mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 18:26:30 +03:00
Merge pull request #12351 from adrianeboyd/backport/v3.5.1-1
Backports for v3.5.1
This commit is contained in:
commit
c2810575c0
5
.github/azure-steps.yml
vendored
5
.github/azure-steps.yml
vendored
|
@ -59,6 +59,11 @@ steps:
|
||||||
displayName: 'Test download CLI'
|
displayName: 'Test download CLI'
|
||||||
condition: eq(variables['python_version'], '3.8')
|
condition: eq(variables['python_version'], '3.8')
|
||||||
|
|
||||||
|
- script: |
|
||||||
|
python -W error -m spacy info ca_core_news_sm | grep -q download_url
|
||||||
|
displayName: 'Test download_url in info CLI'
|
||||||
|
condition: eq(variables['python_version'], '3.8')
|
||||||
|
|
||||||
- script: |
|
- script: |
|
||||||
python -W error -c "import ca_core_news_sm; nlp = ca_core_news_sm.load(); doc=nlp('test')"
|
python -W error -c "import ca_core_news_sm; nlp = ca_core_news_sm.load(); doc=nlp('test')"
|
||||||
displayName: 'Test no warnings on load (#11713)'
|
displayName: 'Test no warnings on load (#11713)'
|
||||||
|
|
|
@ -16,6 +16,9 @@ production-ready [**training system**](https://spacy.io/usage/training) and easy
|
||||||
model packaging, deployment and workflow management. spaCy is commercial
|
model packaging, deployment and workflow management. spaCy is commercial
|
||||||
open-source software, released under the [MIT license](https://github.com/explosion/spaCy/blob/master/LICENSE).
|
open-source software, released under the [MIT license](https://github.com/explosion/spaCy/blob/master/LICENSE).
|
||||||
|
|
||||||
|
💥 **We'd love to hear more about your experience with spaCy!**
|
||||||
|
[Fill out our survey here.](https://form.typeform.com/to/aMel9q9f)
|
||||||
|
|
||||||
💫 **Version 3.5 out now!**
|
💫 **Version 3.5 out now!**
|
||||||
[Check out the release notes here.](https://github.com/explosion/spaCy/releases)
|
[Check out the release notes here.](https://github.com/explosion/spaCy/releases)
|
||||||
|
|
||||||
|
|
|
@ -5,7 +5,7 @@ requires = [
|
||||||
"cymem>=2.0.2,<2.1.0",
|
"cymem>=2.0.2,<2.1.0",
|
||||||
"preshed>=3.0.2,<3.1.0",
|
"preshed>=3.0.2,<3.1.0",
|
||||||
"murmurhash>=0.28.0,<1.1.0",
|
"murmurhash>=0.28.0,<1.1.0",
|
||||||
"thinc>=8.1.0,<8.2.0",
|
"thinc>=8.1.8,<8.2.0",
|
||||||
"numpy>=1.15.0",
|
"numpy>=1.15.0",
|
||||||
]
|
]
|
||||||
build-backend = "setuptools.build_meta"
|
build-backend = "setuptools.build_meta"
|
||||||
|
|
|
@ -3,7 +3,7 @@ spacy-legacy>=3.0.11,<3.1.0
|
||||||
spacy-loggers>=1.0.0,<2.0.0
|
spacy-loggers>=1.0.0,<2.0.0
|
||||||
cymem>=2.0.2,<2.1.0
|
cymem>=2.0.2,<2.1.0
|
||||||
preshed>=3.0.2,<3.1.0
|
preshed>=3.0.2,<3.1.0
|
||||||
thinc>=8.1.0,<8.2.0
|
thinc>=8.1.8,<8.2.0
|
||||||
ml_datasets>=0.2.0,<0.3.0
|
ml_datasets>=0.2.0,<0.3.0
|
||||||
murmurhash>=0.28.0,<1.1.0
|
murmurhash>=0.28.0,<1.1.0
|
||||||
wasabi>=0.9.1,<1.2.0
|
wasabi>=0.9.1,<1.2.0
|
||||||
|
|
|
@ -39,7 +39,7 @@ setup_requires =
|
||||||
cymem>=2.0.2,<2.1.0
|
cymem>=2.0.2,<2.1.0
|
||||||
preshed>=3.0.2,<3.1.0
|
preshed>=3.0.2,<3.1.0
|
||||||
murmurhash>=0.28.0,<1.1.0
|
murmurhash>=0.28.0,<1.1.0
|
||||||
thinc>=8.1.0,<8.2.0
|
thinc>=8.1.8,<8.2.0
|
||||||
install_requires =
|
install_requires =
|
||||||
# Our libraries
|
# Our libraries
|
||||||
spacy-legacy>=3.0.11,<3.1.0
|
spacy-legacy>=3.0.11,<3.1.0
|
||||||
|
@ -47,7 +47,7 @@ install_requires =
|
||||||
murmurhash>=0.28.0,<1.1.0
|
murmurhash>=0.28.0,<1.1.0
|
||||||
cymem>=2.0.2,<2.1.0
|
cymem>=2.0.2,<2.1.0
|
||||||
preshed>=3.0.2,<3.1.0
|
preshed>=3.0.2,<3.1.0
|
||||||
thinc>=8.1.0,<8.2.0
|
thinc>=8.1.8,<8.2.0
|
||||||
wasabi>=0.9.1,<1.2.0
|
wasabi>=0.9.1,<1.2.0
|
||||||
srsly>=2.4.3,<3.0.0
|
srsly>=2.4.3,<3.0.0
|
||||||
catalogue>=2.0.6,<2.1.0
|
catalogue>=2.0.6,<2.1.0
|
||||||
|
|
|
@ -1,6 +1,5 @@
|
||||||
from typing import Optional, Dict, Any, Union, List
|
from typing import Optional, Dict, Any, Union, List
|
||||||
import platform
|
import platform
|
||||||
import pkg_resources
|
|
||||||
import json
|
import json
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from wasabi import Printer, MarkdownRenderer
|
from wasabi import Printer, MarkdownRenderer
|
||||||
|
@ -10,6 +9,7 @@ from ._util import app, Arg, Opt, string_to_list
|
||||||
from .download import get_model_filename, get_latest_version
|
from .download import get_model_filename, get_latest_version
|
||||||
from .. import util
|
from .. import util
|
||||||
from .. import about
|
from .. import about
|
||||||
|
from ..compat import importlib_metadata
|
||||||
|
|
||||||
|
|
||||||
@app.command("info")
|
@app.command("info")
|
||||||
|
@ -137,15 +137,14 @@ def info_installed_model_url(model: str) -> Optional[str]:
|
||||||
dist-info available.
|
dist-info available.
|
||||||
"""
|
"""
|
||||||
try:
|
try:
|
||||||
dist = pkg_resources.get_distribution(model)
|
dist = importlib_metadata.distribution(model)
|
||||||
data = json.loads(dist.get_metadata("direct_url.json"))
|
text = dist.read_text("direct_url.json")
|
||||||
return data["url"]
|
if isinstance(text, str):
|
||||||
except pkg_resources.DistributionNotFound:
|
data = json.loads(text)
|
||||||
# no such package
|
return data["url"]
|
||||||
return None
|
|
||||||
except Exception:
|
except Exception:
|
||||||
# something else, like no file or invalid JSON
|
pass
|
||||||
return None
|
return None
|
||||||
|
|
||||||
|
|
||||||
def info_model_url(model: str) -> Dict[str, Any]:
|
def info_model_url(model: str) -> Dict[str, Any]:
|
||||||
|
|
|
@ -2,7 +2,6 @@ from typing import Optional, List, Dict, Sequence, Any, Iterable, Tuple
|
||||||
import os.path
|
import os.path
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
import pkg_resources
|
|
||||||
from wasabi import msg
|
from wasabi import msg
|
||||||
from wasabi.util import locale_escape
|
from wasabi.util import locale_escape
|
||||||
import sys
|
import sys
|
||||||
|
@ -331,6 +330,7 @@ def _check_requirements(requirements: List[str]) -> Tuple[bool, bool]:
|
||||||
RETURNS (Tuple[bool, bool]): Whether (1) any packages couldn't be imported, (2) any packages with version conflicts
|
RETURNS (Tuple[bool, bool]): Whether (1) any packages couldn't be imported, (2) any packages with version conflicts
|
||||||
exist.
|
exist.
|
||||||
"""
|
"""
|
||||||
|
import pkg_resources
|
||||||
|
|
||||||
failed_pkgs_msgs: List[str] = []
|
failed_pkgs_msgs: List[str] = []
|
||||||
conflicting_pkgs_msgs: List[str] = []
|
conflicting_pkgs_msgs: List[str] = []
|
||||||
|
|
|
@ -3,7 +3,7 @@ the docs and the init config command. It encodes various best practices and
|
||||||
can help generate the best possible configuration, given a user's requirements. #}
|
can help generate the best possible configuration, given a user's requirements. #}
|
||||||
{%- set use_transformer = hardware != "cpu" and transformer_data -%}
|
{%- set use_transformer = hardware != "cpu" and transformer_data -%}
|
||||||
{%- set transformer = transformer_data[optimize] if use_transformer else {} -%}
|
{%- set transformer = transformer_data[optimize] if use_transformer else {} -%}
|
||||||
{%- set listener_components = ["tagger", "morphologizer", "parser", "ner", "textcat", "textcat_multilabel", "entity_linker", "spancat", "trainable_lemmatizer"] -%}
|
{%- set listener_components = ["tagger", "morphologizer", "parser", "ner", "textcat", "textcat_multilabel", "entity_linker", "spancat", "spancat_singlelabel", "trainable_lemmatizer"] -%}
|
||||||
[paths]
|
[paths]
|
||||||
train = null
|
train = null
|
||||||
dev = null
|
dev = null
|
||||||
|
@ -24,8 +24,11 @@ gpu_allocator = null
|
||||||
lang = "{{ lang }}"
|
lang = "{{ lang }}"
|
||||||
{%- set has_textcat = ("textcat" in components or "textcat_multilabel" in components) -%}
|
{%- set has_textcat = ("textcat" in components or "textcat_multilabel" in components) -%}
|
||||||
{%- set with_accuracy = optimize == "accuracy" -%}
|
{%- set with_accuracy = optimize == "accuracy" -%}
|
||||||
{%- set has_accurate_textcat = has_textcat and with_accuracy -%}
|
{# The BOW textcat doesn't need a source of features, so it can omit the
|
||||||
{%- if ("tagger" in components or "morphologizer" in components or "parser" in components or "ner" in components or "spancat" in components or "trainable_lemmatizer" in components or "entity_linker" in components or has_accurate_textcat) -%}
|
tok2vec/transformer. #}
|
||||||
|
{%- set with_accuracy_or_transformer = (use_transformer or with_accuracy) -%}
|
||||||
|
{%- set textcat_needs_features = has_textcat and with_accuracy_or_transformer -%}
|
||||||
|
{%- if ("tagger" in components or "morphologizer" in components or "parser" in components or "ner" in components or "spancat" in components or "spancat_singlelabel" in components or "trainable_lemmatizer" in components or "entity_linker" in components or textcat_needs_features) -%}
|
||||||
{%- set full_pipeline = ["transformer" if use_transformer else "tok2vec"] + components -%}
|
{%- set full_pipeline = ["transformer" if use_transformer else "tok2vec"] + components -%}
|
||||||
{%- else -%}
|
{%- else -%}
|
||||||
{%- set full_pipeline = components -%}
|
{%- set full_pipeline = components -%}
|
||||||
|
@ -156,6 +159,36 @@ grad_factor = 1.0
|
||||||
sizes = [1,2,3]
|
sizes = [1,2,3]
|
||||||
{% endif -%}
|
{% endif -%}
|
||||||
|
|
||||||
|
{% if "spancat_singlelabel" in components %}
|
||||||
|
[components.spancat_singlelabel]
|
||||||
|
factory = "spancat_singlelabel"
|
||||||
|
negative_weight = 1.0
|
||||||
|
allow_overlap = true
|
||||||
|
scorer = {"@scorers":"spacy.spancat_scorer.v1"}
|
||||||
|
spans_key = "sc"
|
||||||
|
|
||||||
|
[components.spancat_singlelabel.model]
|
||||||
|
@architectures = "spacy.SpanCategorizer.v1"
|
||||||
|
|
||||||
|
[components.spancat_singlelabel.model.reducer]
|
||||||
|
@layers = "spacy.mean_max_reducer.v1"
|
||||||
|
hidden_size = 128
|
||||||
|
|
||||||
|
[components.spancat_singlelabel.model.scorer]
|
||||||
|
@layers = "Softmax.v2"
|
||||||
|
|
||||||
|
[components.spancat_singlelabel.model.tok2vec]
|
||||||
|
@architectures = "spacy-transformers.TransformerListener.v1"
|
||||||
|
grad_factor = 1.0
|
||||||
|
|
||||||
|
[components.spancat_singlelabel.model.tok2vec.pooling]
|
||||||
|
@layers = "reduce_mean.v1"
|
||||||
|
|
||||||
|
[components.spancat_singlelabel.suggester]
|
||||||
|
@misc = "spacy.ngram_suggester.v1"
|
||||||
|
sizes = [1,2,3]
|
||||||
|
{% endif %}
|
||||||
|
|
||||||
{% if "trainable_lemmatizer" in components -%}
|
{% if "trainable_lemmatizer" in components -%}
|
||||||
[components.trainable_lemmatizer]
|
[components.trainable_lemmatizer]
|
||||||
factory = "trainable_lemmatizer"
|
factory = "trainable_lemmatizer"
|
||||||
|
@ -221,10 +254,16 @@ no_output_layer = false
|
||||||
|
|
||||||
{% else -%}
|
{% else -%}
|
||||||
[components.textcat.model]
|
[components.textcat.model]
|
||||||
@architectures = "spacy.TextCatBOW.v2"
|
@architectures = "spacy.TextCatCNN.v2"
|
||||||
exclusive_classes = true
|
exclusive_classes = true
|
||||||
ngram_size = 1
|
nO = null
|
||||||
no_output_layer = false
|
|
||||||
|
[components.textcat.model.tok2vec]
|
||||||
|
@architectures = "spacy-transformers.TransformerListener.v1"
|
||||||
|
grad_factor = 1.0
|
||||||
|
|
||||||
|
[components.textcat.model.tok2vec.pooling]
|
||||||
|
@layers = "reduce_mean.v1"
|
||||||
{%- endif %}
|
{%- endif %}
|
||||||
{%- endif %}
|
{%- endif %}
|
||||||
|
|
||||||
|
@ -252,10 +291,16 @@ no_output_layer = false
|
||||||
|
|
||||||
{% else -%}
|
{% else -%}
|
||||||
[components.textcat_multilabel.model]
|
[components.textcat_multilabel.model]
|
||||||
@architectures = "spacy.TextCatBOW.v2"
|
@architectures = "spacy.TextCatCNN.v2"
|
||||||
exclusive_classes = false
|
exclusive_classes = false
|
||||||
ngram_size = 1
|
nO = null
|
||||||
no_output_layer = false
|
|
||||||
|
[components.textcat_multilabel.model.tok2vec]
|
||||||
|
@architectures = "spacy-transformers.TransformerListener.v1"
|
||||||
|
grad_factor = 1.0
|
||||||
|
|
||||||
|
[components.textcat_multilabel.model.tok2vec.pooling]
|
||||||
|
@layers = "reduce_mean.v1"
|
||||||
{%- endif %}
|
{%- endif %}
|
||||||
{%- endif %}
|
{%- endif %}
|
||||||
|
|
||||||
|
@ -374,6 +419,33 @@ width = ${components.tok2vec.model.encode.width}
|
||||||
sizes = [1,2,3]
|
sizes = [1,2,3]
|
||||||
{% endif %}
|
{% endif %}
|
||||||
|
|
||||||
|
{% if "spancat_singlelabel" in components %}
|
||||||
|
[components.spancat_singlelabel]
|
||||||
|
factory = "spancat_singlelabel"
|
||||||
|
negative_weight = 1.0
|
||||||
|
allow_overlap = true
|
||||||
|
scorer = {"@scorers":"spacy.spancat_scorer.v1"}
|
||||||
|
spans_key = "sc"
|
||||||
|
|
||||||
|
[components.spancat_singlelabel.model]
|
||||||
|
@architectures = "spacy.SpanCategorizer.v1"
|
||||||
|
|
||||||
|
[components.spancat_singlelabel.model.reducer]
|
||||||
|
@layers = "spacy.mean_max_reducer.v1"
|
||||||
|
hidden_size = 128
|
||||||
|
|
||||||
|
[components.spancat_singlelabel.model.scorer]
|
||||||
|
@layers = "Softmax.v2"
|
||||||
|
|
||||||
|
[components.spancat_singlelabel.model.tok2vec]
|
||||||
|
@architectures = "spacy.Tok2VecListener.v1"
|
||||||
|
width = ${components.tok2vec.model.encode.width}
|
||||||
|
|
||||||
|
[components.spancat_singlelabel.suggester]
|
||||||
|
@misc = "spacy.ngram_suggester.v1"
|
||||||
|
sizes = [1,2,3]
|
||||||
|
{% endif %}
|
||||||
|
|
||||||
{% if "trainable_lemmatizer" in components -%}
|
{% if "trainable_lemmatizer" in components -%}
|
||||||
[components.trainable_lemmatizer]
|
[components.trainable_lemmatizer]
|
||||||
factory = "trainable_lemmatizer"
|
factory = "trainable_lemmatizer"
|
||||||
|
|
|
@ -444,8 +444,7 @@ class Errors(metaclass=ErrorsWithCodes):
|
||||||
E133 = ("The sum of prior probabilities for alias '{alias}' should not "
|
E133 = ("The sum of prior probabilities for alias '{alias}' should not "
|
||||||
"exceed 1, but found {sum}.")
|
"exceed 1, but found {sum}.")
|
||||||
E134 = ("Entity '{entity}' is not defined in the Knowledge Base.")
|
E134 = ("Entity '{entity}' is not defined in the Knowledge Base.")
|
||||||
E139 = ("Knowledge base for component '{name}' is empty. Use the methods "
|
E139 = ("Knowledge base for component '{name}' is empty.")
|
||||||
"`kb.add_entity` and `kb.add_alias` to add entries.")
|
|
||||||
E140 = ("The list of entities, prior probabilities and entity vectors "
|
E140 = ("The list of entities, prior probabilities and entity vectors "
|
||||||
"should be of equal length.")
|
"should be of equal length.")
|
||||||
E141 = ("Entity vectors should be of length {required} instead of the "
|
E141 = ("Entity vectors should be of length {required} instead of the "
|
||||||
|
@ -550,6 +549,8 @@ class Errors(metaclass=ErrorsWithCodes):
|
||||||
"during training, make sure to include it in 'annotating components'")
|
"during training, make sure to include it in 'annotating components'")
|
||||||
|
|
||||||
# New errors added in v3.x
|
# New errors added in v3.x
|
||||||
|
E850 = ("The PretrainVectors objective currently only supports default "
|
||||||
|
"vectors, not {mode} vectors.")
|
||||||
E851 = ("The 'textcat' component labels should only have values of 0 or 1, "
|
E851 = ("The 'textcat' component labels should only have values of 0 or 1, "
|
||||||
"but found value of '{val}'.")
|
"but found value of '{val}'.")
|
||||||
E852 = ("The tar file pulled from the remote attempted an unsafe path "
|
E852 = ("The tar file pulled from the remote attempted an unsafe path "
|
||||||
|
@ -967,7 +968,8 @@ class Errors(metaclass=ErrorsWithCodes):
|
||||||
E1049 = ("No available port found for displaCy on host {host}. Please specify an available port "
|
E1049 = ("No available port found for displaCy on host {host}. Please specify an available port "
|
||||||
"with `displacy.serve(doc, port=port)`")
|
"with `displacy.serve(doc, port=port)`")
|
||||||
E1050 = ("Port {port} is already in use. Please specify an available port with `displacy.serve(doc, port=port)` "
|
E1050 = ("Port {port} is already in use. Please specify an available port with `displacy.serve(doc, port=port)` "
|
||||||
"or use `auto_switch_port=True` to pick an available port automatically.")
|
"or use `auto_select_port=True` to pick an available port automatically.")
|
||||||
|
E1051 = ("'allow_overlap' can only be False when max_positive is 1, but found 'max_positive': {max_positive}.")
|
||||||
|
|
||||||
|
|
||||||
# Deprecated model shortcuts, only used in errors and warnings
|
# Deprecated model shortcuts, only used in errors and warnings
|
||||||
|
|
|
@ -46,6 +46,9 @@ cdef class InMemoryLookupKB(KnowledgeBase):
|
||||||
self._alias_index = PreshMap(nr_aliases + 1)
|
self._alias_index = PreshMap(nr_aliases + 1)
|
||||||
self._aliases_table = alias_vec(nr_aliases + 1)
|
self._aliases_table = alias_vec(nr_aliases + 1)
|
||||||
|
|
||||||
|
def is_empty(self):
|
||||||
|
return len(self) == 0
|
||||||
|
|
||||||
def __len__(self):
|
def __len__(self):
|
||||||
return self.get_size_entities()
|
return self.get_size_entities()
|
||||||
|
|
||||||
|
|
|
@ -25,7 +25,8 @@ class Lexeme:
|
||||||
def orth_(self) -> str: ...
|
def orth_(self) -> str: ...
|
||||||
@property
|
@property
|
||||||
def text(self) -> str: ...
|
def text(self) -> str: ...
|
||||||
lower: str
|
orth: int
|
||||||
|
lower: int
|
||||||
norm: int
|
norm: int
|
||||||
shape: int
|
shape: int
|
||||||
prefix: int
|
prefix: int
|
||||||
|
|
|
@ -199,7 +199,7 @@ cdef class Lexeme:
|
||||||
return self.orth_
|
return self.orth_
|
||||||
|
|
||||||
property lower:
|
property lower:
|
||||||
"""RETURNS (str): Lowercase form of the lexeme."""
|
"""RETURNS (uint64): Lowercase form of the lexeme."""
|
||||||
def __get__(self):
|
def __get__(self):
|
||||||
return self.c.lower
|
return self.c.lower
|
||||||
|
|
||||||
|
|
|
@ -82,8 +82,12 @@ cdef class DependencyMatcher:
|
||||||
"$-": self._imm_left_sib,
|
"$-": self._imm_left_sib,
|
||||||
"$++": self._right_sib,
|
"$++": self._right_sib,
|
||||||
"$--": self._left_sib,
|
"$--": self._left_sib,
|
||||||
|
">+": self._imm_right_child,
|
||||||
|
">-": self._imm_left_child,
|
||||||
">++": self._right_child,
|
">++": self._right_child,
|
||||||
">--": self._left_child,
|
">--": self._left_child,
|
||||||
|
"<+": self._imm_right_parent,
|
||||||
|
"<-": self._imm_left_parent,
|
||||||
"<++": self._right_parent,
|
"<++": self._right_parent,
|
||||||
"<--": self._left_parent,
|
"<--": self._left_parent,
|
||||||
}
|
}
|
||||||
|
@ -427,12 +431,34 @@ cdef class DependencyMatcher:
|
||||||
def _left_sib(self, doc, node):
|
def _left_sib(self, doc, node):
|
||||||
return [doc[child.i] for child in doc[node].head.children if child.i < node]
|
return [doc[child.i] for child in doc[node].head.children if child.i < node]
|
||||||
|
|
||||||
|
def _imm_right_child(self, doc, node):
|
||||||
|
for child in doc[node].children:
|
||||||
|
if child.i == node + 1:
|
||||||
|
return [doc[child.i]]
|
||||||
|
return []
|
||||||
|
|
||||||
|
def _imm_left_child(self, doc, node):
|
||||||
|
for child in doc[node].children:
|
||||||
|
if child.i == node - 1:
|
||||||
|
return [doc[child.i]]
|
||||||
|
return []
|
||||||
|
|
||||||
def _right_child(self, doc, node):
|
def _right_child(self, doc, node):
|
||||||
return [doc[child.i] for child in doc[node].children if child.i > node]
|
return [doc[child.i] for child in doc[node].children if child.i > node]
|
||||||
|
|
||||||
def _left_child(self, doc, node):
|
def _left_child(self, doc, node):
|
||||||
return [doc[child.i] for child in doc[node].children if child.i < node]
|
return [doc[child.i] for child in doc[node].children if child.i < node]
|
||||||
|
|
||||||
|
def _imm_right_parent(self, doc, node):
|
||||||
|
if doc[node].head.i == node + 1:
|
||||||
|
return [doc[node].head]
|
||||||
|
return []
|
||||||
|
|
||||||
|
def _imm_left_parent(self, doc, node):
|
||||||
|
if doc[node].head.i == node - 1:
|
||||||
|
return [doc[node].head]
|
||||||
|
return []
|
||||||
|
|
||||||
def _right_parent(self, doc, node):
|
def _right_parent(self, doc, node):
|
||||||
if doc[node].head.i > node:
|
if doc[node].head.i > node:
|
||||||
return [doc[node].head]
|
return [doc[node].head]
|
||||||
|
|
|
@ -89,6 +89,14 @@ def load_kb(
|
||||||
return kb_from_file
|
return kb_from_file
|
||||||
|
|
||||||
|
|
||||||
|
@registry.misc("spacy.EmptyKB.v2")
|
||||||
|
def empty_kb_for_config() -> Callable[[Vocab, int], KnowledgeBase]:
|
||||||
|
def empty_kb_factory(vocab: Vocab, entity_vector_length: int):
|
||||||
|
return InMemoryLookupKB(vocab=vocab, entity_vector_length=entity_vector_length)
|
||||||
|
|
||||||
|
return empty_kb_factory
|
||||||
|
|
||||||
|
|
||||||
@registry.misc("spacy.EmptyKB.v1")
|
@registry.misc("spacy.EmptyKB.v1")
|
||||||
def empty_kb(
|
def empty_kb(
|
||||||
entity_vector_length: int,
|
entity_vector_length: int,
|
||||||
|
|
|
@ -8,6 +8,7 @@ from thinc.loss import Loss
|
||||||
from ...util import registry, OOV_RANK
|
from ...util import registry, OOV_RANK
|
||||||
from ...errors import Errors
|
from ...errors import Errors
|
||||||
from ...attrs import ID
|
from ...attrs import ID
|
||||||
|
from ...vectors import Mode as VectorsMode
|
||||||
|
|
||||||
import numpy
|
import numpy
|
||||||
from functools import partial
|
from functools import partial
|
||||||
|
@ -23,6 +24,8 @@ def create_pretrain_vectors(
|
||||||
maxout_pieces: int, hidden_size: int, loss: str
|
maxout_pieces: int, hidden_size: int, loss: str
|
||||||
) -> Callable[["Vocab", Model], Model]:
|
) -> Callable[["Vocab", Model], Model]:
|
||||||
def create_vectors_objective(vocab: "Vocab", tok2vec: Model) -> Model:
|
def create_vectors_objective(vocab: "Vocab", tok2vec: Model) -> Model:
|
||||||
|
if vocab.vectors.mode != VectorsMode.default:
|
||||||
|
raise ValueError(Errors.E850.format(mode=vocab.vectors.mode))
|
||||||
if vocab.vectors.shape[1] == 0:
|
if vocab.vectors.shape[1] == 0:
|
||||||
raise ValueError(Errors.E875)
|
raise ValueError(Errors.E875)
|
||||||
model = build_cloze_multi_task_model(
|
model = build_cloze_multi_task_model(
|
||||||
|
|
|
@ -54,6 +54,7 @@ DEFAULT_NEL_MODEL = Config().from_str(default_model_config)["model"]
|
||||||
"entity_vector_length": 64,
|
"entity_vector_length": 64,
|
||||||
"get_candidates": {"@misc": "spacy.CandidateGenerator.v1"},
|
"get_candidates": {"@misc": "spacy.CandidateGenerator.v1"},
|
||||||
"get_candidates_batch": {"@misc": "spacy.CandidateBatchGenerator.v1"},
|
"get_candidates_batch": {"@misc": "spacy.CandidateBatchGenerator.v1"},
|
||||||
|
"generate_empty_kb": {"@misc": "spacy.EmptyKB.v2"},
|
||||||
"overwrite": True,
|
"overwrite": True,
|
||||||
"scorer": {"@scorers": "spacy.entity_linker_scorer.v1"},
|
"scorer": {"@scorers": "spacy.entity_linker_scorer.v1"},
|
||||||
"use_gold_ents": True,
|
"use_gold_ents": True,
|
||||||
|
@ -80,6 +81,7 @@ def make_entity_linker(
|
||||||
get_candidates_batch: Callable[
|
get_candidates_batch: Callable[
|
||||||
[KnowledgeBase, Iterable[Span]], Iterable[Iterable[Candidate]]
|
[KnowledgeBase, Iterable[Span]], Iterable[Iterable[Candidate]]
|
||||||
],
|
],
|
||||||
|
generate_empty_kb: Callable[[Vocab, int], KnowledgeBase],
|
||||||
overwrite: bool,
|
overwrite: bool,
|
||||||
scorer: Optional[Callable],
|
scorer: Optional[Callable],
|
||||||
use_gold_ents: bool,
|
use_gold_ents: bool,
|
||||||
|
@ -101,6 +103,7 @@ def make_entity_linker(
|
||||||
get_candidates_batch (
|
get_candidates_batch (
|
||||||
Callable[[KnowledgeBase, Iterable[Span]], Iterable[Iterable[Candidate]]], Iterable[Candidate]]
|
Callable[[KnowledgeBase, Iterable[Span]], Iterable[Iterable[Candidate]]], Iterable[Candidate]]
|
||||||
): Function that produces a list of candidates, given a certain knowledge base and several textual mentions.
|
): Function that produces a list of candidates, given a certain knowledge base and several textual mentions.
|
||||||
|
generate_empty_kb (Callable[[Vocab, int], KnowledgeBase]): Callable returning empty KnowledgeBase.
|
||||||
scorer (Optional[Callable]): The scoring method.
|
scorer (Optional[Callable]): The scoring method.
|
||||||
use_gold_ents (bool): Whether to copy entities from gold docs or not. If false, another
|
use_gold_ents (bool): Whether to copy entities from gold docs or not. If false, another
|
||||||
component must provide entity annotations.
|
component must provide entity annotations.
|
||||||
|
@ -135,6 +138,7 @@ def make_entity_linker(
|
||||||
entity_vector_length=entity_vector_length,
|
entity_vector_length=entity_vector_length,
|
||||||
get_candidates=get_candidates,
|
get_candidates=get_candidates,
|
||||||
get_candidates_batch=get_candidates_batch,
|
get_candidates_batch=get_candidates_batch,
|
||||||
|
generate_empty_kb=generate_empty_kb,
|
||||||
overwrite=overwrite,
|
overwrite=overwrite,
|
||||||
scorer=scorer,
|
scorer=scorer,
|
||||||
use_gold_ents=use_gold_ents,
|
use_gold_ents=use_gold_ents,
|
||||||
|
@ -175,6 +179,7 @@ class EntityLinker(TrainablePipe):
|
||||||
get_candidates_batch: Callable[
|
get_candidates_batch: Callable[
|
||||||
[KnowledgeBase, Iterable[Span]], Iterable[Iterable[Candidate]]
|
[KnowledgeBase, Iterable[Span]], Iterable[Iterable[Candidate]]
|
||||||
],
|
],
|
||||||
|
generate_empty_kb: Callable[[Vocab, int], KnowledgeBase],
|
||||||
overwrite: bool = BACKWARD_OVERWRITE,
|
overwrite: bool = BACKWARD_OVERWRITE,
|
||||||
scorer: Optional[Callable] = entity_linker_score,
|
scorer: Optional[Callable] = entity_linker_score,
|
||||||
use_gold_ents: bool,
|
use_gold_ents: bool,
|
||||||
|
@ -198,6 +203,7 @@ class EntityLinker(TrainablePipe):
|
||||||
Callable[[KnowledgeBase, Iterable[Span]], Iterable[Iterable[Candidate]]],
|
Callable[[KnowledgeBase, Iterable[Span]], Iterable[Iterable[Candidate]]],
|
||||||
Iterable[Candidate]]
|
Iterable[Candidate]]
|
||||||
): Function that produces a list of candidates, given a certain knowledge base and several textual mentions.
|
): Function that produces a list of candidates, given a certain knowledge base and several textual mentions.
|
||||||
|
generate_empty_kb (Callable[[Vocab, int], KnowledgeBase]): Callable returning empty KnowledgeBase.
|
||||||
scorer (Optional[Callable]): The scoring method. Defaults to Scorer.score_links.
|
scorer (Optional[Callable]): The scoring method. Defaults to Scorer.score_links.
|
||||||
use_gold_ents (bool): Whether to copy entities from gold docs or not. If false, another
|
use_gold_ents (bool): Whether to copy entities from gold docs or not. If false, another
|
||||||
component must provide entity annotations.
|
component must provide entity annotations.
|
||||||
|
@ -220,6 +226,7 @@ class EntityLinker(TrainablePipe):
|
||||||
self.model = model
|
self.model = model
|
||||||
self.name = name
|
self.name = name
|
||||||
self.labels_discard = list(labels_discard)
|
self.labels_discard = list(labels_discard)
|
||||||
|
# how many neighbour sentences to take into account
|
||||||
self.n_sents = n_sents
|
self.n_sents = n_sents
|
||||||
self.incl_prior = incl_prior
|
self.incl_prior = incl_prior
|
||||||
self.incl_context = incl_context
|
self.incl_context = incl_context
|
||||||
|
@ -227,9 +234,7 @@ class EntityLinker(TrainablePipe):
|
||||||
self.get_candidates_batch = get_candidates_batch
|
self.get_candidates_batch = get_candidates_batch
|
||||||
self.cfg: Dict[str, Any] = {"overwrite": overwrite}
|
self.cfg: Dict[str, Any] = {"overwrite": overwrite}
|
||||||
self.distance = CosineDistance(normalize=False)
|
self.distance = CosineDistance(normalize=False)
|
||||||
# how many neighbour sentences to take into account
|
self.kb = generate_empty_kb(self.vocab, entity_vector_length)
|
||||||
# create an empty KB by default
|
|
||||||
self.kb = empty_kb(entity_vector_length)(self.vocab)
|
|
||||||
self.scorer = scorer
|
self.scorer = scorer
|
||||||
self.use_gold_ents = use_gold_ents
|
self.use_gold_ents = use_gold_ents
|
||||||
self.candidates_batch_size = candidates_batch_size
|
self.candidates_batch_size = candidates_batch_size
|
||||||
|
@ -250,7 +255,7 @@ class EntityLinker(TrainablePipe):
|
||||||
# Raise an error if the knowledge base is not initialized.
|
# Raise an error if the knowledge base is not initialized.
|
||||||
if self.kb is None:
|
if self.kb is None:
|
||||||
raise ValueError(Errors.E1018.format(name=self.name))
|
raise ValueError(Errors.E1018.format(name=self.name))
|
||||||
if len(self.kb) == 0:
|
if hasattr(self.kb, "is_empty") and self.kb.is_empty():
|
||||||
raise ValueError(Errors.E139.format(name=self.name))
|
raise ValueError(Errors.E139.format(name=self.name))
|
||||||
|
|
||||||
def initialize(
|
def initialize(
|
||||||
|
|
|
@ -1,4 +1,5 @@
|
||||||
from typing import List, Dict, Callable, Tuple, Optional, Iterable, Any
|
from typing import List, Dict, Callable, Tuple, Optional, Iterable, Any, cast, Union
|
||||||
|
from dataclasses import dataclass
|
||||||
from thinc.api import Config, Model, get_current_ops, set_dropout_rate, Ops
|
from thinc.api import Config, Model, get_current_ops, set_dropout_rate, Ops
|
||||||
from thinc.api import Optimizer
|
from thinc.api import Optimizer
|
||||||
from thinc.types import Ragged, Ints2d, Floats2d
|
from thinc.types import Ragged, Ints2d, Floats2d
|
||||||
|
@ -43,7 +44,36 @@ maxout_pieces = 3
|
||||||
depth = 4
|
depth = 4
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
spancat_singlelabel_default_config = """
|
||||||
|
[model]
|
||||||
|
@architectures = "spacy.SpanCategorizer.v1"
|
||||||
|
scorer = {"@layers": "Softmax.v2"}
|
||||||
|
|
||||||
|
[model.reducer]
|
||||||
|
@layers = spacy.mean_max_reducer.v1
|
||||||
|
hidden_size = 128
|
||||||
|
|
||||||
|
[model.tok2vec]
|
||||||
|
@architectures = "spacy.Tok2Vec.v2"
|
||||||
|
[model.tok2vec.embed]
|
||||||
|
@architectures = "spacy.MultiHashEmbed.v1"
|
||||||
|
width = 96
|
||||||
|
rows = [5000, 1000, 2500, 1000]
|
||||||
|
attrs = ["NORM", "PREFIX", "SUFFIX", "SHAPE"]
|
||||||
|
include_static_vectors = false
|
||||||
|
|
||||||
|
[model.tok2vec.encode]
|
||||||
|
@architectures = "spacy.MaxoutWindowEncoder.v2"
|
||||||
|
width = ${model.tok2vec.embed.width}
|
||||||
|
window_size = 1
|
||||||
|
maxout_pieces = 3
|
||||||
|
depth = 4
|
||||||
|
"""
|
||||||
|
|
||||||
DEFAULT_SPANCAT_MODEL = Config().from_str(spancat_default_config)["model"]
|
DEFAULT_SPANCAT_MODEL = Config().from_str(spancat_default_config)["model"]
|
||||||
|
DEFAULT_SPANCAT_SINGLELABEL_MODEL = Config().from_str(
|
||||||
|
spancat_singlelabel_default_config
|
||||||
|
)["model"]
|
||||||
|
|
||||||
|
|
||||||
@runtime_checkable
|
@runtime_checkable
|
||||||
|
@ -119,10 +149,14 @@ def make_spancat(
|
||||||
threshold: float,
|
threshold: float,
|
||||||
max_positive: Optional[int],
|
max_positive: Optional[int],
|
||||||
) -> "SpanCategorizer":
|
) -> "SpanCategorizer":
|
||||||
"""Create a SpanCategorizer component. The span categorizer consists of two
|
"""Create a SpanCategorizer component and configure it for multi-label
|
||||||
|
classification to be able to assign multiple labels for each span.
|
||||||
|
The span categorizer consists of two
|
||||||
parts: a suggester function that proposes candidate spans, and a labeller
|
parts: a suggester function that proposes candidate spans, and a labeller
|
||||||
model that predicts one or more labels for each span.
|
model that predicts one or more labels for each span.
|
||||||
|
|
||||||
|
name (str): The component instance name, used to add entries to the
|
||||||
|
losses during training.
|
||||||
suggester (Callable[[Iterable[Doc], Optional[Ops]], Ragged]): A function that suggests spans.
|
suggester (Callable[[Iterable[Doc], Optional[Ops]], Ragged]): A function that suggests spans.
|
||||||
Spans are returned as a ragged array with two integer columns, for the
|
Spans are returned as a ragged array with two integer columns, for the
|
||||||
start and end positions.
|
start and end positions.
|
||||||
|
@ -144,12 +178,80 @@ def make_spancat(
|
||||||
"""
|
"""
|
||||||
return SpanCategorizer(
|
return SpanCategorizer(
|
||||||
nlp.vocab,
|
nlp.vocab,
|
||||||
suggester=suggester,
|
|
||||||
model=model,
|
model=model,
|
||||||
spans_key=spans_key,
|
suggester=suggester,
|
||||||
threshold=threshold,
|
|
||||||
max_positive=max_positive,
|
|
||||||
name=name,
|
name=name,
|
||||||
|
spans_key=spans_key,
|
||||||
|
negative_weight=None,
|
||||||
|
allow_overlap=True,
|
||||||
|
max_positive=max_positive,
|
||||||
|
threshold=threshold,
|
||||||
|
scorer=scorer,
|
||||||
|
add_negative_label=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@Language.factory(
|
||||||
|
"spancat_singlelabel",
|
||||||
|
assigns=["doc.spans"],
|
||||||
|
default_config={
|
||||||
|
"spans_key": "sc",
|
||||||
|
"model": DEFAULT_SPANCAT_SINGLELABEL_MODEL,
|
||||||
|
"negative_weight": 1.0,
|
||||||
|
"suggester": {"@misc": "spacy.ngram_suggester.v1", "sizes": [1, 2, 3]},
|
||||||
|
"scorer": {"@scorers": "spacy.spancat_scorer.v1"},
|
||||||
|
"allow_overlap": True,
|
||||||
|
},
|
||||||
|
default_score_weights={"spans_sc_f": 1.0, "spans_sc_p": 0.0, "spans_sc_r": 0.0},
|
||||||
|
)
|
||||||
|
def make_spancat_singlelabel(
|
||||||
|
nlp: Language,
|
||||||
|
name: str,
|
||||||
|
suggester: Suggester,
|
||||||
|
model: Model[Tuple[List[Doc], Ragged], Floats2d],
|
||||||
|
spans_key: str,
|
||||||
|
negative_weight: float,
|
||||||
|
allow_overlap: bool,
|
||||||
|
scorer: Optional[Callable],
|
||||||
|
) -> "SpanCategorizer":
|
||||||
|
"""Create a SpanCategorizer component and configure it for multi-class
|
||||||
|
classification. With this configuration each span can get at most one
|
||||||
|
label. The span categorizer consists of two
|
||||||
|
parts: a suggester function that proposes candidate spans, and a labeller
|
||||||
|
model that predicts one or more labels for each span.
|
||||||
|
|
||||||
|
name (str): The component instance name, used to add entries to the
|
||||||
|
losses during training.
|
||||||
|
suggester (Callable[[Iterable[Doc], Optional[Ops]], Ragged]): A function that suggests spans.
|
||||||
|
Spans are returned as a ragged array with two integer columns, for the
|
||||||
|
start and end positions.
|
||||||
|
model (Model[Tuple[List[Doc], Ragged], Floats2d]): A model instance that
|
||||||
|
is given a list of documents and (start, end) indices representing
|
||||||
|
candidate span offsets. The model predicts a probability for each category
|
||||||
|
for each span.
|
||||||
|
spans_key (str): Key of the doc.spans dict to save the spans under. During
|
||||||
|
initialization and training, the component will look for spans on the
|
||||||
|
reference document under the same key.
|
||||||
|
scorer (Optional[Callable]): The scoring method. Defaults to
|
||||||
|
Scorer.score_spans for the Doc.spans[spans_key] with overlapping
|
||||||
|
spans allowed.
|
||||||
|
negative_weight (float): Multiplier for the loss terms.
|
||||||
|
Can be used to downweight the negative samples if there are too many.
|
||||||
|
allow_overlap (bool): If True the data is assumed to contain overlapping spans.
|
||||||
|
Otherwise it produces non-overlapping spans greedily prioritizing
|
||||||
|
higher assigned label scores.
|
||||||
|
"""
|
||||||
|
return SpanCategorizer(
|
||||||
|
nlp.vocab,
|
||||||
|
model=model,
|
||||||
|
suggester=suggester,
|
||||||
|
name=name,
|
||||||
|
spans_key=spans_key,
|
||||||
|
negative_weight=negative_weight,
|
||||||
|
allow_overlap=allow_overlap,
|
||||||
|
max_positive=1,
|
||||||
|
add_negative_label=True,
|
||||||
|
threshold=None,
|
||||||
scorer=scorer,
|
scorer=scorer,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@ -172,6 +274,27 @@ def make_spancat_scorer():
|
||||||
return spancat_score
|
return spancat_score
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class _Intervals:
|
||||||
|
"""
|
||||||
|
Helper class to avoid storing overlapping spans.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
self.ranges = set()
|
||||||
|
|
||||||
|
def add(self, i, j):
|
||||||
|
for e in range(i, j):
|
||||||
|
self.ranges.add(e)
|
||||||
|
|
||||||
|
def __contains__(self, rang):
|
||||||
|
i, j = rang
|
||||||
|
for e in range(i, j):
|
||||||
|
if e in self.ranges:
|
||||||
|
return True
|
||||||
|
return False
|
||||||
|
|
||||||
|
|
||||||
class SpanCategorizer(TrainablePipe):
|
class SpanCategorizer(TrainablePipe):
|
||||||
"""Pipeline component to label spans of text.
|
"""Pipeline component to label spans of text.
|
||||||
|
|
||||||
|
@ -185,25 +308,43 @@ class SpanCategorizer(TrainablePipe):
|
||||||
suggester: Suggester,
|
suggester: Suggester,
|
||||||
name: str = "spancat",
|
name: str = "spancat",
|
||||||
*,
|
*,
|
||||||
|
add_negative_label: bool = False,
|
||||||
spans_key: str = "spans",
|
spans_key: str = "spans",
|
||||||
threshold: float = 0.5,
|
negative_weight: Optional[float] = 1.0,
|
||||||
|
allow_overlap: Optional[bool] = True,
|
||||||
max_positive: Optional[int] = None,
|
max_positive: Optional[int] = None,
|
||||||
|
threshold: Optional[float] = 0.5,
|
||||||
scorer: Optional[Callable] = spancat_score,
|
scorer: Optional[Callable] = spancat_score,
|
||||||
) -> None:
|
) -> None:
|
||||||
"""Initialize the span categorizer.
|
"""Initialize the multi-label or multi-class span categorizer.
|
||||||
|
|
||||||
vocab (Vocab): The shared vocabulary.
|
vocab (Vocab): The shared vocabulary.
|
||||||
model (thinc.api.Model): The Thinc Model powering the pipeline component.
|
model (thinc.api.Model): The Thinc Model powering the pipeline component.
|
||||||
|
For multi-class classification (single label per span) we recommend
|
||||||
|
using a Softmax classifier as a the final layer, while for multi-label
|
||||||
|
classification (multiple possible labels per span) we recommend Logistic.
|
||||||
|
suggester (Callable[[Iterable[Doc], Optional[Ops]], Ragged]): A function that suggests spans.
|
||||||
|
Spans are returned as a ragged array with two integer columns, for the
|
||||||
|
start and end positions.
|
||||||
name (str): The component instance name, used to add entries to the
|
name (str): The component instance name, used to add entries to the
|
||||||
losses during training.
|
losses during training.
|
||||||
spans_key (str): Key of the Doc.spans dict to save the spans under.
|
spans_key (str): Key of the Doc.spans dict to save the spans under.
|
||||||
During initialization and training, the component will look for
|
During initialization and training, the component will look for
|
||||||
spans on the reference document under the same key. Defaults to
|
spans on the reference document under the same key. Defaults to
|
||||||
`"spans"`.
|
`"spans"`.
|
||||||
threshold (float): Minimum probability to consider a prediction
|
add_negative_label (bool): Learn to predict a special 'negative_label'
|
||||||
positive. Spans with a positive prediction will be saved on the Doc.
|
when a Span is not annotated.
|
||||||
Defaults to 0.5.
|
threshold (Optional[float]): Minimum probability to consider a prediction
|
||||||
|
positive. Defaults to 0.5. Spans with a positive prediction will be saved
|
||||||
|
on the Doc.
|
||||||
max_positive (Optional[int]): Maximum number of labels to consider
|
max_positive (Optional[int]): Maximum number of labels to consider
|
||||||
positive per span. Defaults to None, indicating no limit.
|
positive per span. Defaults to None, indicating no limit.
|
||||||
|
negative_weight (float): Multiplier for the loss terms.
|
||||||
|
Can be used to downweight the negative samples if there are too many
|
||||||
|
when add_negative_label is True. Otherwise its unused.
|
||||||
|
allow_overlap (bool): If True the data is assumed to contain overlapping spans.
|
||||||
|
Otherwise it produces non-overlapping spans greedily prioritizing
|
||||||
|
higher assigned label scores. Only used when max_positive is 1.
|
||||||
scorer (Optional[Callable]): The scoring method. Defaults to
|
scorer (Optional[Callable]): The scoring method. Defaults to
|
||||||
Scorer.score_spans for the Doc.spans[spans_key] with overlapping
|
Scorer.score_spans for the Doc.spans[spans_key] with overlapping
|
||||||
spans allowed.
|
spans allowed.
|
||||||
|
@ -215,12 +356,17 @@ class SpanCategorizer(TrainablePipe):
|
||||||
"spans_key": spans_key,
|
"spans_key": spans_key,
|
||||||
"threshold": threshold,
|
"threshold": threshold,
|
||||||
"max_positive": max_positive,
|
"max_positive": max_positive,
|
||||||
|
"negative_weight": negative_weight,
|
||||||
|
"allow_overlap": allow_overlap,
|
||||||
}
|
}
|
||||||
self.vocab = vocab
|
self.vocab = vocab
|
||||||
self.suggester = suggester
|
self.suggester = suggester
|
||||||
self.model = model
|
self.model = model
|
||||||
self.name = name
|
self.name = name
|
||||||
self.scorer = scorer
|
self.scorer = scorer
|
||||||
|
self.add_negative_label = add_negative_label
|
||||||
|
if not allow_overlap and max_positive is not None and max_positive > 1:
|
||||||
|
raise ValueError(Errors.E1051.format(max_positive=max_positive))
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def key(self) -> str:
|
def key(self) -> str:
|
||||||
|
@ -230,6 +376,21 @@ class SpanCategorizer(TrainablePipe):
|
||||||
"""
|
"""
|
||||||
return str(self.cfg["spans_key"])
|
return str(self.cfg["spans_key"])
|
||||||
|
|
||||||
|
def _allow_extra_label(self) -> None:
|
||||||
|
"""Raise an error if the component can not add any more labels."""
|
||||||
|
nO = None
|
||||||
|
if self.model.has_dim("nO"):
|
||||||
|
nO = self.model.get_dim("nO")
|
||||||
|
elif self.model.has_ref("output_layer") and self.model.get_ref(
|
||||||
|
"output_layer"
|
||||||
|
).has_dim("nO"):
|
||||||
|
nO = self.model.get_ref("output_layer").get_dim("nO")
|
||||||
|
if nO is not None and nO == self._n_labels:
|
||||||
|
if not self.is_resizable:
|
||||||
|
raise ValueError(
|
||||||
|
Errors.E922.format(name=self.name, nO=self.model.get_dim("nO"))
|
||||||
|
)
|
||||||
|
|
||||||
def add_label(self, label: str) -> int:
|
def add_label(self, label: str) -> int:
|
||||||
"""Add a new label to the pipe.
|
"""Add a new label to the pipe.
|
||||||
|
|
||||||
|
@ -263,6 +424,27 @@ class SpanCategorizer(TrainablePipe):
|
||||||
"""
|
"""
|
||||||
return list(self.labels)
|
return list(self.labels)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def _label_map(self) -> Dict[str, int]:
|
||||||
|
"""RETURNS (Dict[str, int]): The label map."""
|
||||||
|
return {label: i for i, label in enumerate(self.labels)}
|
||||||
|
|
||||||
|
@property
|
||||||
|
def _n_labels(self) -> int:
|
||||||
|
"""RETURNS (int): Number of labels."""
|
||||||
|
if self.add_negative_label:
|
||||||
|
return len(self.labels) + 1
|
||||||
|
else:
|
||||||
|
return len(self.labels)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def _negative_label_i(self) -> Union[int, None]:
|
||||||
|
"""RETURNS (Union[int, None]): Index of the negative label."""
|
||||||
|
if self.add_negative_label:
|
||||||
|
return len(self.label_data)
|
||||||
|
else:
|
||||||
|
return None
|
||||||
|
|
||||||
def predict(self, docs: Iterable[Doc]):
|
def predict(self, docs: Iterable[Doc]):
|
||||||
"""Apply the pipeline's model to a batch of docs, without modifying them.
|
"""Apply the pipeline's model to a batch of docs, without modifying them.
|
||||||
|
|
||||||
|
@ -304,14 +486,24 @@ class SpanCategorizer(TrainablePipe):
|
||||||
|
|
||||||
DOCS: https://spacy.io/api/spancategorizer#set_annotations
|
DOCS: https://spacy.io/api/spancategorizer#set_annotations
|
||||||
"""
|
"""
|
||||||
labels = self.labels
|
|
||||||
indices, scores = indices_scores
|
indices, scores = indices_scores
|
||||||
offset = 0
|
offset = 0
|
||||||
for i, doc in enumerate(docs):
|
for i, doc in enumerate(docs):
|
||||||
indices_i = indices[i].dataXd
|
indices_i = indices[i].dataXd
|
||||||
doc.spans[self.key] = self._make_span_group(
|
allow_overlap = cast(bool, self.cfg["allow_overlap"])
|
||||||
doc, indices_i, scores[offset : offset + indices.lengths[i]], labels # type: ignore[arg-type]
|
if self.cfg["max_positive"] == 1:
|
||||||
)
|
doc.spans[self.key] = self._make_span_group_singlelabel(
|
||||||
|
doc,
|
||||||
|
indices_i,
|
||||||
|
scores[offset : offset + indices.lengths[i]],
|
||||||
|
allow_overlap,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
doc.spans[self.key] = self._make_span_group_multilabel(
|
||||||
|
doc,
|
||||||
|
indices_i,
|
||||||
|
scores[offset : offset + indices.lengths[i]],
|
||||||
|
)
|
||||||
offset += indices.lengths[i]
|
offset += indices.lengths[i]
|
||||||
|
|
||||||
def update(
|
def update(
|
||||||
|
@ -371,9 +563,11 @@ class SpanCategorizer(TrainablePipe):
|
||||||
spans = Ragged(
|
spans = Ragged(
|
||||||
self.model.ops.to_numpy(spans.data), self.model.ops.to_numpy(spans.lengths)
|
self.model.ops.to_numpy(spans.data), self.model.ops.to_numpy(spans.lengths)
|
||||||
)
|
)
|
||||||
label_map = {label: i for i, label in enumerate(self.labels)}
|
|
||||||
target = numpy.zeros(scores.shape, dtype=scores.dtype)
|
target = numpy.zeros(scores.shape, dtype=scores.dtype)
|
||||||
|
if self.add_negative_label:
|
||||||
|
negative_spans = numpy.ones((scores.shape[0]))
|
||||||
offset = 0
|
offset = 0
|
||||||
|
label_map = self._label_map
|
||||||
for i, eg in enumerate(examples):
|
for i, eg in enumerate(examples):
|
||||||
# Map (start, end) offset of spans to the row in the d_scores array,
|
# Map (start, end) offset of spans to the row in the d_scores array,
|
||||||
# so that we can adjust the gradient for predictions that were
|
# so that we can adjust the gradient for predictions that were
|
||||||
|
@ -390,10 +584,16 @@ class SpanCategorizer(TrainablePipe):
|
||||||
row = spans_index[key]
|
row = spans_index[key]
|
||||||
k = label_map[gold_span.label_]
|
k = label_map[gold_span.label_]
|
||||||
target[row, k] = 1.0
|
target[row, k] = 1.0
|
||||||
|
if self.add_negative_label:
|
||||||
|
# delete negative label target.
|
||||||
|
negative_spans[row] = 0.0
|
||||||
# The target is a flat array for all docs. Track the position
|
# The target is a flat array for all docs. Track the position
|
||||||
# we're at within the flat array.
|
# we're at within the flat array.
|
||||||
offset += spans.lengths[i]
|
offset += spans.lengths[i]
|
||||||
target = self.model.ops.asarray(target, dtype="f") # type: ignore
|
target = self.model.ops.asarray(target, dtype="f") # type: ignore
|
||||||
|
if self.add_negative_label:
|
||||||
|
negative_samples = numpy.nonzero(negative_spans)[0]
|
||||||
|
target[negative_samples, self._negative_label_i] = 1.0 # type: ignore
|
||||||
# The target will have the values 0 (for untrue predictions) or 1
|
# The target will have the values 0 (for untrue predictions) or 1
|
||||||
# (for true predictions).
|
# (for true predictions).
|
||||||
# The scores should be in the range [0, 1].
|
# The scores should be in the range [0, 1].
|
||||||
|
@ -402,6 +602,10 @@ class SpanCategorizer(TrainablePipe):
|
||||||
# If the prediction is 0.9 and it's false, the gradient will be
|
# If the prediction is 0.9 and it's false, the gradient will be
|
||||||
# 0.9 (0.9 - 0.0)
|
# 0.9 (0.9 - 0.0)
|
||||||
d_scores = scores - target
|
d_scores = scores - target
|
||||||
|
if self.add_negative_label:
|
||||||
|
neg_weight = cast(float, self.cfg["negative_weight"])
|
||||||
|
if neg_weight != 1.0:
|
||||||
|
d_scores[negative_samples] *= neg_weight
|
||||||
loss = float((d_scores**2).sum())
|
loss = float((d_scores**2).sum())
|
||||||
return loss, d_scores
|
return loss, d_scores
|
||||||
|
|
||||||
|
@ -438,7 +642,7 @@ class SpanCategorizer(TrainablePipe):
|
||||||
if subbatch:
|
if subbatch:
|
||||||
docs = [eg.x for eg in subbatch]
|
docs = [eg.x for eg in subbatch]
|
||||||
spans = build_ngram_suggester(sizes=[1])(docs)
|
spans = build_ngram_suggester(sizes=[1])(docs)
|
||||||
Y = self.model.ops.alloc2f(spans.dataXd.shape[0], len(self.labels))
|
Y = self.model.ops.alloc2f(spans.dataXd.shape[0], self._n_labels)
|
||||||
self.model.initialize(X=(docs, spans), Y=Y)
|
self.model.initialize(X=(docs, spans), Y=Y)
|
||||||
else:
|
else:
|
||||||
self.model.initialize()
|
self.model.initialize()
|
||||||
|
@ -452,31 +656,96 @@ class SpanCategorizer(TrainablePipe):
|
||||||
eg.reference.spans.get(self.key, []), allow_overlap=True
|
eg.reference.spans.get(self.key, []), allow_overlap=True
|
||||||
)
|
)
|
||||||
|
|
||||||
def _make_span_group(
|
def _make_span_group_multilabel(
|
||||||
self, doc: Doc, indices: Ints2d, scores: Floats2d, labels: List[str]
|
self,
|
||||||
|
doc: Doc,
|
||||||
|
indices: Ints2d,
|
||||||
|
scores: Floats2d,
|
||||||
) -> SpanGroup:
|
) -> SpanGroup:
|
||||||
|
"""Find the top-k labels for each span (k=max_positive)."""
|
||||||
spans = SpanGroup(doc, name=self.key)
|
spans = SpanGroup(doc, name=self.key)
|
||||||
max_positive = self.cfg["max_positive"]
|
if scores.size == 0:
|
||||||
|
return spans
|
||||||
|
scores = self.model.ops.to_numpy(scores)
|
||||||
|
indices = self.model.ops.to_numpy(indices)
|
||||||
threshold = self.cfg["threshold"]
|
threshold = self.cfg["threshold"]
|
||||||
|
max_positive = self.cfg["max_positive"]
|
||||||
|
|
||||||
keeps = scores >= threshold
|
keeps = scores >= threshold
|
||||||
ranked = (scores * -1).argsort() # type: ignore
|
|
||||||
if max_positive is not None:
|
if max_positive is not None:
|
||||||
assert isinstance(max_positive, int)
|
assert isinstance(max_positive, int)
|
||||||
|
if self.add_negative_label:
|
||||||
|
negative_scores = numpy.copy(scores[:, self._negative_label_i])
|
||||||
|
scores[:, self._negative_label_i] = -numpy.inf
|
||||||
|
ranked = (scores * -1).argsort() # type: ignore
|
||||||
|
scores[:, self._negative_label_i] = negative_scores
|
||||||
|
else:
|
||||||
|
ranked = (scores * -1).argsort() # type: ignore
|
||||||
span_filter = ranked[:, max_positive:]
|
span_filter = ranked[:, max_positive:]
|
||||||
for i, row in enumerate(span_filter):
|
for i, row in enumerate(span_filter):
|
||||||
keeps[i, row] = False
|
keeps[i, row] = False
|
||||||
spans.attrs["scores"] = scores[keeps].flatten()
|
|
||||||
|
|
||||||
indices = self.model.ops.to_numpy(indices)
|
|
||||||
keeps = self.model.ops.to_numpy(keeps)
|
|
||||||
|
|
||||||
|
attrs_scores = []
|
||||||
for i in range(indices.shape[0]):
|
for i in range(indices.shape[0]):
|
||||||
start = indices[i, 0]
|
start = indices[i, 0]
|
||||||
end = indices[i, 1]
|
end = indices[i, 1]
|
||||||
|
|
||||||
for j, keep in enumerate(keeps[i]):
|
for j, keep in enumerate(keeps[i]):
|
||||||
if keep:
|
if keep:
|
||||||
spans.append(Span(doc, start, end, label=labels[j]))
|
if j != self._negative_label_i:
|
||||||
|
spans.append(Span(doc, start, end, label=self.labels[j]))
|
||||||
|
attrs_scores.append(scores[i, j])
|
||||||
|
spans.attrs["scores"] = numpy.array(attrs_scores)
|
||||||
|
return spans
|
||||||
|
|
||||||
|
def _make_span_group_singlelabel(
|
||||||
|
self,
|
||||||
|
doc: Doc,
|
||||||
|
indices: Ints2d,
|
||||||
|
scores: Floats2d,
|
||||||
|
allow_overlap: bool = True,
|
||||||
|
) -> SpanGroup:
|
||||||
|
"""Find the argmax label for each span."""
|
||||||
|
# Handle cases when there are zero suggestions
|
||||||
|
if scores.size == 0:
|
||||||
|
return SpanGroup(doc, name=self.key)
|
||||||
|
scores = self.model.ops.to_numpy(scores)
|
||||||
|
indices = self.model.ops.to_numpy(indices)
|
||||||
|
predicted = scores.argmax(axis=1)
|
||||||
|
argmax_scores = numpy.take_along_axis(
|
||||||
|
scores, numpy.expand_dims(predicted, 1), axis=1
|
||||||
|
)
|
||||||
|
keeps = numpy.ones(predicted.shape, dtype=bool)
|
||||||
|
# Remove samples where the negative label is the argmax.
|
||||||
|
if self.add_negative_label:
|
||||||
|
keeps = numpy.logical_and(keeps, predicted != self._negative_label_i)
|
||||||
|
# Filter samples according to threshold.
|
||||||
|
threshold = self.cfg["threshold"]
|
||||||
|
if threshold is not None:
|
||||||
|
keeps = numpy.logical_and(keeps, (argmax_scores >= threshold).squeeze())
|
||||||
|
# Sort spans according to argmax probability
|
||||||
|
if not allow_overlap:
|
||||||
|
# Get the probabilities
|
||||||
|
sort_idx = (argmax_scores.squeeze() * -1).argsort()
|
||||||
|
predicted = predicted[sort_idx]
|
||||||
|
indices = indices[sort_idx]
|
||||||
|
keeps = keeps[sort_idx]
|
||||||
|
seen = _Intervals()
|
||||||
|
spans = SpanGroup(doc, name=self.key)
|
||||||
|
attrs_scores = []
|
||||||
|
for i in range(indices.shape[0]):
|
||||||
|
if not keeps[i]:
|
||||||
|
continue
|
||||||
|
|
||||||
|
label = predicted[i]
|
||||||
|
start = indices[i, 0]
|
||||||
|
end = indices[i, 1]
|
||||||
|
|
||||||
|
if not allow_overlap:
|
||||||
|
if (start, end) in seen:
|
||||||
|
continue
|
||||||
|
else:
|
||||||
|
seen.add(start, end)
|
||||||
|
attrs_scores.append(argmax_scores[i])
|
||||||
|
spans.append(Span(doc, start, end, label=self.labels[label]))
|
||||||
|
|
||||||
return spans
|
return spans
|
||||||
|
|
|
@ -316,16 +316,32 @@ def test_dependency_matcher_precedence_ops(en_vocab, op, num_matches):
|
||||||
("the", "brown", "$--", 0),
|
("the", "brown", "$--", 0),
|
||||||
("brown", "the", "$--", 1),
|
("brown", "the", "$--", 1),
|
||||||
("brown", "brown", "$--", 0),
|
("brown", "brown", "$--", 0),
|
||||||
|
("over", "jumped", "<+", 0),
|
||||||
|
("quick", "fox", "<+", 0),
|
||||||
|
("the", "quick", "<+", 0),
|
||||||
|
("brown", "fox", "<+", 1),
|
||||||
("quick", "fox", "<++", 1),
|
("quick", "fox", "<++", 1),
|
||||||
("quick", "over", "<++", 0),
|
("quick", "over", "<++", 0),
|
||||||
("over", "jumped", "<++", 0),
|
("over", "jumped", "<++", 0),
|
||||||
("the", "fox", "<++", 2),
|
("the", "fox", "<++", 2),
|
||||||
|
("brown", "fox", "<-", 0),
|
||||||
|
("fox", "over", "<-", 0),
|
||||||
|
("the", "over", "<-", 0),
|
||||||
|
("over", "jumped", "<-", 1),
|
||||||
("brown", "fox", "<--", 0),
|
("brown", "fox", "<--", 0),
|
||||||
("fox", "jumped", "<--", 0),
|
("fox", "jumped", "<--", 0),
|
||||||
("fox", "over", "<--", 1),
|
("fox", "over", "<--", 1),
|
||||||
|
("fox", "brown", ">+", 0),
|
||||||
|
("over", "fox", ">+", 0),
|
||||||
|
("over", "the", ">+", 0),
|
||||||
|
("jumped", "over", ">+", 1),
|
||||||
("jumped", "over", ">++", 1),
|
("jumped", "over", ">++", 1),
|
||||||
("fox", "lazy", ">++", 0),
|
("fox", "lazy", ">++", 0),
|
||||||
("over", "the", ">++", 0),
|
("over", "the", ">++", 0),
|
||||||
|
("jumped", "over", ">-", 0),
|
||||||
|
("fox", "quick", ">-", 0),
|
||||||
|
("brown", "quick", ">-", 0),
|
||||||
|
("fox", "brown", ">-", 1),
|
||||||
("brown", "fox", ">--", 0),
|
("brown", "fox", ">--", 0),
|
||||||
("fox", "brown", ">--", 1),
|
("fox", "brown", ">--", 1),
|
||||||
("jumped", "fox", ">--", 1),
|
("jumped", "fox", ">--", 1),
|
||||||
|
|
|
@ -9,6 +9,8 @@ from spacy.lang.en import English
|
||||||
from spacy.lang.it import Italian
|
from spacy.lang.it import Italian
|
||||||
from spacy.language import Language
|
from spacy.language import Language
|
||||||
from spacy.lookups import Lookups
|
from spacy.lookups import Lookups
|
||||||
|
from spacy.pipeline import EntityRecognizer
|
||||||
|
from spacy.pipeline.ner import DEFAULT_NER_MODEL
|
||||||
from spacy.pipeline._parser_internals.ner import BiluoPushDown
|
from spacy.pipeline._parser_internals.ner import BiluoPushDown
|
||||||
from spacy.training import Example, iob_to_biluo, split_bilu_label
|
from spacy.training import Example, iob_to_biluo, split_bilu_label
|
||||||
from spacy.tokens import Doc, Span
|
from spacy.tokens import Doc, Span
|
||||||
|
@ -16,8 +18,6 @@ from spacy.vocab import Vocab
|
||||||
import logging
|
import logging
|
||||||
|
|
||||||
from ..util import make_tempdir
|
from ..util import make_tempdir
|
||||||
from ...pipeline import EntityRecognizer
|
|
||||||
from ...pipeline.ner import DEFAULT_NER_MODEL
|
|
||||||
|
|
||||||
TRAIN_DATA = [
|
TRAIN_DATA = [
|
||||||
("Who is Shaka Khan?", {"entities": [(7, 17, "PERSON")]}),
|
("Who is Shaka Khan?", {"entities": [(7, 17, "PERSON")]}),
|
||||||
|
|
|
@ -8,11 +8,11 @@ from spacy.lang.en import English
|
||||||
from spacy.tokens import Doc
|
from spacy.tokens import Doc
|
||||||
from spacy.training import Example
|
from spacy.training import Example
|
||||||
from spacy.vocab import Vocab
|
from spacy.vocab import Vocab
|
||||||
|
from spacy.pipeline import DependencyParser
|
||||||
|
from spacy.pipeline.dep_parser import DEFAULT_PARSER_MODEL
|
||||||
|
from spacy.pipeline.tok2vec import DEFAULT_TOK2VEC_MODEL
|
||||||
|
|
||||||
from ...pipeline import DependencyParser
|
|
||||||
from ...pipeline.dep_parser import DEFAULT_PARSER_MODEL
|
|
||||||
from ..util import apply_transition_sequence, make_tempdir
|
from ..util import apply_transition_sequence, make_tempdir
|
||||||
from ...pipeline.tok2vec import DEFAULT_TOK2VEC_MODEL
|
|
||||||
|
|
||||||
TRAIN_DATA = [
|
TRAIN_DATA = [
|
||||||
(
|
(
|
||||||
|
|
|
@ -353,6 +353,9 @@ def test_kb_default(nlp):
|
||||||
"""Test that the default (empty) KB is loaded upon construction"""
|
"""Test that the default (empty) KB is loaded upon construction"""
|
||||||
entity_linker = nlp.add_pipe("entity_linker", config={})
|
entity_linker = nlp.add_pipe("entity_linker", config={})
|
||||||
assert len(entity_linker.kb) == 0
|
assert len(entity_linker.kb) == 0
|
||||||
|
with pytest.raises(ValueError, match="E139"):
|
||||||
|
# this raises an error because the KB is empty
|
||||||
|
entity_linker.validate_kb()
|
||||||
assert entity_linker.kb.get_size_entities() == 0
|
assert entity_linker.kb.get_size_entities() == 0
|
||||||
assert entity_linker.kb.get_size_aliases() == 0
|
assert entity_linker.kb.get_size_aliases() == 0
|
||||||
# 64 is the default value from pipeline.entity_linker
|
# 64 is the default value from pipeline.entity_linker
|
||||||
|
|
|
@ -15,6 +15,8 @@ OPS = get_current_ops()
|
||||||
|
|
||||||
SPAN_KEY = "labeled_spans"
|
SPAN_KEY = "labeled_spans"
|
||||||
|
|
||||||
|
SPANCAT_COMPONENTS = ["spancat", "spancat_singlelabel"]
|
||||||
|
|
||||||
TRAIN_DATA = [
|
TRAIN_DATA = [
|
||||||
("Who is Shaka Khan?", {"spans": {SPAN_KEY: [(7, 17, "PERSON")]}}),
|
("Who is Shaka Khan?", {"spans": {SPAN_KEY: [(7, 17, "PERSON")]}}),
|
||||||
(
|
(
|
||||||
|
@ -41,38 +43,42 @@ def make_examples(nlp, data=TRAIN_DATA):
|
||||||
return train_examples
|
return train_examples
|
||||||
|
|
||||||
|
|
||||||
def test_no_label():
|
@pytest.mark.parametrize("name", SPANCAT_COMPONENTS)
|
||||||
|
def test_no_label(name):
|
||||||
nlp = Language()
|
nlp = Language()
|
||||||
nlp.add_pipe("spancat", config={"spans_key": SPAN_KEY})
|
nlp.add_pipe(name, config={"spans_key": SPAN_KEY})
|
||||||
with pytest.raises(ValueError):
|
with pytest.raises(ValueError):
|
||||||
nlp.initialize()
|
nlp.initialize()
|
||||||
|
|
||||||
|
|
||||||
def test_no_resize():
|
@pytest.mark.parametrize("name", SPANCAT_COMPONENTS)
|
||||||
|
def test_no_resize(name):
|
||||||
nlp = Language()
|
nlp = Language()
|
||||||
spancat = nlp.add_pipe("spancat", config={"spans_key": SPAN_KEY})
|
spancat = nlp.add_pipe(name, config={"spans_key": SPAN_KEY})
|
||||||
spancat.add_label("Thing")
|
spancat.add_label("Thing")
|
||||||
spancat.add_label("Phrase")
|
spancat.add_label("Phrase")
|
||||||
assert spancat.labels == ("Thing", "Phrase")
|
assert spancat.labels == ("Thing", "Phrase")
|
||||||
nlp.initialize()
|
nlp.initialize()
|
||||||
assert spancat.model.get_dim("nO") == 2
|
assert spancat.model.get_dim("nO") == spancat._n_labels
|
||||||
# this throws an error because the spancat can't be resized after initialization
|
# this throws an error because the spancat can't be resized after initialization
|
||||||
with pytest.raises(ValueError):
|
with pytest.raises(ValueError):
|
||||||
spancat.add_label("Stuff")
|
spancat.add_label("Stuff")
|
||||||
|
|
||||||
|
|
||||||
def test_implicit_labels():
|
@pytest.mark.parametrize("name", SPANCAT_COMPONENTS)
|
||||||
|
def test_implicit_labels(name):
|
||||||
nlp = Language()
|
nlp = Language()
|
||||||
spancat = nlp.add_pipe("spancat", config={"spans_key": SPAN_KEY})
|
spancat = nlp.add_pipe(name, config={"spans_key": SPAN_KEY})
|
||||||
assert len(spancat.labels) == 0
|
assert len(spancat.labels) == 0
|
||||||
train_examples = make_examples(nlp)
|
train_examples = make_examples(nlp)
|
||||||
nlp.initialize(get_examples=lambda: train_examples)
|
nlp.initialize(get_examples=lambda: train_examples)
|
||||||
assert spancat.labels == ("PERSON", "LOC")
|
assert spancat.labels == ("PERSON", "LOC")
|
||||||
|
|
||||||
|
|
||||||
def test_explicit_labels():
|
@pytest.mark.parametrize("name", SPANCAT_COMPONENTS)
|
||||||
|
def test_explicit_labels(name):
|
||||||
nlp = Language()
|
nlp = Language()
|
||||||
spancat = nlp.add_pipe("spancat", config={"spans_key": SPAN_KEY})
|
spancat = nlp.add_pipe(name, config={"spans_key": SPAN_KEY})
|
||||||
assert len(spancat.labels) == 0
|
assert len(spancat.labels) == 0
|
||||||
spancat.add_label("PERSON")
|
spancat.add_label("PERSON")
|
||||||
spancat.add_label("LOC")
|
spancat.add_label("LOC")
|
||||||
|
@ -102,13 +108,13 @@ def test_doc_gc():
|
||||||
# XXX This fails with length 0 sometimes
|
# XXX This fails with length 0 sometimes
|
||||||
assert len(spangroup) > 0
|
assert len(spangroup) > 0
|
||||||
with pytest.raises(RuntimeError):
|
with pytest.raises(RuntimeError):
|
||||||
span = spangroup[0]
|
spangroup[0]
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.parametrize(
|
@pytest.mark.parametrize(
|
||||||
"max_positive,nr_results", [(None, 4), (1, 2), (2, 3), (3, 4), (4, 4)]
|
"max_positive,nr_results", [(None, 4), (1, 2), (2, 3), (3, 4), (4, 4)]
|
||||||
)
|
)
|
||||||
def test_make_spangroup(max_positive, nr_results):
|
def test_make_spangroup_multilabel(max_positive, nr_results):
|
||||||
fix_random_seed(0)
|
fix_random_seed(0)
|
||||||
nlp = Language()
|
nlp = Language()
|
||||||
spancat = nlp.add_pipe(
|
spancat = nlp.add_pipe(
|
||||||
|
@ -120,10 +126,12 @@ def test_make_spangroup(max_positive, nr_results):
|
||||||
indices = ngram_suggester([doc])[0].dataXd
|
indices = ngram_suggester([doc])[0].dataXd
|
||||||
assert_array_equal(OPS.to_numpy(indices), numpy.asarray([[0, 1], [1, 2], [0, 2]]))
|
assert_array_equal(OPS.to_numpy(indices), numpy.asarray([[0, 1], [1, 2], [0, 2]]))
|
||||||
labels = ["Thing", "City", "Person", "GreatCity"]
|
labels = ["Thing", "City", "Person", "GreatCity"]
|
||||||
|
for label in labels:
|
||||||
|
spancat.add_label(label)
|
||||||
scores = numpy.asarray(
|
scores = numpy.asarray(
|
||||||
[[0.2, 0.4, 0.3, 0.1], [0.1, 0.6, 0.2, 0.4], [0.8, 0.7, 0.3, 0.9]], dtype="f"
|
[[0.2, 0.4, 0.3, 0.1], [0.1, 0.6, 0.2, 0.4], [0.8, 0.7, 0.3, 0.9]], dtype="f"
|
||||||
)
|
)
|
||||||
spangroup = spancat._make_span_group(doc, indices, scores, labels)
|
spangroup = spancat._make_span_group_multilabel(doc, indices, scores)
|
||||||
assert len(spangroup) == nr_results
|
assert len(spangroup) == nr_results
|
||||||
|
|
||||||
# first span is always the second token "London"
|
# first span is always the second token "London"
|
||||||
|
@ -154,6 +162,118 @@ def test_make_spangroup(max_positive, nr_results):
|
||||||
assert_almost_equal(0.9, spangroup.attrs["scores"][-1], 5)
|
assert_almost_equal(0.9, spangroup.attrs["scores"][-1], 5)
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.parametrize(
|
||||||
|
"threshold,allow_overlap,nr_results",
|
||||||
|
[(0.05, True, 3), (0.05, False, 1), (0.5, True, 2), (0.5, False, 1)],
|
||||||
|
)
|
||||||
|
def test_make_spangroup_singlelabel(threshold, allow_overlap, nr_results):
|
||||||
|
fix_random_seed(0)
|
||||||
|
nlp = Language()
|
||||||
|
spancat = nlp.add_pipe(
|
||||||
|
"spancat",
|
||||||
|
config={
|
||||||
|
"spans_key": SPAN_KEY,
|
||||||
|
"threshold": threshold,
|
||||||
|
"max_positive": 1,
|
||||||
|
},
|
||||||
|
)
|
||||||
|
doc = nlp.make_doc("Greater London")
|
||||||
|
ngram_suggester = registry.misc.get("spacy.ngram_suggester.v1")(sizes=[1, 2])
|
||||||
|
indices = ngram_suggester([doc])[0].dataXd
|
||||||
|
assert_array_equal(OPS.to_numpy(indices), numpy.asarray([[0, 1], [1, 2], [0, 2]]))
|
||||||
|
labels = ["Thing", "City", "Person", "GreatCity"]
|
||||||
|
for label in labels:
|
||||||
|
spancat.add_label(label)
|
||||||
|
scores = numpy.asarray(
|
||||||
|
[[0.2, 0.4, 0.3, 0.1], [0.1, 0.6, 0.2, 0.4], [0.8, 0.7, 0.3, 0.9]], dtype="f"
|
||||||
|
)
|
||||||
|
spangroup = spancat._make_span_group_singlelabel(
|
||||||
|
doc, indices, scores, allow_overlap
|
||||||
|
)
|
||||||
|
assert len(spangroup) == nr_results
|
||||||
|
if threshold > 0.4:
|
||||||
|
if allow_overlap:
|
||||||
|
assert spangroup[0].text == "London"
|
||||||
|
assert spangroup[0].label_ == "City"
|
||||||
|
assert spangroup[1].text == "Greater London"
|
||||||
|
assert spangroup[1].label_ == "GreatCity"
|
||||||
|
|
||||||
|
else:
|
||||||
|
assert spangroup[0].text == "Greater London"
|
||||||
|
assert spangroup[0].label_ == "GreatCity"
|
||||||
|
else:
|
||||||
|
if allow_overlap:
|
||||||
|
assert spangroup[0].text == "Greater"
|
||||||
|
assert spangroup[0].label_ == "City"
|
||||||
|
assert spangroup[1].text == "London"
|
||||||
|
assert spangroup[1].label_ == "City"
|
||||||
|
assert spangroup[2].text == "Greater London"
|
||||||
|
assert spangroup[2].label_ == "GreatCity"
|
||||||
|
else:
|
||||||
|
assert spangroup[0].text == "Greater London"
|
||||||
|
|
||||||
|
|
||||||
|
def test_make_spangroup_negative_label():
|
||||||
|
fix_random_seed(0)
|
||||||
|
nlp_single = Language()
|
||||||
|
nlp_multi = Language()
|
||||||
|
spancat_single = nlp_single.add_pipe(
|
||||||
|
"spancat",
|
||||||
|
config={
|
||||||
|
"spans_key": SPAN_KEY,
|
||||||
|
"threshold": 0.1,
|
||||||
|
"max_positive": 1,
|
||||||
|
},
|
||||||
|
)
|
||||||
|
spancat_multi = nlp_multi.add_pipe(
|
||||||
|
"spancat",
|
||||||
|
config={
|
||||||
|
"spans_key": SPAN_KEY,
|
||||||
|
"threshold": 0.1,
|
||||||
|
"max_positive": 2,
|
||||||
|
},
|
||||||
|
)
|
||||||
|
spancat_single.add_negative_label = True
|
||||||
|
spancat_multi.add_negative_label = True
|
||||||
|
doc = nlp_single.make_doc("Greater London")
|
||||||
|
labels = ["Thing", "City", "Person", "GreatCity"]
|
||||||
|
for label in labels:
|
||||||
|
spancat_multi.add_label(label)
|
||||||
|
spancat_single.add_label(label)
|
||||||
|
ngram_suggester = registry.misc.get("spacy.ngram_suggester.v1")(sizes=[1, 2])
|
||||||
|
indices = ngram_suggester([doc])[0].dataXd
|
||||||
|
assert_array_equal(OPS.to_numpy(indices), numpy.asarray([[0, 1], [1, 2], [0, 2]]))
|
||||||
|
scores = numpy.asarray(
|
||||||
|
[
|
||||||
|
[0.2, 0.4, 0.3, 0.1, 0.1],
|
||||||
|
[0.1, 0.6, 0.2, 0.4, 0.9],
|
||||||
|
[0.8, 0.7, 0.3, 0.9, 0.1],
|
||||||
|
],
|
||||||
|
dtype="f",
|
||||||
|
)
|
||||||
|
spangroup_multi = spancat_multi._make_span_group_multilabel(doc, indices, scores)
|
||||||
|
spangroup_single = spancat_single._make_span_group_singlelabel(doc, indices, scores)
|
||||||
|
assert len(spangroup_single) == 2
|
||||||
|
assert spangroup_single[0].text == "Greater"
|
||||||
|
assert spangroup_single[0].label_ == "City"
|
||||||
|
assert spangroup_single[1].text == "Greater London"
|
||||||
|
assert spangroup_single[1].label_ == "GreatCity"
|
||||||
|
|
||||||
|
assert len(spangroup_multi) == 6
|
||||||
|
assert spangroup_multi[0].text == "Greater"
|
||||||
|
assert spangroup_multi[0].label_ == "City"
|
||||||
|
assert spangroup_multi[1].text == "Greater"
|
||||||
|
assert spangroup_multi[1].label_ == "Person"
|
||||||
|
assert spangroup_multi[2].text == "London"
|
||||||
|
assert spangroup_multi[2].label_ == "City"
|
||||||
|
assert spangroup_multi[3].text == "London"
|
||||||
|
assert spangroup_multi[3].label_ == "GreatCity"
|
||||||
|
assert spangroup_multi[4].text == "Greater London"
|
||||||
|
assert spangroup_multi[4].label_ == "Thing"
|
||||||
|
assert spangroup_multi[5].text == "Greater London"
|
||||||
|
assert spangroup_multi[5].label_ == "GreatCity"
|
||||||
|
|
||||||
|
|
||||||
def test_ngram_suggester(en_tokenizer):
|
def test_ngram_suggester(en_tokenizer):
|
||||||
# test different n-gram lengths
|
# test different n-gram lengths
|
||||||
for size in [1, 2, 3]:
|
for size in [1, 2, 3]:
|
||||||
|
@ -371,9 +491,9 @@ def test_overfitting_IO_overlapping():
|
||||||
assert set([span.label_ for span in spans2]) == {"LOC", "DOUBLE_LOC"}
|
assert set([span.label_ for span in spans2]) == {"LOC", "DOUBLE_LOC"}
|
||||||
|
|
||||||
|
|
||||||
def test_zero_suggestions():
|
@pytest.mark.parametrize("name", SPANCAT_COMPONENTS)
|
||||||
|
def test_zero_suggestions(name):
|
||||||
# Test with a suggester that can return 0 suggestions
|
# Test with a suggester that can return 0 suggestions
|
||||||
|
|
||||||
@registry.misc("test_mixed_zero_suggester")
|
@registry.misc("test_mixed_zero_suggester")
|
||||||
def make_mixed_zero_suggester():
|
def make_mixed_zero_suggester():
|
||||||
def mixed_zero_suggester(docs, *, ops=None):
|
def mixed_zero_suggester(docs, *, ops=None):
|
||||||
|
@ -400,7 +520,7 @@ def test_zero_suggestions():
|
||||||
fix_random_seed(0)
|
fix_random_seed(0)
|
||||||
nlp = English()
|
nlp = English()
|
||||||
spancat = nlp.add_pipe(
|
spancat = nlp.add_pipe(
|
||||||
"spancat",
|
name,
|
||||||
config={
|
config={
|
||||||
"suggester": {"@misc": "test_mixed_zero_suggester"},
|
"suggester": {"@misc": "test_mixed_zero_suggester"},
|
||||||
"spans_key": SPAN_KEY,
|
"spans_key": SPAN_KEY,
|
||||||
|
@ -408,7 +528,7 @@ def test_zero_suggestions():
|
||||||
)
|
)
|
||||||
train_examples = make_examples(nlp)
|
train_examples = make_examples(nlp)
|
||||||
optimizer = nlp.initialize(get_examples=lambda: train_examples)
|
optimizer = nlp.initialize(get_examples=lambda: train_examples)
|
||||||
assert spancat.model.get_dim("nO") == 2
|
assert spancat.model.get_dim("nO") == spancat._n_labels
|
||||||
assert set(spancat.labels) == {"LOC", "PERSON"}
|
assert set(spancat.labels) == {"LOC", "PERSON"}
|
||||||
|
|
||||||
nlp.update(train_examples, sgd=optimizer)
|
nlp.update(train_examples, sgd=optimizer)
|
||||||
|
@ -424,9 +544,10 @@ def test_zero_suggestions():
|
||||||
list(nlp.pipe(["", "one", "three three three"]))
|
list(nlp.pipe(["", "one", "three three three"]))
|
||||||
|
|
||||||
|
|
||||||
def test_set_candidates():
|
@pytest.mark.parametrize("name", SPANCAT_COMPONENTS)
|
||||||
|
def test_set_candidates(name):
|
||||||
nlp = Language()
|
nlp = Language()
|
||||||
spancat = nlp.add_pipe("spancat", config={"spans_key": SPAN_KEY})
|
spancat = nlp.add_pipe(name, config={"spans_key": SPAN_KEY})
|
||||||
train_examples = make_examples(nlp)
|
train_examples = make_examples(nlp)
|
||||||
nlp.initialize(get_examples=lambda: train_examples)
|
nlp.initialize(get_examples=lambda: train_examples)
|
||||||
texts = [
|
texts = [
|
||||||
|
|
|
@ -1,7 +1,10 @@
|
||||||
from typing import Callable
|
from pathlib import Path
|
||||||
|
from typing import Callable, Iterable, Any, Dict
|
||||||
|
|
||||||
from spacy import util
|
import srsly
|
||||||
from spacy.util import ensure_path, registry, load_model_from_config
|
|
||||||
|
from spacy import util, Errors
|
||||||
|
from spacy.util import ensure_path, registry, load_model_from_config, SimpleFrozenList
|
||||||
from spacy.kb.kb_in_memory import InMemoryLookupKB
|
from spacy.kb.kb_in_memory import InMemoryLookupKB
|
||||||
from spacy.vocab import Vocab
|
from spacy.vocab import Vocab
|
||||||
from thinc.api import Config
|
from thinc.api import Config
|
||||||
|
@ -92,6 +95,9 @@ def test_serialize_subclassed_kb():
|
||||||
[components.entity_linker]
|
[components.entity_linker]
|
||||||
factory = "entity_linker"
|
factory = "entity_linker"
|
||||||
|
|
||||||
|
[components.entity_linker.generate_empty_kb]
|
||||||
|
@misc = "kb_test.CustomEmptyKB.v1"
|
||||||
|
|
||||||
[initialize]
|
[initialize]
|
||||||
|
|
||||||
[initialize.components]
|
[initialize.components]
|
||||||
|
@ -99,7 +105,7 @@ def test_serialize_subclassed_kb():
|
||||||
[initialize.components.entity_linker]
|
[initialize.components.entity_linker]
|
||||||
|
|
||||||
[initialize.components.entity_linker.kb_loader]
|
[initialize.components.entity_linker.kb_loader]
|
||||||
@misc = "spacy.CustomKB.v1"
|
@misc = "kb_test.CustomKB.v1"
|
||||||
entity_vector_length = 342
|
entity_vector_length = 342
|
||||||
custom_field = 666
|
custom_field = 666
|
||||||
"""
|
"""
|
||||||
|
@ -109,10 +115,57 @@ def test_serialize_subclassed_kb():
|
||||||
super().__init__(vocab, entity_vector_length)
|
super().__init__(vocab, entity_vector_length)
|
||||||
self.custom_field = custom_field
|
self.custom_field = custom_field
|
||||||
|
|
||||||
@registry.misc("spacy.CustomKB.v1")
|
def to_disk(self, path, exclude: Iterable[str] = SimpleFrozenList()):
|
||||||
|
"""We overwrite InMemoryLookupKB.to_disk() to ensure that self.custom_field is stored as well."""
|
||||||
|
path = ensure_path(path)
|
||||||
|
if not path.exists():
|
||||||
|
path.mkdir(parents=True)
|
||||||
|
if not path.is_dir():
|
||||||
|
raise ValueError(Errors.E928.format(loc=path))
|
||||||
|
|
||||||
|
def serialize_custom_fields(file_path: Path) -> None:
|
||||||
|
srsly.write_json(file_path, {"custom_field": self.custom_field})
|
||||||
|
|
||||||
|
serialize = {
|
||||||
|
"contents": lambda p: self.write_contents(p),
|
||||||
|
"strings.json": lambda p: self.vocab.strings.to_disk(p),
|
||||||
|
"custom_fields": lambda p: serialize_custom_fields(p),
|
||||||
|
}
|
||||||
|
util.to_disk(path, serialize, exclude)
|
||||||
|
|
||||||
|
def from_disk(self, path, exclude: Iterable[str] = SimpleFrozenList()):
|
||||||
|
"""We overwrite InMemoryLookupKB.from_disk() to ensure that self.custom_field is loaded as well."""
|
||||||
|
path = ensure_path(path)
|
||||||
|
if not path.exists():
|
||||||
|
raise ValueError(Errors.E929.format(loc=path))
|
||||||
|
if not path.is_dir():
|
||||||
|
raise ValueError(Errors.E928.format(loc=path))
|
||||||
|
|
||||||
|
def deserialize_custom_fields(file_path: Path) -> None:
|
||||||
|
self.custom_field = srsly.read_json(file_path)["custom_field"]
|
||||||
|
|
||||||
|
deserialize: Dict[str, Callable[[Any], Any]] = {
|
||||||
|
"contents": lambda p: self.read_contents(p),
|
||||||
|
"strings.json": lambda p: self.vocab.strings.from_disk(p),
|
||||||
|
"custom_fields": lambda p: deserialize_custom_fields(p),
|
||||||
|
}
|
||||||
|
util.from_disk(path, deserialize, exclude)
|
||||||
|
|
||||||
|
@registry.misc("kb_test.CustomEmptyKB.v1")
|
||||||
|
def empty_custom_kb() -> Callable[[Vocab, int], SubInMemoryLookupKB]:
|
||||||
|
def empty_kb_factory(vocab: Vocab, entity_vector_length: int):
|
||||||
|
return SubInMemoryLookupKB(
|
||||||
|
vocab=vocab,
|
||||||
|
entity_vector_length=entity_vector_length,
|
||||||
|
custom_field=0,
|
||||||
|
)
|
||||||
|
|
||||||
|
return empty_kb_factory
|
||||||
|
|
||||||
|
@registry.misc("kb_test.CustomKB.v1")
|
||||||
def custom_kb(
|
def custom_kb(
|
||||||
entity_vector_length: int, custom_field: int
|
entity_vector_length: int, custom_field: int
|
||||||
) -> Callable[[Vocab], InMemoryLookupKB]:
|
) -> Callable[[Vocab], SubInMemoryLookupKB]:
|
||||||
def custom_kb_factory(vocab):
|
def custom_kb_factory(vocab):
|
||||||
kb = SubInMemoryLookupKB(
|
kb = SubInMemoryLookupKB(
|
||||||
vocab=vocab,
|
vocab=vocab,
|
||||||
|
@ -139,6 +192,6 @@ def test_serialize_subclassed_kb():
|
||||||
nlp2 = util.load_model_from_path(tmp_dir)
|
nlp2 = util.load_model_from_path(tmp_dir)
|
||||||
entity_linker2 = nlp2.get_pipe("entity_linker")
|
entity_linker2 = nlp2.get_pipe("entity_linker")
|
||||||
# After IO, the KB is the standard one
|
# After IO, the KB is the standard one
|
||||||
assert type(entity_linker2.kb) == InMemoryLookupKB
|
assert type(entity_linker2.kb) == SubInMemoryLookupKB
|
||||||
assert entity_linker2.kb.entity_vector_length == 342
|
assert entity_linker2.kb.entity_vector_length == 342
|
||||||
assert not hasattr(entity_linker2.kb, "custom_field")
|
assert entity_linker2.kb.custom_field == 666
|
||||||
|
|
|
@ -2,7 +2,6 @@ import os
|
||||||
import math
|
import math
|
||||||
from collections import Counter
|
from collections import Counter
|
||||||
from typing import Tuple, List, Dict, Any
|
from typing import Tuple, List, Dict, Any
|
||||||
import pkg_resources
|
|
||||||
import time
|
import time
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
|
@ -29,6 +28,7 @@ from spacy.cli.debug_data import _print_span_characteristics
|
||||||
from spacy.cli.debug_data import _get_spans_length_freq_dist
|
from spacy.cli.debug_data import _get_spans_length_freq_dist
|
||||||
from spacy.cli.download import get_compatibility, get_version
|
from spacy.cli.download import get_compatibility, get_version
|
||||||
from spacy.cli.init_config import RECOMMENDATIONS, init_config, fill_config
|
from spacy.cli.init_config import RECOMMENDATIONS, init_config, fill_config
|
||||||
|
from spacy.cli.init_pipeline import _init_labels
|
||||||
from spacy.cli.package import get_third_party_dependencies
|
from spacy.cli.package import get_third_party_dependencies
|
||||||
from spacy.cli.package import _is_permitted_package_name
|
from spacy.cli.package import _is_permitted_package_name
|
||||||
from spacy.cli.project.remote_storage import RemoteStorage
|
from spacy.cli.project.remote_storage import RemoteStorage
|
||||||
|
@ -47,7 +47,6 @@ from spacy.training.converters import conll_ner_to_docs, conllu_to_docs
|
||||||
from spacy.training.converters import iob_to_docs
|
from spacy.training.converters import iob_to_docs
|
||||||
from spacy.util import ENV_VARS, get_minor_version, load_model_from_config, load_config
|
from spacy.util import ENV_VARS, get_minor_version, load_model_from_config, load_config
|
||||||
|
|
||||||
from ..cli.init_pipeline import _init_labels
|
|
||||||
from .util import make_tempdir
|
from .util import make_tempdir
|
||||||
|
|
||||||
|
|
||||||
|
@ -553,7 +552,14 @@ def test_parse_cli_overrides():
|
||||||
|
|
||||||
@pytest.mark.parametrize("lang", ["en", "nl"])
|
@pytest.mark.parametrize("lang", ["en", "nl"])
|
||||||
@pytest.mark.parametrize(
|
@pytest.mark.parametrize(
|
||||||
"pipeline", [["tagger", "parser", "ner"], [], ["ner", "textcat", "sentencizer"]]
|
"pipeline",
|
||||||
|
[
|
||||||
|
["tagger", "parser", "ner"],
|
||||||
|
[],
|
||||||
|
["ner", "textcat", "sentencizer"],
|
||||||
|
["morphologizer", "spancat", "entity_linker"],
|
||||||
|
["spancat_singlelabel", "textcat_multilabel"],
|
||||||
|
],
|
||||||
)
|
)
|
||||||
@pytest.mark.parametrize("optimize", ["efficiency", "accuracy"])
|
@pytest.mark.parametrize("optimize", ["efficiency", "accuracy"])
|
||||||
@pytest.mark.parametrize("pretraining", [True, False])
|
@pytest.mark.parametrize("pretraining", [True, False])
|
||||||
|
@ -1126,6 +1132,7 @@ def test_cli_find_threshold(capsys):
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.filterwarnings("ignore::DeprecationWarning")
|
||||||
@pytest.mark.parametrize(
|
@pytest.mark.parametrize(
|
||||||
"reqs,output",
|
"reqs,output",
|
||||||
[
|
[
|
||||||
|
@ -1158,6 +1165,8 @@ def test_cli_find_threshold(capsys):
|
||||||
],
|
],
|
||||||
)
|
)
|
||||||
def test_project_check_requirements(reqs, output):
|
def test_project_check_requirements(reqs, output):
|
||||||
|
import pkg_resources
|
||||||
|
|
||||||
# excessive guard against unlikely package name
|
# excessive guard against unlikely package name
|
||||||
try:
|
try:
|
||||||
pkg_resources.require("spacyunknowndoesnotexist12345")
|
pkg_resources.require("spacyunknowndoesnotexist12345")
|
||||||
|
|
|
@ -2,17 +2,19 @@ from pathlib import Path
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pytest
|
import pytest
|
||||||
import srsly
|
import srsly
|
||||||
from spacy.vocab import Vocab
|
from thinc.api import Config, get_current_ops
|
||||||
from thinc.api import Config
|
|
||||||
|
|
||||||
|
from spacy import util
|
||||||
|
from spacy.lang.en import English
|
||||||
|
from spacy.training.initialize import init_nlp
|
||||||
|
from spacy.training.loop import train
|
||||||
|
from spacy.training.pretrain import pretrain
|
||||||
|
from spacy.tokens import Doc, DocBin
|
||||||
|
from spacy.language import DEFAULT_CONFIG_PRETRAIN_PATH, DEFAULT_CONFIG_PATH
|
||||||
|
from spacy.ml.models.multi_task import create_pretrain_vectors
|
||||||
|
from spacy.vectors import Vectors
|
||||||
|
from spacy.vocab import Vocab
|
||||||
from ..util import make_tempdir
|
from ..util import make_tempdir
|
||||||
from ... import util
|
|
||||||
from ...lang.en import English
|
|
||||||
from ...training.initialize import init_nlp
|
|
||||||
from ...training.loop import train
|
|
||||||
from ...training.pretrain import pretrain
|
|
||||||
from ...tokens import Doc, DocBin
|
|
||||||
from ...language import DEFAULT_CONFIG_PRETRAIN_PATH, DEFAULT_CONFIG_PATH
|
|
||||||
|
|
||||||
pretrain_string_listener = """
|
pretrain_string_listener = """
|
||||||
[nlp]
|
[nlp]
|
||||||
|
@ -346,3 +348,30 @@ def write_vectors_model(tmp_dir):
|
||||||
nlp = English(vocab)
|
nlp = English(vocab)
|
||||||
nlp.to_disk(nlp_path)
|
nlp.to_disk(nlp_path)
|
||||||
return str(nlp_path)
|
return str(nlp_path)
|
||||||
|
|
||||||
|
|
||||||
|
def test_pretrain_default_vectors():
|
||||||
|
nlp = English()
|
||||||
|
nlp.add_pipe("tok2vec")
|
||||||
|
nlp.initialize()
|
||||||
|
|
||||||
|
# default vectors are supported
|
||||||
|
nlp.vocab.vectors = Vectors(shape=(10, 10))
|
||||||
|
create_pretrain_vectors(1, 1, "cosine")(nlp.vocab, nlp.get_pipe("tok2vec").model)
|
||||||
|
|
||||||
|
# error for no vectors
|
||||||
|
with pytest.raises(ValueError, match="E875"):
|
||||||
|
nlp.vocab.vectors = Vectors()
|
||||||
|
create_pretrain_vectors(1, 1, "cosine")(
|
||||||
|
nlp.vocab, nlp.get_pipe("tok2vec").model
|
||||||
|
)
|
||||||
|
|
||||||
|
# error for floret vectors
|
||||||
|
with pytest.raises(ValueError, match="E850"):
|
||||||
|
ops = get_current_ops()
|
||||||
|
nlp.vocab.vectors = Vectors(
|
||||||
|
data=ops.xp.zeros((10, 10)), mode="floret", hash_count=1
|
||||||
|
)
|
||||||
|
create_pretrain_vectors(1, 1, "cosine")(
|
||||||
|
nlp.vocab, nlp.get_pipe("tok2vec").model
|
||||||
|
)
|
||||||
|
|
|
@ -899,15 +899,21 @@ The `EntityLinker` model architecture is a Thinc `Model` with a
|
||||||
| `nO` | Output dimension, determined by the length of the vectors encoding each entity in the KB. If the `nO` dimension is not set, the entity linking component will set it when `initialize` is called. ~~Optional[int]~~ |
|
| `nO` | Output dimension, determined by the length of the vectors encoding each entity in the KB. If the `nO` dimension is not set, the entity linking component will set it when `initialize` is called. ~~Optional[int]~~ |
|
||||||
| **CREATES** | The model using the architecture. ~~Model[List[Doc], Floats2d]~~ |
|
| **CREATES** | The model using the architecture. ~~Model[List[Doc], Floats2d]~~ |
|
||||||
|
|
||||||
### spacy.EmptyKB.v1 {id="EmptyKB"}
|
### spacy.EmptyKB.v1 {id="EmptyKB.v1"}
|
||||||
|
|
||||||
A function that creates an empty `KnowledgeBase` from a [`Vocab`](/api/vocab)
|
A function that creates an empty `KnowledgeBase` from a [`Vocab`](/api/vocab)
|
||||||
instance. This is the default when a new entity linker component is created.
|
instance.
|
||||||
|
|
||||||
| Name | Description |
|
| Name | Description |
|
||||||
| ---------------------- | ----------------------------------------------------------------------------------- |
|
| ---------------------- | ----------------------------------------------------------------------------------- |
|
||||||
| `entity_vector_length` | The length of the vectors encoding each entity in the KB. Defaults to `64`. ~~int~~ |
|
| `entity_vector_length` | The length of the vectors encoding each entity in the KB. Defaults to `64`. ~~int~~ |
|
||||||
|
|
||||||
|
### spacy.EmptyKB.v2 {id="EmptyKB"}
|
||||||
|
|
||||||
|
A function that creates an empty `KnowledgeBase` from a [`Vocab`](/api/vocab)
|
||||||
|
instance. This is the default when a new entity linker component is created. It
|
||||||
|
returns a `Callable[[Vocab, int], InMemoryLookupKB]`.
|
||||||
|
|
||||||
### spacy.KBFromFile.v1 {id="KBFromFile"}
|
### spacy.KBFromFile.v1 {id="KBFromFile"}
|
||||||
|
|
||||||
A function that reads an existing `KnowledgeBase` from file.
|
A function that reads an existing `KnowledgeBase` from file.
|
||||||
|
@ -924,6 +930,15 @@ plausible [`Candidate`](/api/kb/#candidate) objects. The default
|
||||||
`CandidateGenerator` uses the text of a mention to find its potential aliases in
|
`CandidateGenerator` uses the text of a mention to find its potential aliases in
|
||||||
the `KnowledgeBase`. Note that this function is case-dependent.
|
the `KnowledgeBase`. Note that this function is case-dependent.
|
||||||
|
|
||||||
|
### spacy.CandidateBatchGenerator.v1 {id="CandidateBatchGenerator"}
|
||||||
|
|
||||||
|
A function that takes as input a [`KnowledgeBase`](/api/kb) and an `Iterable` of
|
||||||
|
[`Span`](/api/span) objects denoting named entities, and returns a list of
|
||||||
|
plausible [`Candidate`](/api/kb/#candidate) objects per specified
|
||||||
|
[`Span`](/api/span). The default `CandidateBatchGenerator` uses the text of a
|
||||||
|
mention to find its potential aliases in the `KnowledgeBase`. Note that this
|
||||||
|
function is case-dependent.
|
||||||
|
|
||||||
## Coreference {id="coref-architectures",tag="experimental"}
|
## Coreference {id="coref-architectures",tag="experimental"}
|
||||||
|
|
||||||
A [`CoreferenceResolver`](/api/coref) component identifies tokens that refer to
|
A [`CoreferenceResolver`](/api/coref) component identifies tokens that refer to
|
||||||
|
|
|
@ -68,24 +68,28 @@ The following operators are supported by the `DependencyMatcher`, most of which
|
||||||
come directly from
|
come directly from
|
||||||
[Semgrex](https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/semgraph/semgrex/SemgrexPattern.html):
|
[Semgrex](https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/semgraph/semgrex/SemgrexPattern.html):
|
||||||
|
|
||||||
| Symbol | Description |
|
| Symbol | Description |
|
||||||
| --------- | -------------------------------------------------------------------------------------------------------------------- |
|
| --------------------------------------- | -------------------------------------------------------------------------------------------------------------------- |
|
||||||
| `A < B` | `A` is the immediate dependent of `B`. |
|
| `A < B` | `A` is the immediate dependent of `B`. |
|
||||||
| `A > B` | `A` is the immediate head of `B`. |
|
| `A > B` | `A` is the immediate head of `B`. |
|
||||||
| `A << B` | `A` is the dependent in a chain to `B` following dep → head paths. |
|
| `A << B` | `A` is the dependent in a chain to `B` following dep → head paths. |
|
||||||
| `A >> B` | `A` is the head in a chain to `B` following head → dep paths. |
|
| `A >> B` | `A` is the head in a chain to `B` following head → dep paths. |
|
||||||
| `A . B` | `A` immediately precedes `B`, i.e. `A.i == B.i - 1`, and both are within the same dependency tree. |
|
| `A . B` | `A` immediately precedes `B`, i.e. `A.i == B.i - 1`, and both are within the same dependency tree. |
|
||||||
| `A .* B` | `A` precedes `B`, i.e. `A.i < B.i`, and both are within the same dependency tree _(not in Semgrex)_. |
|
| `A .* B` | `A` precedes `B`, i.e. `A.i < B.i`, and both are within the same dependency tree _(not in Semgrex)_. |
|
||||||
| `A ; B` | `A` immediately follows `B`, i.e. `A.i == B.i + 1`, and both are within the same dependency tree _(not in Semgrex)_. |
|
| `A ; B` | `A` immediately follows `B`, i.e. `A.i == B.i + 1`, and both are within the same dependency tree _(not in Semgrex)_. |
|
||||||
| `A ;* B` | `A` follows `B`, i.e. `A.i > B.i`, and both are within the same dependency tree _(not in Semgrex)_. |
|
| `A ;* B` | `A` follows `B`, i.e. `A.i > B.i`, and both are within the same dependency tree _(not in Semgrex)_. |
|
||||||
| `A $+ B` | `B` is a right immediate sibling of `A`, i.e. `A` and `B` have the same parent and `A.i == B.i - 1`. |
|
| `A $+ B` | `B` is a right immediate sibling of `A`, i.e. `A` and `B` have the same parent and `A.i == B.i - 1`. |
|
||||||
| `A $- B` | `B` is a left immediate sibling of `A`, i.e. `A` and `B` have the same parent and `A.i == B.i + 1`. |
|
| `A $- B` | `B` is a left immediate sibling of `A`, i.e. `A` and `B` have the same parent and `A.i == B.i + 1`. |
|
||||||
| `A $++ B` | `B` is a right sibling of `A`, i.e. `A` and `B` have the same parent and `A.i < B.i`. |
|
| `A $++ B` | `B` is a right sibling of `A`, i.e. `A` and `B` have the same parent and `A.i < B.i`. |
|
||||||
| `A $-- B` | `B` is a left sibling of `A`, i.e. `A` and `B` have the same parent and `A.i > B.i`. |
|
| `A $-- B` | `B` is a left sibling of `A`, i.e. `A` and `B` have the same parent and `A.i > B.i`. |
|
||||||
| `A >++ B` | `B` is a right child of `A`, i.e. `A` is a parent of `B` and `A.i < B.i` _(not in Semgrex)_. |
|
| `A >+ B` <Tag variant="new">3.5.1</Tag> | `B` is a right immediate child of `A`, i.e. `A` is a parent of `B` and `A.i == B.i - 1` _(not in Semgrex)_. |
|
||||||
| `A >-- B` | `B` is a left child of `A`, i.e. `A` is a parent of `B` and `A.i > B.i` _(not in Semgrex)_. |
|
| `A >- B` <Tag variant="new">3.5.1</Tag> | `B` is a left immediate child of `A`, i.e. `A` is a parent of `B` and `A.i == B.i + 1` _(not in Semgrex)_. |
|
||||||
| `A <++ B` | `B` is a right parent of `A`, i.e. `A` is a child of `B` and `A.i < B.i` _(not in Semgrex)_. |
|
| `A >++ B` | `B` is a right child of `A`, i.e. `A` is a parent of `B` and `A.i < B.i` _(not in Semgrex)_. |
|
||||||
| `A <-- B` | `B` is a left parent of `A`, i.e. `A` is a child of `B` and `A.i > B.i` _(not in Semgrex)_. |
|
| `A >-- B` | `B` is a left child of `A`, i.e. `A` is a parent of `B` and `A.i > B.i` _(not in Semgrex)_. |
|
||||||
|
| `A <+ B` <Tag variant="new">3.5.1</Tag> | `B` is a right immediate parent of `A`, i.e. `A` is a child of `B` and `A.i == B.i - 1` _(not in Semgrex)_. |
|
||||||
|
| `A <- B` <Tag variant="new">3.5.1</Tag> | `B` is a left immediate parent of `A`, i.e. `A` is a child of `B` and `A.i == B.i + 1` _(not in Semgrex)_. |
|
||||||
|
| `A <++ B` | `B` is a right parent of `A`, i.e. `A` is a child of `B` and `A.i < B.i` _(not in Semgrex)_. |
|
||||||
|
| `A <-- B` | `B` is a left parent of `A`, i.e. `A` is a child of `B` and `A.i > B.i` _(not in Semgrex)_. |
|
||||||
|
|
||||||
## DependencyMatcher.\_\_init\_\_ {id="init",tag="method"}
|
## DependencyMatcher.\_\_init\_\_ {id="init",tag="method"}
|
||||||
|
|
||||||
|
|
|
@ -53,19 +53,21 @@ architectures and their arguments and hyperparameters.
|
||||||
> nlp.add_pipe("entity_linker", config=config)
|
> nlp.add_pipe("entity_linker", config=config)
|
||||||
> ```
|
> ```
|
||||||
|
|
||||||
| Setting | Description |
|
| Setting | Description |
|
||||||
| ---------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
| --------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||||
| `labels_discard` | NER labels that will automatically get a "NIL" prediction. Defaults to `[]`. ~~Iterable[str]~~ |
|
| `labels_discard` | NER labels that will automatically get a "NIL" prediction. Defaults to `[]`. ~~Iterable[str]~~ |
|
||||||
| `n_sents` | The number of neighbouring sentences to take into account. Defaults to 0. ~~int~~ |
|
| `n_sents` | The number of neighbouring sentences to take into account. Defaults to 0. ~~int~~ |
|
||||||
| `incl_prior` | Whether or not to include prior probabilities from the KB in the model. Defaults to `True`. ~~bool~~ |
|
| `incl_prior` | Whether or not to include prior probabilities from the KB in the model. Defaults to `True`. ~~bool~~ |
|
||||||
| `incl_context` | Whether or not to include the local context in the model. Defaults to `True`. ~~bool~~ |
|
| `incl_context` | Whether or not to include the local context in the model. Defaults to `True`. ~~bool~~ |
|
||||||
| `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. Defaults to [EntityLinker](/api/architectures#EntityLinker). ~~Model~~ |
|
| `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. Defaults to [EntityLinker](/api/architectures#EntityLinker). ~~Model~~ |
|
||||||
| `entity_vector_length` | Size of encoding vectors in the KB. Defaults to `64`. ~~int~~ |
|
| `entity_vector_length` | Size of encoding vectors in the KB. Defaults to `64`. ~~int~~ |
|
||||||
| `use_gold_ents` | Whether to copy entities from the gold docs or not. Defaults to `True`. If `False`, entities must be set in the training data or by an annotating component in the pipeline. ~~int~~ |
|
| `use_gold_ents` | Whether to copy entities from the gold docs or not. Defaults to `True`. If `False`, entities must be set in the training data or by an annotating component in the pipeline. ~~int~~ |
|
||||||
| `get_candidates` | Function that generates plausible candidates for a given `Span` object. Defaults to [CandidateGenerator](/api/architectures#CandidateGenerator), a function looking up exact, case-dependent aliases in the KB. ~~Callable[[KnowledgeBase, Span], Iterable[Candidate]]~~ |
|
| `get_candidates` | Function that generates plausible candidates for a given `Span` object. Defaults to [CandidateGenerator](/api/architectures#CandidateGenerator), a function looking up exact, case-dependent aliases in the KB. ~~Callable[[KnowledgeBase, Span], Iterable[Candidate]]~~ |
|
||||||
| `overwrite` <Tag variant="new">3.2</Tag> | Whether existing annotation is overwritten. Defaults to `True`. ~~bool~~ |
|
| `get_candidates_batch` <Tag variant="new">3.5</Tag> | Function that generates plausible candidates for a given batch of `Span` objects. Defaults to [CandidateBatchGenerator](/api/architectures#CandidateBatchGenerator), a function looking up exact, case-dependent aliases in the KB. ~~Callable[[KnowledgeBase, Iterable[Span]], Iterable[Iterable[Candidate]]]~~ |
|
||||||
| `scorer` <Tag variant="new">3.2</Tag> | The scoring method. Defaults to [`Scorer.score_links`](/api/scorer#score_links). ~~Optional[Callable]~~ |
|
| `generate_empty_kb` <Tag variant="new">3.6</Tag> | Function that generates an empty `KnowledgeBase` object. Defaults to [`spacy.EmptyKB.v2`](/api/architectures#EmptyKB), which generates an empty [`InMemoryLookupKB`](/api/inmemorylookupkb). ~~Callable[[Vocab, int], KnowledgeBase]~~ |
|
||||||
| `threshold` <Tag variant="new">3.4</Tag> | Confidence threshold for entity predictions. The default of `None` implies that all predictions are accepted, otherwise those with a score beneath the treshold are discarded. If there are no predictions with scores above the threshold, the linked entity is `NIL`. ~~Optional[float]~~ |
|
| `overwrite` <Tag variant="new">3.2</Tag> | Whether existing annotation is overwritten. Defaults to `True`. ~~bool~~ |
|
||||||
|
| `scorer` <Tag variant="new">3.2</Tag> | The scoring method. Defaults to [`Scorer.score_links`](/api/scorer#score_links). ~~Optional[Callable]~~ |
|
||||||
|
| `threshold` <Tag variant="new">3.4</Tag> | Confidence threshold for entity predictions. The default of `None` implies that all predictions are accepted, otherwise those with a score beneath the treshold are discarded. If there are no predictions with scores above the threshold, the linked entity is `NIL`. ~~Optional[float]~~ |
|
||||||
|
|
||||||
```python
|
```python
|
||||||
%%GITHUB_SPACY/spacy/pipeline/entity_linker.py
|
%%GITHUB_SPACY/spacy/pipeline/entity_linker.py
|
||||||
|
|
|
@ -13,6 +13,13 @@ A span categorizer consists of two parts: a [suggester function](#suggesters)
|
||||||
that proposes candidate spans, which may or may not overlap, and a labeler model
|
that proposes candidate spans, which may or may not overlap, and a labeler model
|
||||||
that predicts zero or more labels for each candidate.
|
that predicts zero or more labels for each candidate.
|
||||||
|
|
||||||
|
This component comes in two forms: `spancat` and `spancat_singlelabel` (added in
|
||||||
|
spaCy v3.5.1). When you need to perform multi-label classification on your
|
||||||
|
spans, use `spancat`. The `spancat` component uses a `Logistic` layer where the
|
||||||
|
output class probabilities are independent for each class. However, if you need
|
||||||
|
to predict at most one true class for a span, then use `spancat_singlelabel`. It
|
||||||
|
uses a `Softmax` layer and treats the task as a multi-class problem.
|
||||||
|
|
||||||
Predicted spans will be saved in a [`SpanGroup`](/api/spangroup) on the doc.
|
Predicted spans will be saved in a [`SpanGroup`](/api/spangroup) on the doc.
|
||||||
Individual span scores can be found in `spangroup.attrs["scores"]`.
|
Individual span scores can be found in `spangroup.attrs["scores"]`.
|
||||||
|
|
||||||
|
@ -38,7 +45,7 @@ how the component should be configured. You can override its settings via the
|
||||||
[model architectures](/api/architectures) documentation for details on the
|
[model architectures](/api/architectures) documentation for details on the
|
||||||
architectures and their arguments and hyperparameters.
|
architectures and their arguments and hyperparameters.
|
||||||
|
|
||||||
> #### Example
|
> #### Example (spancat)
|
||||||
>
|
>
|
||||||
> ```python
|
> ```python
|
||||||
> from spacy.pipeline.spancat import DEFAULT_SPANCAT_MODEL
|
> from spacy.pipeline.spancat import DEFAULT_SPANCAT_MODEL
|
||||||
|
@ -52,14 +59,33 @@ architectures and their arguments and hyperparameters.
|
||||||
> nlp.add_pipe("spancat", config=config)
|
> nlp.add_pipe("spancat", config=config)
|
||||||
> ```
|
> ```
|
||||||
|
|
||||||
| Setting | Description |
|
> #### Example (spancat_singlelabel)
|
||||||
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
>
|
||||||
| `suggester` | A function that [suggests spans](#suggesters). Spans are returned as a ragged array with two integer columns, for the start and end positions. Defaults to [`ngram_suggester`](#ngram_suggester). ~~Callable[[Iterable[Doc], Optional[Ops]], Ragged]~~ |
|
> ```python
|
||||||
| `model` | A model instance that is given a a list of documents and `(start, end)` indices representing candidate span offsets. The model predicts a probability for each category for each span. Defaults to [SpanCategorizer](/api/architectures#SpanCategorizer). ~~Model[Tuple[List[Doc], Ragged], Floats2d]~~ |
|
> from spacy.pipeline.spancat import DEFAULT_SPANCAT_SINGLELABEL_MODEL
|
||||||
| `spans_key` | Key of the [`Doc.spans`](/api/doc#spans) dict to save the spans under. During initialization and training, the component will look for spans on the reference document under the same key. Defaults to `"sc"`. ~~str~~ |
|
> config = {
|
||||||
| `threshold` | Minimum probability to consider a prediction positive. Spans with a positive prediction will be saved on the Doc. Defaults to `0.5`. ~~float~~ |
|
> "threshold": 0.5,
|
||||||
| `max_positive` | Maximum number of labels to consider positive per span. Defaults to `None`, indicating no limit. ~~Optional[int]~~ |
|
> "spans_key": "labeled_spans",
|
||||||
| `scorer` | The scoring method. Defaults to [`Scorer.score_spans`](/api/scorer#score_spans) for `Doc.spans[spans_key]` with overlapping spans allowed. ~~Optional[Callable]~~ |
|
> "model": DEFAULT_SPANCAT_SINGLELABEL_MODEL,
|
||||||
|
> "suggester": {"@misc": "spacy.ngram_suggester.v1", "sizes": [1, 2, 3]},
|
||||||
|
> # Additional spancat_singlelabel parameters
|
||||||
|
> "negative_weight": 0.8,
|
||||||
|
> "allow_overlap": True,
|
||||||
|
> }
|
||||||
|
> nlp.add_pipe("spancat_singlelabel", config=config)
|
||||||
|
> ```
|
||||||
|
|
||||||
|
| Setting | Description |
|
||||||
|
| --------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||||
|
| `suggester` | A function that [suggests spans](#suggesters). Spans are returned as a ragged array with two integer columns, for the start and end positions. Defaults to [`ngram_suggester`](#ngram_suggester). ~~Callable[[Iterable[Doc], Optional[Ops]], Ragged]~~ |
|
||||||
|
| `model` | A model instance that is given a a list of documents and `(start, end)` indices representing candidate span offsets. The model predicts a probability for each category for each span. Defaults to [SpanCategorizer](/api/architectures#SpanCategorizer). ~~Model[Tuple[List[Doc], Ragged], Floats2d]~~ |
|
||||||
|
| `spans_key` | Key of the [`Doc.spans`](/api/doc#spans) dict to save the spans under. During initialization and training, the component will look for spans on the reference document under the same key. Defaults to `"sc"`. ~~str~~ |
|
||||||
|
| `threshold` | Minimum probability to consider a prediction positive. Spans with a positive prediction will be saved on the Doc. Meant to be used in combination with the multi-class `spancat` component with a `Logistic` scoring layer. Defaults to `0.5`. ~~float~~ |
|
||||||
|
| `max_positive` | Maximum number of labels to consider positive per span. Defaults to `None`, indicating no limit. Meant to be used together with the `spancat` component and defaults to 0 with `spancat_singlelabel`. ~~Optional[int]~~ |
|
||||||
|
| `scorer` | The scoring method. Defaults to [`Scorer.score_spans`](/api/scorer#score_spans) for `Doc.spans[spans_key]` with overlapping spans allowed. ~~Optional[Callable]~~ |
|
||||||
|
| `add_negative_label` <Tag variant="new">3.5.1</Tag> | Whether to learn to predict a special negative label for each unannotated `Span` . This should be `True` when using a `Softmax` classifier layer and so its `True` by default for `spancat_singlelabel`. Spans with negative labels and their scores are not stored as annotations. ~~bool~~ |
|
||||||
|
| `negative_weight` <Tag variant="new">3.5.1</Tag> | Multiplier for the loss terms. It can be used to downweight the negative samples if there are too many. It is only used when `add_negative_label` is `True`. Defaults to `1.0`. ~~float~~ |
|
||||||
|
| `allow_overlap` <Tag variant="new">3.5.1</Tag> | If `True`, the data is assumed to contain overlapping spans. It is only available when `max_positive` is exactly 1. Defaults to `True`. ~~bool~~ |
|
||||||
|
|
||||||
```python
|
```python
|
||||||
%%GITHUB_SPACY/spacy/pipeline/spancat.py
|
%%GITHUB_SPACY/spacy/pipeline/spancat.py
|
||||||
|
@ -71,6 +97,7 @@ architectures and their arguments and hyperparameters.
|
||||||
>
|
>
|
||||||
> ```python
|
> ```python
|
||||||
> # Construction via add_pipe with default model
|
> # Construction via add_pipe with default model
|
||||||
|
> # Replace 'spancat' with 'spancat_singlelabel' for exclusive classes
|
||||||
> spancat = nlp.add_pipe("spancat")
|
> spancat = nlp.add_pipe("spancat")
|
||||||
>
|
>
|
||||||
> # Construction via add_pipe with custom model
|
> # Construction via add_pipe with custom model
|
||||||
|
@ -86,16 +113,19 @@ Create a new pipeline instance. In your application, you would normally use a
|
||||||
shortcut for this and instantiate the component using its string name and
|
shortcut for this and instantiate the component using its string name and
|
||||||
[`nlp.add_pipe`](/api/language#create_pipe).
|
[`nlp.add_pipe`](/api/language#create_pipe).
|
||||||
|
|
||||||
| Name | Description |
|
| Name | Description |
|
||||||
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
| --------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||||
| `vocab` | The shared vocabulary. ~~Vocab~~ |
|
| `vocab` | The shared vocabulary. ~~Vocab~~ |
|
||||||
| `model` | A model instance that is given a a list of documents and `(start, end)` indices representing candidate span offsets. The model predicts a probability for each category for each span. ~~Model[Tuple[List[Doc], Ragged], Floats2d]~~ |
|
| `model` | A model instance that is given a a list of documents and `(start, end)` indices representing candidate span offsets. The model predicts a probability for each category for each span. ~~Model[Tuple[List[Doc], Ragged], Floats2d]~~ |
|
||||||
| `suggester` | A function that [suggests spans](#suggesters). Spans are returned as a ragged array with two integer columns, for the start and end positions. ~~Callable[[Iterable[Doc], Optional[Ops]], Ragged]~~ |
|
| `suggester` | A function that [suggests spans](#suggesters). Spans are returned as a ragged array with two integer columns, for the start and end positions. ~~Callable[[Iterable[Doc], Optional[Ops]], Ragged]~~ |
|
||||||
| `name` | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ |
|
| `name` | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ |
|
||||||
| _keyword-only_ | |
|
| _keyword-only_ | |
|
||||||
| `spans_key` | Key of the [`Doc.spans`](/api/doc#sans) dict to save the spans under. During initialization and training, the component will look for spans on the reference document under the same key. Defaults to `"sc"`. ~~str~~ |
|
| `spans_key` | Key of the [`Doc.spans`](/api/doc#sans) dict to save the spans under. During initialization and training, the component will look for spans on the reference document under the same key. Defaults to `"sc"`. ~~str~~ |
|
||||||
| `threshold` | Minimum probability to consider a prediction positive. Spans with a positive prediction will be saved on the Doc. Defaults to `0.5`. ~~float~~ |
|
| `threshold` | Minimum probability to consider a prediction positive. Spans with a positive prediction will be saved on the Doc. Defaults to `0.5`. ~~float~~ |
|
||||||
| `max_positive` | Maximum number of labels to consider positive per span. Defaults to `None`, indicating no limit. ~~Optional[int]~~ |
|
| `max_positive` | Maximum number of labels to consider positive per span. Defaults to `None`, indicating no limit. ~~Optional[int]~~ |
|
||||||
|
| `allow_overlap` <Tag variant="new">3.5.1</Tag> | If `True`, the data is assumed to contain overlapping spans. It is only available when `max_positive` is exactly 1. Defaults to `True`. ~~bool~~ |
|
||||||
|
| `add_negative_label` <Tag variant="new">3.5.1</Tag> | Whether to learn to predict a special negative label for each unannotated `Span`. This should be `True` when using a `Softmax` classifier layer and so its `True` by default for `spancat_singlelabel` . Spans with negative labels and their scores are not stored as annotations. ~~bool~~ |
|
||||||
|
| `negative_weight` <Tag variant="new">3.5.1</Tag> | Multiplier for the loss terms. It can be used to downweight the negative samples if there are too many . It is only used when `add_negative_label` is `True`. Defaults to `1.0`. ~~float~~ |
|
||||||
|
|
||||||
## SpanCategorizer.\_\_call\_\_ {id="call",tag="method"}
|
## SpanCategorizer.\_\_call\_\_ {id="call",tag="method"}
|
||||||
|
|
||||||
|
|
|
@ -354,22 +354,22 @@ If a setting is not present in the options, the default value will be used.
|
||||||
> displacy.serve(doc, style="dep", options=options)
|
> displacy.serve(doc, style="dep", options=options)
|
||||||
> ```
|
> ```
|
||||||
|
|
||||||
| Name | Description |
|
| Name | Description |
|
||||||
| ------------------ | -------------------------------------------------------------------------------------------------------------------------------------------- |
|
| ------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||||
| `fine_grained` | Use fine-grained part-of-speech tags (`Token.tag_`) instead of coarse-grained tags (`Token.pos_`). Defaults to `False`. ~~bool~~ |
|
| `fine_grained` | Use fine-grained part-of-speech tags (`Token.tag_`) instead of coarse-grained tags (`Token.pos_`). Defaults to `False`. ~~bool~~ |
|
||||||
| `add_lemma` | Print the lemmas in a separate row below the token texts. Defaults to `False`. ~~bool~~ |
|
| `add_lemma` | Print the lemmas in a separate row below the token texts. Defaults to `False`. ~~bool~~ |
|
||||||
| `collapse_punct` | Attach punctuation to tokens. Can make the parse more readable, as it prevents long arcs to attach punctuation. Defaults to `True`. ~~bool~~ |
|
| `collapse_punct` | Attach punctuation to tokens. Can make the parse more readable, as it prevents long arcs to attach punctuation. Defaults to `True`. ~~bool~~ |
|
||||||
| `collapse_phrases` | Merge noun phrases into one token. Defaults to `False`. ~~bool~~ |
|
| `collapse_phrases` | Merge noun phrases into one token. Defaults to `False`. ~~bool~~ |
|
||||||
| `compact` | "Compact mode" with square arrows that takes up less space. Defaults to `False`. ~~bool~~ |
|
| `compact` | "Compact mode" with square arrows that takes up less space. Defaults to `False`. ~~bool~~ |
|
||||||
| `color` | Text color (HEX, RGB or color names). Defaults to `"#000000"`. ~~str~~ |
|
| `color` | Text color. Can be provided in any CSS legal format as a string e.g.: `"#00ff00"`, `"rgb(0, 255, 0)"`, `"hsl(120, 100%, 50%)"` and `"green"` all correspond to the color green (without transparency). Defaults to `"#000000"`. ~~str~~ |
|
||||||
| `bg` | Background color (HEX, RGB or color names). Defaults to `"#ffffff"`. ~~str~~ |
|
| `bg` | Background color. Can be provided in any CSS legal format as a string e.g.: `"#00ff00"`, `"rgb(0, 255, 0)"`, `"hsl(120, 100%, 50%)"` and `"green"` all correspond to the color green (without transparency). Defaults to `"#ffffff"`. ~~str~~ |
|
||||||
| `font` | Font name or font family for all text. Defaults to `"Arial"`. ~~str~~ |
|
| `font` | Font name or font family for all text. Defaults to `"Arial"`. ~~str~~ |
|
||||||
| `offset_x` | Spacing on left side of the SVG in px. Defaults to `50`. ~~int~~ |
|
| `offset_x` | Spacing on left side of the SVG in px. Defaults to `50`. ~~int~~ |
|
||||||
| `arrow_stroke` | Width of arrow path in px. Defaults to `2`. ~~int~~ |
|
| `arrow_stroke` | Width of arrow path in px. Defaults to `2`. ~~int~~ |
|
||||||
| `arrow_width` | Width of arrow head in px. Defaults to `10` in regular mode and `8` in compact mode. ~~int~~ |
|
| `arrow_width` | Width of arrow head in px. Defaults to `10` in regular mode and `8` in compact mode. ~~int~~ |
|
||||||
| `arrow_spacing` | Spacing between arrows in px to avoid overlaps. Defaults to `20` in regular mode and `12` in compact mode. ~~int~~ |
|
| `arrow_spacing` | Spacing between arrows in px to avoid overlaps. Defaults to `20` in regular mode and `12` in compact mode. ~~int~~ |
|
||||||
| `word_spacing` | Vertical spacing between words and arcs in px. Defaults to `45`. ~~int~~ |
|
| `word_spacing` | Vertical spacing between words and arcs in px. Defaults to `45`. ~~int~~ |
|
||||||
| `distance` | Distance between words in px. Defaults to `175` in regular mode and `150` in compact mode. ~~int~~ |
|
| `distance` | Distance between words in px. Defaults to `175` in regular mode and `150` in compact mode. ~~int~~ |
|
||||||
|
|
||||||
#### Named Entity Visualizer options {id="displacy_options-ent"}
|
#### Named Entity Visualizer options {id="displacy_options-ent"}
|
||||||
|
|
||||||
|
|
|
@ -1096,20 +1096,28 @@ The following operators are supported by the `DependencyMatcher`, most of which
|
||||||
come directly from
|
come directly from
|
||||||
[Semgrex](https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/semgraph/semgrex/SemgrexPattern.html):
|
[Semgrex](https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/semgraph/semgrex/SemgrexPattern.html):
|
||||||
|
|
||||||
| Symbol | Description |
|
| Symbol | Description |
|
||||||
| --------- | -------------------------------------------------------------------------------------------------------------------- |
|
| --------------------------------------- | -------------------------------------------------------------------------------------------------------------------- |
|
||||||
| `A < B` | `A` is the immediate dependent of `B`. |
|
| `A < B` | `A` is the immediate dependent of `B`. |
|
||||||
| `A > B` | `A` is the immediate head of `B`. |
|
| `A > B` | `A` is the immediate head of `B`. |
|
||||||
| `A << B` | `A` is the dependent in a chain to `B` following dep → head paths. |
|
| `A << B` | `A` is the dependent in a chain to `B` following dep → head paths. |
|
||||||
| `A >> B` | `A` is the head in a chain to `B` following head → dep paths. |
|
| `A >> B` | `A` is the head in a chain to `B` following head → dep paths. |
|
||||||
| `A . B` | `A` immediately precedes `B`, i.e. `A.i == B.i - 1`, and both are within the same dependency tree. |
|
| `A . B` | `A` immediately precedes `B`, i.e. `A.i == B.i - 1`, and both are within the same dependency tree. |
|
||||||
| `A .* B` | `A` precedes `B`, i.e. `A.i < B.i`, and both are within the same dependency tree _(not in Semgrex)_. |
|
| `A .* B` | `A` precedes `B`, i.e. `A.i < B.i`, and both are within the same dependency tree _(not in Semgrex)_. |
|
||||||
| `A ; B` | `A` immediately follows `B`, i.e. `A.i == B.i + 1`, and both are within the same dependency tree _(not in Semgrex)_. |
|
| `A ; B` | `A` immediately follows `B`, i.e. `A.i == B.i + 1`, and both are within the same dependency tree _(not in Semgrex)_. |
|
||||||
| `A ;* B` | `A` follows `B`, i.e. `A.i > B.i`, and both are within the same dependency tree _(not in Semgrex)_. |
|
| `A ;* B` | `A` follows `B`, i.e. `A.i > B.i`, and both are within the same dependency tree _(not in Semgrex)_. |
|
||||||
| `A $+ B` | `B` is a right immediate sibling of `A`, i.e. `A` and `B` have the same parent and `A.i == B.i - 1`. |
|
| `A $+ B` | `B` is a right immediate sibling of `A`, i.e. `A` and `B` have the same parent and `A.i == B.i - 1`. |
|
||||||
| `A $- B` | `B` is a left immediate sibling of `A`, i.e. `A` and `B` have the same parent and `A.i == B.i + 1`. |
|
| `A $- B` | `B` is a left immediate sibling of `A`, i.e. `A` and `B` have the same parent and `A.i == B.i + 1`. |
|
||||||
| `A $++ B` | `B` is a right sibling of `A`, i.e. `A` and `B` have the same parent and `A.i < B.i`. |
|
| `A $++ B` | `B` is a right sibling of `A`, i.e. `A` and `B` have the same parent and `A.i < B.i`. |
|
||||||
| `A $-- B` | `B` is a left sibling of `A`, i.e. `A` and `B` have the same parent and `A.i > B.i`. |
|
| `A $-- B` | `B` is a left sibling of `A`, i.e. `A` and `B` have the same parent and `A.i > B.i`. |
|
||||||
|
| `A >+ B` <Tag variant="new">3.5.1</Tag> | `B` is a right immediate child of `A`, i.e. `A` is a parent of `B` and `A.i == B.i - 1` _(not in Semgrex)_. |
|
||||||
|
| `A >- B` <Tag variant="new">3.5.1</Tag> | `B` is a left immediate child of `A`, i.e. `A` is a parent of `B` and `A.i == B.i + 1` _(not in Semgrex)_. |
|
||||||
|
| `A >++ B` | `B` is a right child of `A`, i.e. `A` is a parent of `B` and `A.i < B.i` _(not in Semgrex)_. |
|
||||||
|
| `A >-- B` | `B` is a left child of `A`, i.e. `A` is a parent of `B` and `A.i > B.i` _(not in Semgrex)_. |
|
||||||
|
| `A <+ B` <Tag variant="new">3.5.1</Tag> | `B` is a right immediate parent of `A`, i.e. `A` is a child of `B` and `A.i == B.i - 1` _(not in Semgrex)_. |
|
||||||
|
| `A <- B` <Tag variant="new">3.5.1</Tag> | `B` is a left immediate parent of `A`, i.e. `A` is a child of `B` and `A.i == B.i + 1` _(not in Semgrex)_. |
|
||||||
|
| `A <++ B` | `B` is a right parent of `A`, i.e. `A` is a child of `B` and `A.i < B.i` _(not in Semgrex)_. |
|
||||||
|
| `A <-- B` | `B` is a left parent of `A`, i.e. `A` is a child of `B` and `A.i > B.i` _(not in Semgrex)_. |
|
||||||
|
|
||||||
### Designing dependency matcher patterns {id="dependencymatcher-patterns"}
|
### Designing dependency matcher patterns {id="dependencymatcher-patterns"}
|
||||||
|
|
||||||
|
|
|
@ -58,12 +58,12 @@ arcs.
|
||||||
|
|
||||||
</Infobox>
|
</Infobox>
|
||||||
|
|
||||||
| Argument | Description |
|
| Argument | Description |
|
||||||
| --------- | ----------------------------------------------------------------------------------------- |
|
| --------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||||
| `compact` | "Compact mode" with square arrows that takes up less space. Defaults to `False`. ~~bool~~ |
|
| `compact` | "Compact mode" with square arrows that takes up less space. Defaults to `False`. ~~bool~~ |
|
||||||
| `color` | Text color (HEX, RGB or color names). Defaults to `"#000000"`. ~~str~~ |
|
| `color` | Text color. Can be provided in any CSS legal format as a string e.g.: `"#00ff00"`, `"rgb(0, 255, 0)"`, `"hsl(120, 100%, 50%)"` and `"green"` all correspond to the color green (without transparency). Defaults to `"#000000"`. ~~str~~ |
|
||||||
| `bg` | Background color (HEX, RGB or color names). Defaults to `"#ffffff"`. ~~str~~ |
|
| `bg` | Background color. Can be provided in any CSS legal format as a string e.g.: `"#00ff00"`, `"rgb(0, 255, 0)"`, `"hsl(120, 100%, 50%)"` and `"green"` all correspond to the color green (without transparency). Defaults to `"#ffffff"`. ~~str~~ |
|
||||||
| `font` | Font name or font family for all text. Defaults to `"Arial"`. ~~str~~ |
|
| `font` | Font name or font family for all text. Defaults to `"Arial"`. ~~str~~ |
|
||||||
|
|
||||||
For a list of all available options, see the
|
For a list of all available options, see the
|
||||||
[`displacy` API documentation](/api/top-level#displacy_options).
|
[`displacy` API documentation](/api/top-level#displacy_options).
|
||||||
|
|
|
@ -6,6 +6,7 @@
|
||||||
"dev": "next dev",
|
"dev": "next dev",
|
||||||
"build": "next build && npm run sitemap && next export",
|
"build": "next build && npm run sitemap && next export",
|
||||||
"prebuild": "pip install -r setup/requirements.txt && sh setup/setup.sh",
|
"prebuild": "pip install -r setup/requirements.txt && sh setup/setup.sh",
|
||||||
|
"predev": "npm run prebuild",
|
||||||
"sitemap": "next-sitemap --config next-sitemap.config.mjs",
|
"sitemap": "next-sitemap --config next-sitemap.config.mjs",
|
||||||
"start": "next start",
|
"start": "next start",
|
||||||
"lint": "next lint",
|
"lint": "next lint",
|
||||||
|
|
|
@ -25,6 +25,11 @@ const AlertSpace = ({ nightly, legacy }) => {
|
||||||
const isOnline = useOnlineStatus()
|
const isOnline = useOnlineStatus()
|
||||||
return (
|
return (
|
||||||
<>
|
<>
|
||||||
|
{isOnline && (
|
||||||
|
<Alert title="💥 We'd love to learn more about your experience with spaCy!">
|
||||||
|
<Link to="https://form.typeform.com/to/aMel9q9f">Take our survey here.</Link>
|
||||||
|
</Alert>
|
||||||
|
)}
|
||||||
{nightly && (
|
{nightly && (
|
||||||
<Alert
|
<Alert
|
||||||
title="You're viewing the pre-release docs."
|
title="You're viewing the pre-release docs."
|
||||||
|
|
Loading…
Reference in New Issue
Block a user