mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-13 02:36:32 +03:00
Merge pull request #6419 from svlandeg/feature/rel-docs
This commit is contained in:
commit
c2b196c2c1
|
@ -502,7 +502,7 @@ with Model.define_operators({">>": chain}):
|
||||||
|
|
||||||
## Create new trainable components {#components}
|
## Create new trainable components {#components}
|
||||||
|
|
||||||
In addition to [swapping out](#swap-architectures) default models in built-in
|
In addition to [swapping out](#swap-architectures) layers in existing
|
||||||
components, you can also implement an entirely new,
|
components, you can also implement an entirely new,
|
||||||
[trainable](/usage/processing-pipelines#trainable-components) pipeline component
|
[trainable](/usage/processing-pipelines#trainable-components) pipeline component
|
||||||
from scratch. This can be done by creating a new class inheriting from
|
from scratch. This can be done by creating a new class inheriting from
|
||||||
|
@ -523,20 +523,28 @@ overview of the `TrainablePipe` methods used by
|
||||||
This section outlines an example use-case of implementing a **novel relation
|
This section outlines an example use-case of implementing a **novel relation
|
||||||
extraction component** from scratch. We'll implement a binary relation
|
extraction component** from scratch. We'll implement a binary relation
|
||||||
extraction method that determines whether or not **two entities** in a document
|
extraction method that determines whether or not **two entities** in a document
|
||||||
are related, and if so, what type of relation. We'll allow multiple types of
|
are related, and if so, what type of relation connects them. We allow multiple
|
||||||
relations between two such entities (multi-label setting). There are two major
|
types of relations between two such entities (a multi-label setting). There are
|
||||||
steps required:
|
two major steps required:
|
||||||
|
|
||||||
1. Implement a [machine learning model](#component-rel-model) specific to this
|
1. Implement a [machine learning model](#component-rel-model) specific to this
|
||||||
task. It will have to extract candidates from a [`Doc`](/api/doc) and predict
|
task. It will have to extract candidate relation instances from a
|
||||||
a relation for the available candidate pairs.
|
[`Doc`](/api/doc) and predict the corresponding scores for each relation
|
||||||
2. Implement a custom [pipeline component](#component-rel-pipe) powered by the
|
label.
|
||||||
machine learning model that sets annotations on the [`Doc`](/api/doc) passing
|
2. Implement a custom [pipeline component](#component-rel-pipe) - powered by the
|
||||||
through the pipeline.
|
machine learning model from step 1 - that translates the predicted scores
|
||||||
|
into annotations that are stored on the [`Doc`](/api/doc) objects as they
|
||||||
|
pass through the `nlp` pipeline.
|
||||||
|
|
||||||
<!-- TODO: <Project id="tutorials/ner-relations">
|
<Project id="tutorials/rel_component">
|
||||||
|
Run this example use-case by using our project template. It includes all the
|
||||||
</Project> -->
|
code to create the ML model and the pipeline component from scratch.
|
||||||
|
It also contains two config files to train the model:
|
||||||
|
one to run on CPU with a Tok2Vec layer, and one for the GPU using a transformer.
|
||||||
|
The project applies the relation extraction component to identify biomolecular
|
||||||
|
interactions in a sample dataset, but you can easily swap in your own dataset
|
||||||
|
for your experiments in any other domain.
|
||||||
|
</Project>
|
||||||
|
|
||||||
#### Step 1: Implementing the Model {#component-rel-model}
|
#### Step 1: Implementing the Model {#component-rel-model}
|
||||||
|
|
||||||
|
@ -552,41 +560,17 @@ matrix** (~~Floats2d~~) of predictions:
|
||||||
> for details.
|
> for details.
|
||||||
|
|
||||||
```python
|
```python
|
||||||
### Register the model architecture
|
### The model architecture
|
||||||
@registry.architectures.register("rel_model.v1")
|
@spacy.registry.architectures.register("rel_model.v1")
|
||||||
def create_relation_model(...) -> Model[List[Doc], Floats2d]:
|
def create_relation_model(...) -> Model[List[Doc], Floats2d]:
|
||||||
model = ... # 👈 model will go here
|
model = ... # 👈 model will go here
|
||||||
return model
|
return model
|
||||||
```
|
```
|
||||||
|
|
||||||
The first layer in this model will typically be an
|
We adapt a **modular approach** to the definition of this relation model, and
|
||||||
[embedding layer](/usage/embeddings-transformers) such as a
|
define it as chaining two layers together: the first layer that generates an
|
||||||
[`Tok2Vec`](/api/tok2vec) component or a [`Transformer`](/api/transformer). This
|
instance tensor from a given set of documents, and the second layer that
|
||||||
layer is assumed to be of type ~~Model[List[Doc], List[Floats2d]]~~ as it
|
transforms the instance tensor into a final tensor holding the predictions:
|
||||||
transforms each **document into a list of tokens**, with each token being
|
|
||||||
represented by its embedding in the vector space.
|
|
||||||
|
|
||||||
Next, we need a method that **generates pairs of entities** that we want to
|
|
||||||
classify as being related or not. As these candidate pairs are typically formed
|
|
||||||
within one document, this function takes a [`Doc`](/api/doc) as input and
|
|
||||||
outputs a `List` of `Span` tuples. For instance, a very straightforward
|
|
||||||
implementation would be to just take any two entities from the same document:
|
|
||||||
|
|
||||||
```python
|
|
||||||
### Simple candiate generation
|
|
||||||
def get_candidates(doc: Doc) -> List[Tuple[Span, Span]]:
|
|
||||||
candidates = []
|
|
||||||
for ent1 in doc.ents:
|
|
||||||
for ent2 in doc.ents:
|
|
||||||
candidates.append((ent1, ent2))
|
|
||||||
return candidates
|
|
||||||
```
|
|
||||||
|
|
||||||
But we could also refine this further by **excluding relations** of an entity
|
|
||||||
with itself, and posing a **maximum distance** (in number of tokens) between two
|
|
||||||
entities. We register this function in the
|
|
||||||
[`@misc` registry](/api/top-level#registry) so we can refer to it from the
|
|
||||||
config, and easily swap it out for any other candidate generation function.
|
|
||||||
|
|
||||||
> #### config.cfg (excerpt)
|
> #### config.cfg (excerpt)
|
||||||
>
|
>
|
||||||
|
@ -594,18 +578,159 @@ config, and easily swap it out for any other candidate generation function.
|
||||||
> [model]
|
> [model]
|
||||||
> @architectures = "rel_model.v1"
|
> @architectures = "rel_model.v1"
|
||||||
>
|
>
|
||||||
> [model.tok2vec]
|
> [model.create_instance_tensor]
|
||||||
> # ...
|
> # ...
|
||||||
>
|
>
|
||||||
> [model.get_candidates]
|
> [model.classification_layer]
|
||||||
> @misc = "rel_cand_generator.v1"
|
> # ...
|
||||||
> max_length = 20
|
|
||||||
> ```
|
> ```
|
||||||
|
|
||||||
```python
|
```python
|
||||||
### Extended candidate generation {highlight="1,2,7,8"}
|
### The model architecture {highlight="6"}
|
||||||
@registry.misc.register("rel_cand_generator.v1")
|
@spacy.registry.architectures.register("rel_model.v1")
|
||||||
def create_candidate_indices(max_length: int) -> Callable[[Doc], List[Tuple[Span, Span]]]:
|
def create_relation_model(
|
||||||
|
create_instance_tensor: Model[List[Doc], Floats2d],
|
||||||
|
classification_layer: Model[Floats2d, Floats2d],
|
||||||
|
) -> Model[List[Doc], Floats2d]:
|
||||||
|
model = chain(create_instance_tensor, classification_layer)
|
||||||
|
return model
|
||||||
|
```
|
||||||
|
|
||||||
|
The `classification_layer` could be something like a
|
||||||
|
[Linear](https://thinc.ai/docs/api-layers#linear) layer followed by a
|
||||||
|
[logistic](https://thinc.ai/docs/api-layers#logistic) activation function:
|
||||||
|
|
||||||
|
> #### config.cfg (excerpt)
|
||||||
|
>
|
||||||
|
> ```ini
|
||||||
|
> [model.classification_layer]
|
||||||
|
> @architectures = "rel_classification_layer.v1"
|
||||||
|
> nI = null
|
||||||
|
> nO = null
|
||||||
|
> ```
|
||||||
|
|
||||||
|
```python
|
||||||
|
### The classification layer
|
||||||
|
@spacy.registry.architectures.register("rel_classification_layer.v1")
|
||||||
|
def create_classification_layer(
|
||||||
|
nO: int = None, nI: int = None
|
||||||
|
) -> Model[Floats2d, Floats2d]:
|
||||||
|
return chain(Linear(nO=nO, nI=nI), Logistic())
|
||||||
|
```
|
||||||
|
|
||||||
|
The first layer that **creates the instance tensor** can be defined by
|
||||||
|
implementing a
|
||||||
|
[custom forward function](https://thinc.ai/docs/usage-models#weights-layers-forward)
|
||||||
|
with an appropriate backpropagation callback. We also define an
|
||||||
|
[initialization method](https://thinc.ai/docs/usage-models#weights-layers-init)
|
||||||
|
that ensures that the layer is properly set up for training.
|
||||||
|
|
||||||
|
We omit some of the implementation details here, and refer to the
|
||||||
|
[spaCy project](https://github.com/explosion/projects/tree/v3/tutorials/rel_component)
|
||||||
|
that has the full implementation.
|
||||||
|
|
||||||
|
> #### config.cfg (excerpt)
|
||||||
|
>
|
||||||
|
> ```ini
|
||||||
|
> [model.create_instance_tensor]
|
||||||
|
> @architectures = "rel_instance_tensor.v1"
|
||||||
|
>
|
||||||
|
> [model.create_instance_tensor.tok2vec]
|
||||||
|
> @architectures = "spacy.HashEmbedCNN.v1"
|
||||||
|
> # ...
|
||||||
|
>
|
||||||
|
> [model.create_instance_tensor.pooling]
|
||||||
|
> @layers = "reduce_mean.v1"
|
||||||
|
>
|
||||||
|
> [model.create_instance_tensor.get_instances]
|
||||||
|
> # ...
|
||||||
|
> ```
|
||||||
|
|
||||||
|
```python
|
||||||
|
### The layer that creates the instance tensor
|
||||||
|
@spacy.registry.architectures.register("rel_instance_tensor.v1")
|
||||||
|
def create_tensors(
|
||||||
|
tok2vec: Model[List[Doc], List[Floats2d]],
|
||||||
|
pooling: Model[Ragged, Floats2d],
|
||||||
|
get_instances: Callable[[Doc], List[Tuple[Span, Span]]],
|
||||||
|
) -> Model[List[Doc], Floats2d]:
|
||||||
|
|
||||||
|
return Model(
|
||||||
|
"instance_tensors",
|
||||||
|
instance_forward,
|
||||||
|
init=instance_init,
|
||||||
|
layers=[tok2vec, pooling],
|
||||||
|
refs={"tok2vec": tok2vec, "pooling": pooling},
|
||||||
|
attrs={"get_instances": get_instances},
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
# The custom forward function
|
||||||
|
def instance_forward(
|
||||||
|
model: Model[List[Doc], Floats2d],
|
||||||
|
docs: List[Doc],
|
||||||
|
is_train: bool,
|
||||||
|
) -> Tuple[Floats2d, Callable]:
|
||||||
|
tok2vec = model.get_ref("tok2vec")
|
||||||
|
tokvecs, bp_tokvecs = tok2vec(docs, is_train)
|
||||||
|
get_instances = model.attrs["get_instances"]
|
||||||
|
all_instances = [get_instances(doc) for doc in docs]
|
||||||
|
pooling = model.get_ref("pooling")
|
||||||
|
relations = ...
|
||||||
|
|
||||||
|
def backprop(d_relations: Floats2d) -> List[Doc]:
|
||||||
|
d_tokvecs = ...
|
||||||
|
return bp_tokvecs(d_tokvecs)
|
||||||
|
|
||||||
|
return relations, backprop
|
||||||
|
|
||||||
|
|
||||||
|
# The custom initialization method
|
||||||
|
def instance_init(
|
||||||
|
model: Model,
|
||||||
|
X: List[Doc] = None,
|
||||||
|
Y: Floats2d = None,
|
||||||
|
) -> Model:
|
||||||
|
tok2vec = model.get_ref("tok2vec")
|
||||||
|
tok2vec.initialize(X)
|
||||||
|
return model
|
||||||
|
|
||||||
|
```
|
||||||
|
|
||||||
|
This custom layer uses an [embedding layer](/usage/embeddings-transformers) such
|
||||||
|
as a [`Tok2Vec`](/api/tok2vec) component or a [`Transformer`](/api/transformer).
|
||||||
|
This layer is assumed to be of type ~~Model[List[Doc], List[Floats2d]]~~ as it
|
||||||
|
transforms each **document into a list of tokens**, with each token being
|
||||||
|
represented by its embedding in the vector space.
|
||||||
|
|
||||||
|
The `pooling` layer will be applied to summarize the token vectors into **entity
|
||||||
|
vectors**, as named entities (represented by ~~Span~~ objects) can consist of
|
||||||
|
one or multiple tokens. For instance, the pooling layer could resort to
|
||||||
|
calculating the average of all token vectors in an entity. Thinc provides
|
||||||
|
several
|
||||||
|
[built-in pooling operators](https://thinc.ai/docs/api-layers#reduction-ops) for
|
||||||
|
this purpose.
|
||||||
|
|
||||||
|
Finally, we need a `get_instances` method that **generates pairs of entities**
|
||||||
|
that we want to classify as being related or not. As these candidate pairs are
|
||||||
|
typically formed within one document, this function takes a [`Doc`](/api/doc) as
|
||||||
|
input and outputs a `List` of `Span` tuples. For instance, the following
|
||||||
|
implementation takes any two entities from the same document, as long as they
|
||||||
|
are within a **maximum distance** (in number of tokens) of eachother:
|
||||||
|
|
||||||
|
> #### config.cfg (excerpt)
|
||||||
|
>
|
||||||
|
> ```ini
|
||||||
|
>
|
||||||
|
> [model.create_instance_tensor.get_instances]
|
||||||
|
> @misc = "rel_instance_generator.v1"
|
||||||
|
> max_length = 100
|
||||||
|
> ```
|
||||||
|
|
||||||
|
```python
|
||||||
|
### Candidate generation
|
||||||
|
@spacy.registry.misc.register("rel_instance_generator.v1")
|
||||||
|
def create_instances(max_length: int) -> Callable[[Doc], List[Tuple[Span, Span]]]:
|
||||||
def get_candidates(doc: "Doc") -> List[Tuple[Span, Span]]:
|
def get_candidates(doc: "Doc") -> List[Tuple[Span, Span]]:
|
||||||
candidates = []
|
candidates = []
|
||||||
for ent1 in doc.ents:
|
for ent1 in doc.ents:
|
||||||
|
@ -617,45 +742,39 @@ def create_candidate_indices(max_length: int) -> Callable[[Doc], List[Tuple[Span
|
||||||
return get_candidates
|
return get_candidates
|
||||||
```
|
```
|
||||||
|
|
||||||
Finally, we require a method that transforms the candidate entity pairs into a
|
This function in added to the [`@misc` registry](/api/top-level#registry) so we
|
||||||
2D tensor using the specified [`Tok2Vec`](/api/tok2vec) or
|
can refer to it from the config, and easily swap it out for any other candidate
|
||||||
[`Transformer`](/api/transformer). The resulting ~~Floats2~~ object will then be
|
generation function.
|
||||||
processed by a final `output_layer` of the network. Putting all this together,
|
|
||||||
we can define our relation model in a config file as such:
|
|
||||||
|
|
||||||
```ini
|
#### Intermezzo: define how to store the relations data {#component-rel-attribute}
|
||||||
### config.cfg
|
|
||||||
[model]
|
|
||||||
@architectures = "rel_model.v1"
|
|
||||||
# ...
|
|
||||||
|
|
||||||
[model.tok2vec]
|
> #### Example output
|
||||||
# ...
|
>
|
||||||
|
> ```python
|
||||||
|
> doc = nlp("Amsterdam is the capital of the Netherlands.")
|
||||||
|
> print("spans", [(e.start, e.text, e.label_) for e in doc.ents])
|
||||||
|
> for value, rel_dict in doc._.rel.items():
|
||||||
|
> print(f"{value}: {rel_dict}")
|
||||||
|
>
|
||||||
|
> # spans [(0, 'Amsterdam', 'LOC'), (6, 'Netherlands', 'LOC')]
|
||||||
|
> # (0, 6): {'CAPITAL_OF': 0.89, 'LOCATED_IN': 0.75, 'UNRELATED': 0.002}
|
||||||
|
> # (6, 0): {'CAPITAL_OF': 0.01, 'LOCATED_IN': 0.13, 'UNRELATED': 0.017}
|
||||||
|
> ```
|
||||||
|
|
||||||
[model.get_candidates]
|
For our new relation extraction component, we will use a custom
|
||||||
@misc = "rel_cand_generator.v1"
|
[extension attribute](/usage/processing-pipelines#custom-components-attributes)
|
||||||
max_length = 20
|
`doc._.rel` in which we store relation data. The attribute refers to a
|
||||||
|
dictionary, keyed by the **start offsets of each entity** involved in the
|
||||||
[model.create_candidate_tensor]
|
candidate relation. The values in the dictionary refer to another dictionary
|
||||||
@misc = "rel_cand_tensor.v1"
|
where relation labels are mapped to values between 0 and 1. We assume anything
|
||||||
|
above 0.5 to be a `True` relation. The ~~Example~~ instances that we'll use as
|
||||||
[model.output_layer]
|
training data, will include their gold-standard relation annotations in
|
||||||
@architectures = "rel_output_layer.v1"
|
`example.reference._.rel`.
|
||||||
# ...
|
|
||||||
```
|
|
||||||
|
|
||||||
<!-- TODO: link to project for implementation details -->
|
|
||||||
<!-- TODO: maybe embed files from project that show the architectures? -->
|
|
||||||
|
|
||||||
When creating this model, we store the custom functions as
|
|
||||||
[attributes](https://thinc.ai/docs/api-model#properties) and the sublayers as
|
|
||||||
references, so we can access them easily:
|
|
||||||
|
|
||||||
```python
|
```python
|
||||||
tok2vec_layer = model.get_ref("tok2vec")
|
### Registering the extension attribute
|
||||||
output_layer = model.get_ref("output_layer")
|
from spacy.tokens import Doc
|
||||||
create_candidate_tensor = model.attrs["create_candidate_tensor"]
|
Doc.set_extension("rel", default={})
|
||||||
get_candidates = model.attrs["get_candidates"]
|
|
||||||
```
|
```
|
||||||
|
|
||||||
#### Step 2: Implementing the pipeline component {#component-rel-pipe}
|
#### Step 2: Implementing the pipeline component {#component-rel-pipe}
|
||||||
|
@ -698,19 +817,44 @@ class RelationExtractor(TrainablePipe):
|
||||||
...
|
...
|
||||||
```
|
```
|
||||||
|
|
||||||
Before the model can be used, it needs to be
|
Typically, the **constructor** defines the vocab, the Machine Learning model,
|
||||||
[initialized](/usage/training#initialization). This function receives a callback
|
and the name of this component. Additionally, this component, just like the
|
||||||
to access the full **training data set**, or a representative sample. This data
|
`textcat` and the `tagger`, stores an **internal list of labels**. The ML model
|
||||||
set can be used to deduce all **relevant labels**. Alternatively, a list of
|
will predict scores for each label. We add convenience methods to easily
|
||||||
labels can be provided to `initialize`, or you can call
|
retrieve and add to them.
|
||||||
`RelationExtractor.add_label` directly. The number of labels defines the output
|
|
||||||
dimensionality of the network, and will be used to do
|
```python
|
||||||
|
### The constructor (continued)
|
||||||
|
def __init__(self, vocab, model, name="rel"):
|
||||||
|
"""Create a component instance."""
|
||||||
|
# ...
|
||||||
|
self.cfg = {"labels": []}
|
||||||
|
|
||||||
|
@property
|
||||||
|
def labels(self) -> Tuple[str]:
|
||||||
|
"""Returns the labels currently added to the component."""
|
||||||
|
return tuple(self.cfg["labels"])
|
||||||
|
|
||||||
|
def add_label(self, label: str):
|
||||||
|
"""Add a new label to the pipe."""
|
||||||
|
self.cfg["labels"] = list(self.labels) + [label]
|
||||||
|
```
|
||||||
|
|
||||||
|
After creation, the component needs to be
|
||||||
|
[initialized](/usage/training#initialization). This method can define the
|
||||||
|
relevant labels in two ways: explicitely by setting the `labels` argument in the
|
||||||
|
[`initialize` block](/api/data-formats#config-initialize) of the config, or
|
||||||
|
implicately by deducing them from the `get_examples` callback that generates the
|
||||||
|
full **training data set**, or a representative sample.
|
||||||
|
|
||||||
|
The final number of labels defines the output dimensionality of the network, and
|
||||||
|
will be used to do
|
||||||
[shape inference](https://thinc.ai/docs/usage-models#validation) throughout the
|
[shape inference](https://thinc.ai/docs/usage-models#validation) throughout the
|
||||||
layers of the neural network. This is triggered by calling
|
layers of the neural network. This is triggered by calling
|
||||||
[`Model.initialize`](https://thinc.ai/api/model#initialize).
|
[`Model.initialize`](https://thinc.ai/api/model#initialize).
|
||||||
|
|
||||||
```python
|
```python
|
||||||
### The initialize method {highlight="12,18,22"}
|
### The initialize method {highlight="12,15,18,22"}
|
||||||
from itertools import islice
|
from itertools import islice
|
||||||
|
|
||||||
def initialize(
|
def initialize(
|
||||||
|
@ -741,7 +885,7 @@ Typically, this happens when the pipeline is set up before training in
|
||||||
[`spacy train`](/api/cli#training). After initialization, the pipeline component
|
[`spacy train`](/api/cli#training). After initialization, the pipeline component
|
||||||
and its internal model can be trained and used to make predictions.
|
and its internal model can be trained and used to make predictions.
|
||||||
|
|
||||||
During training, the function [`update`](/api/pipe#update) is invoked which
|
During training, the method [`update`](/api/pipe#update) is invoked which
|
||||||
delegates to
|
delegates to
|
||||||
[`Model.begin_update`](https://thinc.ai/docs/api-model#begin_update) and a
|
[`Model.begin_update`](https://thinc.ai/docs/api-model#begin_update) and a
|
||||||
[`get_loss`](/api/pipe#get_loss) function that **calculates the loss** for a
|
[`get_loss`](/api/pipe#get_loss) function that **calculates the loss** for a
|
||||||
|
@ -761,18 +905,18 @@ def update(
|
||||||
sgd: Optional[Optimizer] = None,
|
sgd: Optional[Optimizer] = None,
|
||||||
losses: Optional[Dict[str, float]] = None,
|
losses: Optional[Dict[str, float]] = None,
|
||||||
) -> Dict[str, float]:
|
) -> Dict[str, float]:
|
||||||
...
|
# ...
|
||||||
docs = [ex.predicted for ex in examples]
|
docs = [eg.predicted for eg in examples]
|
||||||
predictions, backprop = self.model.begin_update(docs)
|
predictions, backprop = self.model.begin_update(docs)
|
||||||
loss, gradient = self.get_loss(examples, predictions)
|
loss, gradient = self.get_loss(examples, predictions)
|
||||||
backprop(gradient)
|
backprop(gradient)
|
||||||
losses[self.name] += loss
|
losses[self.name] += loss
|
||||||
...
|
# ...
|
||||||
return losses
|
return losses
|
||||||
```
|
```
|
||||||
|
|
||||||
When the internal model is trained, the component can be used to make novel
|
After training the model, the component can be used to make novel
|
||||||
**predictions**. The [`predict`](/api/pipe#predict) function needs to be
|
**predictions**. The [`predict`](/api/pipe#predict) method needs to be
|
||||||
implemented for each subclass of `TrainablePipe`. In our case, we can simply
|
implemented for each subclass of `TrainablePipe`. In our case, we can simply
|
||||||
delegate to the internal model's
|
delegate to the internal model's
|
||||||
[predict](https://thinc.ai/docs/api-model#predict) function that takes a batch
|
[predict](https://thinc.ai/docs/api-model#predict) function that takes a batch
|
||||||
|
@ -788,42 +932,21 @@ def predict(self, docs: Iterable[Doc]) -> Floats2d:
|
||||||
The final method that needs to be implemented, is
|
The final method that needs to be implemented, is
|
||||||
[`set_annotations`](/api/pipe#set_annotations). This function takes the
|
[`set_annotations`](/api/pipe#set_annotations). This function takes the
|
||||||
predictions, and modifies the given `Doc` object in place to store them. For our
|
predictions, and modifies the given `Doc` object in place to store them. For our
|
||||||
relation extraction component, we store the data as a dictionary in a custom
|
relation extraction component, we store the data in the
|
||||||
[extension attribute](/usage/processing-pipelines#custom-components-attributes)
|
[custom attribute](#component-rel-attribute)`doc._.rel`.
|
||||||
`doc._.rel`. As keys, we represent the candidate pair by the **start offsets of
|
|
||||||
each entity**, as this defines an entity pair uniquely within one document.
|
|
||||||
|
|
||||||
To interpret the scores predicted by the relation extraction model correctly, we
|
To interpret the scores predicted by the relation extraction model correctly, we
|
||||||
need to refer to the model's `get_candidates` function that defined which pairs
|
need to refer to the model's `get_instances` function that defined which pairs
|
||||||
of entities were relevant candidates, so that the predictions can be linked to
|
of entities were relevant candidates, so that the predictions can be linked to
|
||||||
those exact entities:
|
those exact entities:
|
||||||
|
|
||||||
> #### Example output
|
|
||||||
>
|
|
||||||
> ```python
|
|
||||||
> doc = nlp("Amsterdam is the capital of the Netherlands.")
|
|
||||||
> print("spans", [(e.start, e.text, e.label_) for e in doc.ents])
|
|
||||||
> for value, rel_dict in doc._.rel.items():
|
|
||||||
> print(f"{value}: {rel_dict}")
|
|
||||||
>
|
|
||||||
> # spans [(0, 'Amsterdam', 'LOC'), (6, 'Netherlands', 'LOC')]
|
|
||||||
> # (0, 6): {'CAPITAL_OF': 0.89, 'LOCATED_IN': 0.75, 'UNRELATED': 0.002}
|
|
||||||
> # (6, 0): {'CAPITAL_OF': 0.01, 'LOCATED_IN': 0.13, 'UNRELATED': 0.017}
|
|
||||||
> ```
|
|
||||||
|
|
||||||
```python
|
|
||||||
### Registering the extension attribute
|
|
||||||
from spacy.tokens import Doc
|
|
||||||
Doc.set_extension("rel", default={})
|
|
||||||
```
|
|
||||||
|
|
||||||
```python
|
```python
|
||||||
### The set_annotations method {highlight="5-6,10"}
|
### The set_annotations method {highlight="5-6,10"}
|
||||||
def set_annotations(self, docs: Iterable[Doc], predictions: Floats2d):
|
def set_annotations(self, docs: Iterable[Doc], predictions: Floats2d):
|
||||||
c = 0
|
c = 0
|
||||||
get_candidates = self.model.attrs["get_candidates"]
|
get_instances = self.model.attrs["get_instances"]
|
||||||
for doc in docs:
|
for doc in docs:
|
||||||
for (e1, e2) in get_candidates(doc):
|
for (e1, e2) in get_instances(doc):
|
||||||
offset = (e1.start, e2.start)
|
offset = (e1.start, e2.start)
|
||||||
if offset not in doc._.rel:
|
if offset not in doc._.rel:
|
||||||
doc._.rel[offset] = {}
|
doc._.rel[offset] = {}
|
||||||
|
@ -837,15 +960,15 @@ Under the hood, when the pipe is applied to a document, it delegates to the
|
||||||
|
|
||||||
```python
|
```python
|
||||||
### The __call__ method
|
### The __call__ method
|
||||||
def __call__(self, Doc doc):
|
def __call__(self, doc: Doc):
|
||||||
predictions = self.predict([doc])
|
predictions = self.predict([doc])
|
||||||
self.set_annotations([doc], predictions)
|
self.set_annotations([doc], predictions)
|
||||||
return doc
|
return doc
|
||||||
```
|
```
|
||||||
|
|
||||||
There is one more optional method to implement: [`score`](/api/pipe#score)
|
There is one more optional method to implement: [`score`](/api/pipe#score)
|
||||||
calculates the performance of your component on a set of examples, and
|
calculates the performance of your component on a set of examples, and returns
|
||||||
returns the results as a dictionary:
|
the results as a dictionary:
|
||||||
|
|
||||||
```python
|
```python
|
||||||
### The score method
|
### The score method
|
||||||
|
@ -861,8 +984,8 @@ def score(self, examples: Iterable[Example]) -> Dict[str, Any]:
|
||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
This is particularly useful to see the scores on the development corpus
|
This is particularly useful for calculating relevant scores on the development
|
||||||
when training the component with [`spacy train`](/api/cli#training).
|
corpus when training the component with [`spacy train`](/api/cli#training).
|
||||||
|
|
||||||
Once our `TrainablePipe` subclass is fully implemented, we can
|
Once our `TrainablePipe` subclass is fully implemented, we can
|
||||||
[register](/usage/processing-pipelines#custom-components-factories) the
|
[register](/usage/processing-pipelines#custom-components-factories) the
|
||||||
|
@ -879,14 +1002,8 @@ assigns it a name and lets you create the component with
|
||||||
>
|
>
|
||||||
> [components.relation_extractor.model]
|
> [components.relation_extractor.model]
|
||||||
> @architectures = "rel_model.v1"
|
> @architectures = "rel_model.v1"
|
||||||
>
|
|
||||||
> [components.relation_extractor.model.tok2vec]
|
|
||||||
> # ...
|
> # ...
|
||||||
>
|
>
|
||||||
> [components.relation_extractor.model.get_candidates]
|
|
||||||
> @misc = "rel_cand_generator.v1"
|
|
||||||
> max_length = 20
|
|
||||||
>
|
|
||||||
> [training.score_weights]
|
> [training.score_weights]
|
||||||
> rel_micro_p = 0.0
|
> rel_micro_p = 0.0
|
||||||
> rel_micro_r = 0.0
|
> rel_micro_r = 0.0
|
||||||
|
@ -902,8 +1019,8 @@ def make_relation_extractor(nlp, name, model):
|
||||||
return RelationExtractor(nlp.vocab, model, name)
|
return RelationExtractor(nlp.vocab, model, name)
|
||||||
```
|
```
|
||||||
|
|
||||||
You can extend the decorator to include information such as the type of
|
You can extend the decorator to include information such as the type of
|
||||||
annotations that are required for this component to run, the type of annotations
|
annotations that are required for this component to run, the type of annotations
|
||||||
it produces, and the scores that can be calculated:
|
it produces, and the scores that can be calculated:
|
||||||
|
|
||||||
```python
|
```python
|
||||||
|
@ -924,6 +1041,12 @@ def make_relation_extractor(nlp, name, model):
|
||||||
return RelationExtractor(nlp.vocab, model, name)
|
return RelationExtractor(nlp.vocab, model, name)
|
||||||
```
|
```
|
||||||
|
|
||||||
<!-- TODO: <Project id="tutorials/ner-relations">
|
<Project id="tutorials/rel_component">
|
||||||
|
Run this example use-case by using our project template. It includes all the
|
||||||
</Project> -->
|
code to create the ML model and the pipeline component from scratch.
|
||||||
|
It contains two config files to train the model:
|
||||||
|
one to run on CPU with a Tok2Vec layer, and one for the GPU using a transformer.
|
||||||
|
The project applies the relation extraction component to identify biomolecular
|
||||||
|
interactions, but you can easily swap in your own dataset for your experiments
|
||||||
|
in any other domain.
|
||||||
|
</Project>
|
||||||
|
|
Loading…
Reference in New Issue
Block a user