir(parents=True)
if not path.is_dir():
raise ValueError(Errors.E928.format(loc=path))
def serialize_custom_fields(file_path: Path) -> None:
srsly.write_json(file_path, {"custom_field": self.custom_field})
serialize = {
"contents": lambda p: self.write_contents(p),
"strings.json": lambda p: self.vocab.strings.to_disk(p),
"custom_fields": lambda p: serialize_custom_fields(p),
}
util.to_disk(path, serialize, exclude)
def from_disk(self, path, exclude: Iterable[str] = SimpleFrozenList()):
"""We overwrite InMemoryLookupKB.from_disk() to ensure that self.custom_field is loaded as well."""
path = ensure_path(path)
if not path.exists():
raise ValueError(Errors.E929.format(loc=path))
if not path.is_dir():
raise ValueError(Errors.E928.format(loc=path))
def deserialize_custom_fields(file_path: Path) -> None:
self.custom_field = srsly.read_json(file_path)["custom_field"]
deserialize: Dict[str, Callable[[Any], Any]] = {
"contents": lambda p: self.read_contents(p),
"strings.json": lambda p: self.vocab.strings.from_disk(p),
"custom_fields": lambda p: deserialize_custom_fields(p),
}
util.from_disk(path, deserialize, exclude)
@registry.misc("kb_test.CustomEmptyKB.v1")
def empty_custom_kb() -> Callable[[Vocab, int], SubInMemoryLookupKB]:
def empty_kb_factory(vocab: Vocab, entity_vector_length: int):
return SubInMemoryLookupKB(
vocab=vocab,
entity_vector_length=entity_vector_length,
custom_field=0,
)
return empty_kb_factory
@registry.misc("kb_test.CustomKB.v1")
def custom_kb( def custom_kb(
entity_vector_length: int, custom_field: int entity_vector_length: int, custom_field: int
) -> Callable[[Vocab], InMemoryLookupKB]: ) -> Callable[[Vocab], SubInMemoryLookupKB]:
def custom_kb_factory(vocab): def custom_kb_factory(vocab):
kb = SubInMemoryLookupKB( kb = SubInMemoryLookupKB(
vocab=vocab, vocab=vocab,
@ -139,6 +192,6 @@ def test_serialize_subclassed_kb():
nlp2 = util.load_model_from_path(tmp_dir) nlp2 = util.load_model_from_path(tmp_dir)
entity_linker2 = nlp2.get_pipe("entity_linker") entity_linker2 = nlp2.get_pipe("entity_linker")
# After IO, the KB is the standard one # After IO, the KB is the standard one
assert type(entity_linker2.kb) == InMemoryLookupKB assert type(entity_linker2.kb) == SubInMemoryLookupKB
assert entity_linker2.kb.entity_vector_length == 342 assert entity_linker2.kb.entity_vector_length == 342
assert not hasattr(entity_linker2.kb, "custom_field") assert entity_linker2.kb.custom_field == 666

View File

@ -2,7 +2,6 @@ import os
import math import math
from collections import Counter from collections import Counter
from typing import Tuple, List, Dict, Any from typing import Tuple, List, Dict, Any
import pkg_resources
import time import time
from pathlib import Path from pathlib import Path
@ -29,6 +28,7 @@ from spacy.cli.debug_data import _print_span_characteristics
from spacy.cli.debug_data import _get_spans_length_freq_dist from spacy.cli.debug_data import _get_spans_length_freq_dist
from spacy.cli.download import get_compatibility, get_version from spacy.cli.download import get_compatibility, get_version
from spacy.cli.init_config import RECOMMENDATIONS, init_config, fill_config from spacy.cli.init_config import RECOMMENDATIONS, init_config, fill_config
from spacy.cli.init_pipeline import _init_labels
from spacy.cli.package import get_third_party_dependencies from spacy.cli.package import get_third_party_dependencies
from spacy.cli.package import _is_permitted_package_name from spacy.cli.package import _is_permitted_package_name
from spacy.cli.project.remote_storage import RemoteStorage from spacy.cli.project.remote_storage import RemoteStorage
@ -47,7 +47,6 @@ from spacy.training.converters import conll_ner_to_docs, conllu_to_docs
from spacy.training.converters import iob_to_docs from spacy.training.converters import iob_to_docs
from spacy.util import ENV_VARS, get_minor_version, load_model_from_config, load_config from spacy.util import ENV_VARS, get_minor_version, load_model_from_config, load_config
from ..cli.init_pipeline import _init_labels
from .util import make_tempdir from .util import make_tempdir
@ -553,7 +552,14 @@ def test_parse_cli_overrides():
@pytest.mark.parametrize("lang", ["en", "nl"]) @pytest.mark.parametrize("lang", ["en", "nl"])
@pytest.mark.parametrize( @pytest.mark.parametrize(
"pipeline", [["tagger", "parser", "ner"], [], ["ner", "textcat", "sentencizer"]] "pipeline",
[
["tagger", "parser", "ner"],
[],
["ner", "textcat", "sentencizer"],
["morphologizer", "spancat", "entity_linker"],
["spancat_singlelabel", "textcat_multilabel"],
],
) )
@pytest.mark.parametrize("optimize", ["efficiency", "accuracy"]) @pytest.mark.parametrize("optimize", ["efficiency", "accuracy"])
@pytest.mark.parametrize("pretraining", [True, False]) @pytest.mark.parametrize("pretraining", [True, False])
@ -1126,6 +1132,7 @@ def test_cli_find_threshold(capsys):
) )
@pytest.mark.filterwarnings("ignore::DeprecationWarning")
@pytest.mark.parametrize( @pytest.mark.parametrize(
"reqs,output", "reqs,output",
[ [
@ -1158,6 +1165,8 @@ def test_cli_find_threshold(capsys):
], ],
) )
def test_project_check_requirements(reqs, output): def test_project_check_requirements(reqs, output):
import pkg_resources
# excessive guard against unlikely package name # excessive guard against unlikely package name
try: try:
pkg_resources.require("spacyunknowndoesnotexist12345") pkg_resources.require("spacyunknowndoesnotexist12345")

View File

@ -2,17 +2,19 @@ from pathlib import Path
import numpy as np import numpy as np
import pytest import pytest
import srsly import srsly
from spacy.vocab import Vocab from thinc.api import Config, get_current_ops
from thinc.api import Config
from spacy import util
from spacy.lang.en import English
from spacy.training.initialize import init_nlp
from spacy.training.loop import train
from spacy.training.pretrain import pretrain
from spacy.tokens import Doc, DocBin
from spacy.language import DEFAULT_CONFIG_PRETRAIN_PATH, DEFAULT_CONFIG_PATH
from spacy.ml.models.multi_task import create_pretrain_vectors
from spacy.vectors import Vectors
from spacy.vocab import Vocab
from ..util import make_tempdir from ..util import make_tempdir
from ... import util
from ...lang.en import English
from ...training.initialize import init_nlp
from ...training.loop import train
from ...training.pretrain import pretrain
from ...tokens import Doc, DocBin
from ...language import DEFAULT_CONFIG_PRETRAIN_PATH, DEFAULT_CONFIG_PATH
pretrain_string_listener = """ pretrain_string_listener = """
[nlp] [nlp]
@ -346,3 +348,30 @@ def write_vectors_model(tmp_dir):
nlp = English(vocab) nlp = English(vocab)
nlp.to_disk(nlp_path) nlp.to_disk(nlp_path)
return str(nlp_path) return str(nlp_path)
def test_pretrain_default_vectors():
nlp = English()
nlp.add_pipe("tok2vec")
nlp.initialize()
# default vectors are supported
nlp.vocab.vectors = Vectors(shape=(10, 10))
create_pretrain_vectors(1, 1, "cosine")(nlp.vocab, nlp.get_pipe("tok2vec").model)
# error for no vectors
with pytest.raises(ValueError, match="E875"):
nlp.vocab.vectors = Vectors()
create_pretrain_vectors(1, 1, "cosine")(
nlp.vocab, nlp.get_pipe("tok2vec").model
)
# error for floret vectors
with pytest.raises(ValueError, match="E850"):
ops = get_current_ops()
nlp.vocab.vectors = Vectors(
data=ops.xp.zeros((10, 10)), mode="floret", hash_count=1
)
create_pretrain_vectors(1, 1, "cosine")(
nlp.vocab, nlp.get_pipe("tok2vec").model
)

View File

@ -899,15 +899,21 @@ The `EntityLinker` model architecture is a Thinc `Model` with a
| `nO` | Output dimension, determined by the length of the vectors encoding each entity in the KB. If the `nO` dimension is not set, the entity linking component will set it when `initialize` is called. ~~Optional[int]~~ | | `nO` | Output dimension, determined by the length of the vectors encoding each entity in the KB. If the `nO` dimension is not set, the entity linking component will set it when `initialize` is called. ~~Optional[int]~~ |
| **CREATES** | The model using the architecture. ~~Model[List[Doc], Floats2d]~~ | | **CREATES** | The model using the architecture. ~~Model[List[Doc], Floats2d]~~ |
### spacy.EmptyKB.v1 {id="EmptyKB"} ### spacy.EmptyKB.v1 {id="EmptyKB.v1"}
A function that creates an empty `KnowledgeBase` from a [`Vocab`](/api/vocab) A function that creates an empty `KnowledgeBase` from a [`Vocab`](/api/vocab)
instance. This is the default when a new entity linker component is created. instance.
| Name | Description | | Name | Description |
| ---------------------- | ----------------------------------------------------------------------------------- | | ---------------------- | ----------------------------------------------------------------------------------- |
| `entity_vector_length` | The length of the vectors encoding each entity in the KB. Defaults to `64`. ~~int~~ | | `entity_vector_length` | The length of the vectors encoding each entity in the KB. Defaults to `64`. ~~int~~ |
### spacy.EmptyKB.v2 {id="EmptyKB"}
A function that creates an empty `KnowledgeBase` from a [`Vocab`](/api/vocab)
instance. This is the default when a new entity linker component is created. It
returns a `Callable[[Vocab, int], InMemoryLookupKB]`.
### spacy.KBFromFile.v1 {id="KBFromFile"} ### spacy.KBFromFile.v1 {id="KBFromFile"}
A function that reads an existing `KnowledgeBase` from file. A function that reads an existing `KnowledgeBase` from file.
@ -924,6 +930,15 @@ plausible [`Candidate`](/api/kb/#candidate) objects. The default
`CandidateGenerator` uses the text of a mention to find its potential aliases in `CandidateGenerator` uses the text of a mention to find its potential aliases in
the `KnowledgeBase`. Note that this function is case-dependent. the `KnowledgeBase`. Note that this function is case-dependent.
### spacy.CandidateBatchGenerator.v1 {id="CandidateBatchGenerator"}
A function that takes as input a [`KnowledgeBase`](/api/kb) and an `Iterable` of
[`Span`](/api/span) objects denoting named entities, and returns a list of
plausible [`Candidate`](/api/kb/#candidate) objects per specified
[`Span`](/api/span). The default `CandidateBatchGenerator` uses the text of a
mention to find its potential aliases in the `KnowledgeBase`. Note that this
function is case-dependent.
## Coreference {id="coref-architectures",tag="experimental"} ## Coreference {id="coref-architectures",tag="experimental"}
A [`CoreferenceResolver`](/api/coref) component identifies tokens that refer to A [`CoreferenceResolver`](/api/coref) component identifies tokens that refer to

View File

@ -69,7 +69,7 @@ come directly from
[Semgrex](https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/semgraph/semgrex/SemgrexPattern.html): [Semgrex](https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/semgraph/semgrex/SemgrexPattern.html):
| Symbol | Description | | Symbol | Description |
| --------- | -------------------------------------------------------------------------------------------------------------------- | | --------------------------------------- | -------------------------------------------------------------------------------------------------------------------- |
| `A < B` | `A` is the immediate dependent of `B`. | | `A < B` | `A` is the immediate dependent of `B`. |
| `A > B` | `A` is the immediate head of `B`. | | `A > B` | `A` is the immediate head of `B`. |
| `A << B` | `A` is the dependent in a chain to `B` following dep &rarr; head paths. | | `A << B` | `A` is the dependent in a chain to `B` following dep &rarr; head paths. |
@ -82,8 +82,12 @@ come directly from
| `A $- B` | `B` is a left immediate sibling of `A`, i.e. `A` and `B` have the same parent and `A.i == B.i + 1`. | | `A $- B` | `B` is a left immediate sibling of `A`, i.e. `A` and `B` have the same parent and `A.i == B.i + 1`. |
| `A $++ B` | `B` is a right sibling of `A`, i.e. `A` and `B` have the same parent and `A.i < B.i`. | | `A $++ B` | `B` is a right sibling of `A`, i.e. `A` and `B` have the same parent and `A.i < B.i`. |
| `A $-- B` | `B` is a left sibling of `A`, i.e. `A` and `B` have the same parent and `A.i > B.i`. | | `A $-- B` | `B` is a left sibling of `A`, i.e. `A` and `B` have the same parent and `A.i > B.i`. |
| `A >+ B` <Tag variant="new">3.5.1</Tag> | `B` is a right immediate child of `A`, i.e. `A` is a parent of `B` and `A.i == B.i - 1` _(not in Semgrex)_. |
| `A >- B` <Tag variant="new">3.5.1</Tag> | `B` is a left immediate child of `A`, i.e. `A` is a parent of `B` and `A.i == B.i + 1` _(not in Semgrex)_. |
| `A >++ B` | `B` is a right child of `A`, i.e. `A` is a parent of `B` and `A.i < B.i` _(not in Semgrex)_. | | `A >++ B` | `B` is a right child of `A`, i.e. `A` is a parent of `B` and `A.i < B.i` _(not in Semgrex)_. |
| `A >-- B` | `B` is a left child of `A`, i.e. `A` is a parent of `B` and `A.i > B.i` _(not in Semgrex)_. | | `A >-- B` | `B` is a left child of `A`, i.e. `A` is a parent of `B` and `A.i > B.i` _(not in Semgrex)_. |
| `A <+ B` <Tag variant="new">3.5.1</Tag> | `B` is a right immediate parent of `A`, i.e. `A` is a child of `B` and `A.i == B.i - 1` _(not in Semgrex)_. |
| `A <- B` <Tag variant="new">3.5.1</Tag> | `B` is a left immediate parent of `A`, i.e. `A` is a child of `B` and `A.i == B.i + 1` _(not in Semgrex)_. |
| `A <++ B` | `B` is a right parent of `A`, i.e. `A` is a child of `B` and `A.i < B.i` _(not in Semgrex)_. | | `A <++ B` | `B` is a right parent of `A`, i.e. `A` is a child of `B` and `A.i < B.i` _(not in Semgrex)_. |
| `A <-- B` | `B` is a left parent of `A`, i.e. `A` is a child of `B` and `A.i > B.i` _(not in Semgrex)_. | | `A <-- B` | `B` is a left parent of `A`, i.e. `A` is a child of `B` and `A.i > B.i` _(not in Semgrex)_. |

View File

@ -54,7 +54,7 @@ architectures and their arguments and hyperparameters.
> ``` > ```
| Setting | Description | | Setting | Description |
| ---------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | --------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `labels_discard` | NER labels that will automatically get a "NIL" prediction. Defaults to `[]`. ~~Iterable[str]~~ | | `labels_discard` | NER labels that will automatically get a "NIL" prediction. Defaults to `[]`. ~~Iterable[str]~~ |
| `n_sents` | The number of neighbouring sentences to take into account. Defaults to 0. ~~int~~ | | `n_sents` | The number of neighbouring sentences to take into account. Defaults to 0. ~~int~~ |
| `incl_prior` | Whether or not to include prior probabilities from the KB in the model. Defaults to `True`. ~~bool~~ | | `incl_prior` | Whether or not to include prior probabilities from the KB in the model. Defaults to `True`. ~~bool~~ |
@ -63,6 +63,8 @@ architectures and their arguments and hyperparameters.
| `entity_vector_length` | Size of encoding vectors in the KB. Defaults to `64`. ~~int~~ | | `entity_vector_length` | Size of encoding vectors in the KB. Defaults to `64`. ~~int~~ |
| `use_gold_ents` | Whether to copy entities from the gold docs or not. Defaults to `True`. If `False`, entities must be set in the training data or by an annotating component in the pipeline. ~~int~~ | | `use_gold_ents` | Whether to copy entities from the gold docs or not. Defaults to `True`. If `False`, entities must be set in the training data or by an annotating component in the pipeline. ~~int~~ |
| `get_candidates` | Function that generates plausible candidates for a given `Span` object. Defaults to [CandidateGenerator](/api/architectures#CandidateGenerator), a function looking up exact, case-dependent aliases in the KB. ~~Callable[[KnowledgeBase, Span], Iterable[Candidate]]~~ | | `get_candidates` | Function that generates plausible candidates for a given `Span` object. Defaults to [CandidateGenerator](/api/architectures#CandidateGenerator), a function looking up exact, case-dependent aliases in the KB. ~~Callable[[KnowledgeBase, Span], Iterable[Candidate]]~~ |
| `get_candidates_batch` <Tag variant="new">3.5</Tag> | Function that generates plausible candidates for a given batch of `Span` objects. Defaults to [CandidateBatchGenerator](/api/architectures#CandidateBatchGenerator), a function looking up exact, case-dependent aliases in the KB. ~~Callable[[KnowledgeBase, Iterable[Span]], Iterable[Iterable[Candidate]]]~~ |
| `generate_empty_kb` <Tag variant="new">3.6</Tag> | Function that generates an empty `KnowledgeBase` object. Defaults to [`spacy.EmptyKB.v2`](/api/architectures#EmptyKB), which generates an empty [`InMemoryLookupKB`](/api/inmemorylookupkb). ~~Callable[[Vocab, int], KnowledgeBase]~~ |
| `overwrite` <Tag variant="new">3.2</Tag> | Whether existing annotation is overwritten. Defaults to `True`. ~~bool~~ | | `overwrite` <Tag variant="new">3.2</Tag> | Whether existing annotation is overwritten. Defaults to `True`. ~~bool~~ |
| `scorer` <Tag variant="new">3.2</Tag> | The scoring method. Defaults to [`Scorer.score_links`](/api/scorer#score_links). ~~Optional[Callable]~~ | | `scorer` <Tag variant="new">3.2</Tag> | The scoring method. Defaults to [`Scorer.score_links`](/api/scorer#score_links). ~~Optional[Callable]~~ |
| `threshold` <Tag variant="new">3.4</Tag> | Confidence threshold for entity predictions. The default of `None` implies that all predictions are accepted, otherwise those with a score beneath the treshold are discarded. If there are no predictions with scores above the threshold, the linked entity is `NIL`. ~~Optional[float]~~ | | `threshold` <Tag variant="new">3.4</Tag> | Confidence threshold for entity predictions. The default of `None` implies that all predictions are accepted, otherwise those with a score beneath the treshold are discarded. If there are no predictions with scores above the threshold, the linked entity is `NIL`. ~~Optional[float]~~ |

View File

@ -13,6 +13,13 @@ A span categorizer consists of two parts: a [suggester function](#suggesters)
that proposes candidate spans, which may or may not overlap, and a labeler model that proposes candidate spans, which may or may not overlap, and a labeler model
that predicts zero or more labels for each candidate. that predicts zero or more labels for each candidate.
This component comes in two forms: `spancat` and `spancat_singlelabel` (added in
spaCy v3.5.1). When you need to perform multi-label classification on your
spans, use `spancat`. The `spancat` component uses a `Logistic` layer where the
output class probabilities are independent for each class. However, if you need
to predict at most one true class for a span, then use `spancat_singlelabel`. It
uses a `Softmax` layer and treats the task as a multi-class problem.
Predicted spans will be saved in a [`SpanGroup`](/api/spangroup) on the doc. Predicted spans will be saved in a [`SpanGroup`](/api/spangroup) on the doc.
Individual span scores can be found in `spangroup.attrs["scores"]`. Individual span scores can be found in `spangroup.attrs["scores"]`.
@ -38,7 +45,7 @@ how the component should be configured. You can override its settings via the
[model architectures](/api/architectures) documentation for details on the [model architectures](/api/architectures) documentation for details on the
architectures and their arguments and hyperparameters. architectures and their arguments and hyperparameters.
> #### Example > #### Example (spancat)
> >
> ```python > ```python
> from spacy.pipeline.spancat import DEFAULT_SPANCAT_MODEL > from spacy.pipeline.spancat import DEFAULT_SPANCAT_MODEL
@ -52,14 +59,33 @@ architectures and their arguments and hyperparameters.
> nlp.add_pipe("spancat", config=config) > nlp.add_pipe("spancat", config=config)
> ``` > ```
> #### Example (spancat_singlelabel)
>
> ```python
> from spacy.pipeline.spancat import DEFAULT_SPANCAT_SINGLELABEL_MODEL
> config = {
> "threshold": 0.5,
> "spans_key": "labeled_spans",
> "model": DEFAULT_SPANCAT_SINGLELABEL_MODEL,
> "suggester": {"@misc": "spacy.ngram_suggester.v1", "sizes": [1, 2, 3]},
> # Additional spancat_singlelabel parameters
> "negative_weight": 0.8,
> "allow_overlap": True,
> }
> nlp.add_pipe("spancat_singlelabel", config=config)
> ```
| Setting | Description | | Setting | Description |
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | --------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `suggester` | A function that [suggests spans](#suggesters). Spans are returned as a ragged array with two integer columns, for the start and end positions. Defaults to [`ngram_suggester`](#ngram_suggester). ~~Callable[[Iterable[Doc], Optional[Ops]], Ragged]~~ | | `suggester` | A function that [suggests spans](#suggesters). Spans are returned as a ragged array with two integer columns, for the start and end positions. Defaults to [`ngram_suggester`](#ngram_suggester). ~~Callable[[Iterable[Doc], Optional[Ops]], Ragged]~~ |
| `model` | A model instance that is given a a list of documents and `(start, end)` indices representing candidate span offsets. The model predicts a probability for each category for each span. Defaults to [SpanCategorizer](/api/architectures#SpanCategorizer). ~~Model[Tuple[List[Doc], Ragged], Floats2d]~~ | | `model` | A model instance that is given a a list of documents and `(start, end)` indices representing candidate span offsets. The model predicts a probability for each category for each span. Defaults to [SpanCategorizer](/api/architectures#SpanCategorizer). ~~Model[Tuple[List[Doc], Ragged], Floats2d]~~ |
| `spans_key` | Key of the [`Doc.spans`](/api/doc#spans) dict to save the spans under. During initialization and training, the component will look for spans on the reference document under the same key. Defaults to `"sc"`. ~~str~~ | | `spans_key` | Key of the [`Doc.spans`](/api/doc#spans) dict to save the spans under. During initialization and training, the component will look for spans on the reference document under the same key. Defaults to `"sc"`. ~~str~~ |
| `threshold` | Minimum probability to consider a prediction positive. Spans with a positive prediction will be saved on the Doc. Defaults to `0.5`. ~~float~~ | | `threshold` | Minimum probability to consider a prediction positive. Spans with a positive prediction will be saved on the Doc. Meant to be used in combination with the multi-class `spancat` component with a `Logistic` scoring layer. Defaults to `0.5`. ~~float~~ |
| `max_positive` | Maximum number of labels to consider positive per span. Defaults to `None`, indicating no limit. ~~Optional[int]~~ | | `max_positive` | Maximum number of labels to consider positive per span. Defaults to `None`, indicating no limit. Meant to be used together with the `spancat` component and defaults to 0 with `spancat_singlelabel`. ~~Optional[int]~~ |
| `scorer` | The scoring method. Defaults to [`Scorer.score_spans`](/api/scorer#score_spans) for `Doc.spans[spans_key]` with overlapping spans allowed. ~~Optional[Callable]~~ | | `scorer` | The scoring method. Defaults to [`Scorer.score_spans`](/api/scorer#score_spans) for `Doc.spans[spans_key]` with overlapping spans allowed. ~~Optional[Callable]~~ |
| `add_negative_label` <Tag variant="new">3.5.1</Tag> | Whether to learn to predict a special negative label for each unannotated `Span` . This should be `True` when using a `Softmax` classifier layer and so its `True` by default for `spancat_singlelabel`. Spans with negative labels and their scores are not stored as annotations. ~~bool~~ |
| `negative_weight` <Tag variant="new">3.5.1</Tag> | Multiplier for the loss terms. It can be used to downweight the negative samples if there are too many. It is only used when `add_negative_label` is `True`. Defaults to `1.0`. ~~float~~ |
| `allow_overlap` <Tag variant="new">3.5.1</Tag> | If `True`, the data is assumed to contain overlapping spans. It is only available when `max_positive` is exactly 1. Defaults to `True`. ~~bool~~ |
```python ```python
%%GITHUB_SPACY/spacy/pipeline/spancat.py %%GITHUB_SPACY/spacy/pipeline/spancat.py
@ -71,6 +97,7 @@ architectures and their arguments and hyperparameters.
> >
> ```python > ```python
> # Construction via add_pipe with default model > # Construction via add_pipe with default model
> # Replace 'spancat' with 'spancat_singlelabel' for exclusive classes
> spancat = nlp.add_pipe("spancat") > spancat = nlp.add_pipe("spancat")
> >
> # Construction via add_pipe with custom model > # Construction via add_pipe with custom model
@ -87,7 +114,7 @@ shortcut for this and instantiate the component using its string name and
[`nlp.add_pipe`](/api/language#create_pipe). [`nlp.add_pipe`](/api/language#create_pipe).
| Name | Description | | Name | Description |
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | | --------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `vocab` | The shared vocabulary. ~~Vocab~~ | | `vocab` | The shared vocabulary. ~~Vocab~~ |
| `model` | A model instance that is given a a list of documents and `(start, end)` indices representing candidate span offsets. The model predicts a probability for each category for each span. ~~Model[Tuple[List[Doc], Ragged], Floats2d]~~ | | `model` | A model instance that is given a a list of documents and `(start, end)` indices representing candidate span offsets. The model predicts a probability for each category for each span. ~~Model[Tuple[List[Doc], Ragged], Floats2d]~~ |
| `suggester` | A function that [suggests spans](#suggesters). Spans are returned as a ragged array with two integer columns, for the start and end positions. ~~Callable[[Iterable[Doc], Optional[Ops]], Ragged]~~ | | `suggester` | A function that [suggests spans](#suggesters). Spans are returned as a ragged array with two integer columns, for the start and end positions. ~~Callable[[Iterable[Doc], Optional[Ops]], Ragged]~~ |
@ -96,6 +123,9 @@ shortcut for this and instantiate the component using its string name and
| `spans_key` | Key of the [`Doc.spans`](/api/doc#sans) dict to save the spans under. During initialization and training, the component will look for spans on the reference document under the same key. Defaults to `"sc"`. ~~str~~ | | `spans_key` | Key of the [`Doc.spans`](/api/doc#sans) dict to save the spans under. During initialization and training, the component will look for spans on the reference document under the same key. Defaults to `"sc"`. ~~str~~ |
| `threshold` | Minimum probability to consider a prediction positive. Spans with a positive prediction will be saved on the Doc. Defaults to `0.5`. ~~float~~ | | `threshold` | Minimum probability to consider a prediction positive. Spans with a positive prediction will be saved on the Doc. Defaults to `0.5`. ~~float~~ |
| `max_positive` | Maximum number of labels to consider positive per span. Defaults to `None`, indicating no limit. ~~Optional[int]~~ | | `max_positive` | Maximum number of labels to consider positive per span. Defaults to `None`, indicating no limit. ~~Optional[int]~~ |
| `allow_overlap` <Tag variant="new">3.5.1</Tag> | If `True`, the data is assumed to contain overlapping spans. It is only available when `max_positive` is exactly 1. Defaults to `True`. ~~bool~~ |
| `add_negative_label` <Tag variant="new">3.5.1</Tag> | Whether to learn to predict a special negative label for each unannotated `Span`. This should be `True` when using a `Softmax` classifier layer and so its `True` by default for `spancat_singlelabel` . Spans with negative labels and their scores are not stored as annotations. ~~bool~~ |
| `negative_weight` <Tag variant="new">3.5.1</Tag> | Multiplier for the loss terms. It can be used to downweight the negative samples if there are too many . It is only used when `add_negative_label` is `True`. Defaults to `1.0`. ~~float~~ |
## SpanCategorizer.\_\_call\_\_ {id="call",tag="method"} ## SpanCategorizer.\_\_call\_\_ {id="call",tag="method"}

View File

@ -355,14 +355,14 @@ If a setting is not present in the options, the default value will be used.
> ``` > ```
| Name | Description | | Name | Description |
| ------------------ | -------------------------------------------------------------------------------------------------------------------------------------------- | | ------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `fine_grained` | Use fine-grained part-of-speech tags (`Token.tag_`) instead of coarse-grained tags (`Token.pos_`). Defaults to `False`. ~~bool~~ | | `fine_grained` | Use fine-grained part-of-speech tags (`Token.tag_`) instead of coarse-grained tags (`Token.pos_`). Defaults to `False`. ~~bool~~ |
| `add_lemma` | Print the lemmas in a separate row below the token texts. Defaults to `False`. ~~bool~~ | | `add_lemma` | Print the lemmas in a separate row below the token texts. Defaults to `False`. ~~bool~~ |
| `collapse_punct` | Attach punctuation to tokens. Can make the parse more readable, as it prevents long arcs to attach punctuation. Defaults to `True`. ~~bool~~ | | `collapse_punct` | Attach punctuation to tokens. Can make the parse more readable, as it prevents long arcs to attach punctuation. Defaults to `True`. ~~bool~~ |
| `collapse_phrases` | Merge noun phrases into one token. Defaults to `False`. ~~bool~~ | | `collapse_phrases` | Merge noun phrases into one token. Defaults to `False`. ~~bool~~ |
| `compact` | "Compact mode" with square arrows that takes up less space. Defaults to `False`. ~~bool~~ | | `compact` | "Compact mode" with square arrows that takes up less space. Defaults to `False`. ~~bool~~ |
| `color` | Text color (HEX, RGB or color names). Defaults to `"#000000"`. ~~str~~ | | `color` | Text color. Can be provided in any CSS legal format as a string e.g.: `"#00ff00"`, `"rgb(0, 255, 0)"`, `"hsl(120, 100%, 50%)"` and `"green"` all correspond to the color green (without transparency). Defaults to `"#000000"`. ~~str~~ |
| `bg` | Background color (HEX, RGB or color names). Defaults to `"#ffffff"`. ~~str~~ | | `bg` | Background color. Can be provided in any CSS legal format as a string e.g.: `"#00ff00"`, `"rgb(0, 255, 0)"`, `"hsl(120, 100%, 50%)"` and `"green"` all correspond to the color green (without transparency). Defaults to `"#ffffff"`. ~~str~~ |
| `font` | Font name or font family for all text. Defaults to `"Arial"`. ~~str~~ | | `font` | Font name or font family for all text. Defaults to `"Arial"`. ~~str~~ |
| `offset_x` | Spacing on left side of the SVG in px. Defaults to `50`. ~~int~~ | | `offset_x` | Spacing on left side of the SVG in px. Defaults to `50`. ~~int~~ |
| `arrow_stroke` | Width of arrow path in px. Defaults to `2`. ~~int~~ | | `arrow_stroke` | Width of arrow path in px. Defaults to `2`. ~~int~~ |

View File

@ -1097,7 +1097,7 @@ come directly from
[Semgrex](https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/semgraph/semgrex/SemgrexPattern.html): [Semgrex](https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/semgraph/semgrex/SemgrexPattern.html):
| Symbol | Description | | Symbol | Description |
| --------- | -------------------------------------------------------------------------------------------------------------------- | | --------------------------------------- | -------------------------------------------------------------------------------------------------------------------- |
| `A < B` | `A` is the immediate dependent of `B`. | | `A < B` | `A` is the immediate dependent of `B`. |
| `A > B` | `A` is the immediate head of `B`. | | `A > B` | `A` is the immediate head of `B`. |
| `A << B` | `A` is the dependent in a chain to `B` following dep &rarr; head paths. | | `A << B` | `A` is the dependent in a chain to `B` following dep &rarr; head paths. |
@ -1110,6 +1110,14 @@ come directly from
| `A $- B` | `B` is a left immediate sibling of `A`, i.e. `A` and `B` have the same parent and `A.i == B.i + 1`. | | `A $- B` | `B` is a left immediate sibling of `A`, i.e. `A` and `B` have the same parent and `A.i == B.i + 1`. |
| `A $++ B` | `B` is a right sibling of `A`, i.e. `A` and `B` have the same parent and `A.i < B.i`. | | `A $++ B` | `B` is a right sibling of `A`, i.e. `A` and `B` have the same parent and `A.i < B.i`. |
| `A $-- B` | `B` is a left sibling of `A`, i.e. `A` and `B` have the same parent and `A.i > B.i`. | | `A $-- B` | `B` is a left sibling of `A`, i.e. `A` and `B` have the same parent and `A.i > B.i`. |
| `A >+ B` <Tag variant="new">3.5.1</Tag> | `B` is a right immediate child of `A`, i.e. `A` is a parent of `B` and `A.i == B.i - 1` _(not in Semgrex)_. |
| `A >- B` <Tag variant="new">3.5.1</Tag> | `B` is a left immediate child of `A`, i.e. `A` is a parent of `B` and `A.i == B.i + 1` _(not in Semgrex)_. |
| `A >++ B` | `B` is a right child of `A`, i.e. `A` is a parent of `B` and `A.i < B.i` _(not in Semgrex)_. |
| `A >-- B` | `B` is a left child of `A`, i.e. `A` is a parent of `B` and `A.i > B.i` _(not in Semgrex)_. |
| `A <+ B` <Tag variant="new">3.5.1</Tag> | `B` is a right immediate parent of `A`, i.e. `A` is a child of `B` and `A.i == B.i - 1` _(not in Semgrex)_. |
| `A <- B` <Tag variant="new">3.5.1</Tag> | `B` is a left immediate parent of `A`, i.e. `A` is a child of `B` and `A.i == B.i + 1` _(not in Semgrex)_. |
| `A <++ B` | `B` is a right parent of `A`, i.e. `A` is a child of `B` and `A.i < B.i` _(not in Semgrex)_. |
| `A <-- B` | `B` is a left parent of `A`, i.e. `A` is a child of `B` and `A.i > B.i` _(not in Semgrex)_. |
### Designing dependency matcher patterns {id="dependencymatcher-patterns"} ### Designing dependency matcher patterns {id="dependencymatcher-patterns"}

View File

@ -59,10 +59,10 @@ arcs.
</Infobox> </Infobox>
| Argument | Description | | Argument | Description |
| --------- | ----------------------------------------------------------------------------------------- | | --------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `compact` | "Compact mode" with square arrows that takes up less space. Defaults to `False`. ~~bool~~ | | `compact` | "Compact mode" with square arrows that takes up less space. Defaults to `False`. ~~bool~~ |
| `color` | Text color (HEX, RGB or color names). Defaults to `"#000000"`. ~~str~~ | | `color` | Text color. Can be provided in any CSS legal format as a string e.g.: `"#00ff00"`, `"rgb(0, 255, 0)"`, `"hsl(120, 100%, 50%)"` and `"green"` all correspond to the color green (without transparency). Defaults to `"#000000"`. ~~str~~ |
| `bg` | Background color (HEX, RGB or color names). Defaults to `"#ffffff"`. ~~str~~ | | `bg` | Background color. Can be provided in any CSS legal format as a string e.g.: `"#00ff00"`, `"rgb(0, 255, 0)"`, `"hsl(120, 100%, 50%)"` and `"green"` all correspond to the color green (without transparency). Defaults to `"#ffffff"`. ~~str~~ |
| `font` | Font name or font family for all text. Defaults to `"Arial"`. ~~str~~ | | `font` | Font name or font family for all text. Defaults to `"Arial"`. ~~str~~ |
For a list of all available options, see the For a list of all available options, see the

View File

@ -6,6 +6,7 @@
"dev": "next dev", "dev": "next dev",
"build": "next build && npm run sitemap && next export", "build": "next build && npm run sitemap && next export",
"prebuild": "pip install -r setup/requirements.txt && sh setup/setup.sh", "prebuild": "pip install -r setup/requirements.txt && sh setup/setup.sh",
"predev": "npm run prebuild",
"sitemap": "next-sitemap --config next-sitemap.config.mjs", "sitemap": "next-sitemap --config next-sitemap.config.mjs",
"start": "next start", "start": "next start",
"lint": "next lint", "lint": "next lint",

View File

@ -25,6 +25,11 @@ const AlertSpace = ({ nightly, legacy }) => {
const isOnline = useOnlineStatus() const isOnline = useOnlineStatus()
return ( return (
<> <>
{isOnline && (
<Alert title="💥 We'd love to learn more about your experience with spaCy!">
<Link to="https://form.typeform.com/to/aMel9q9f">Take our survey here.</Link>
</Alert>
)}
{nightly && ( {nightly && (
<Alert <Alert
title="You're viewing the pre-release docs." title="You're viewing the pre-release docs."