mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 17:24:41 +03:00
Merge pull request #6419 from svlandeg/feature/rel-docs
This commit is contained in:
commit
c2b196c2c1
|
@ -502,7 +502,7 @@ with Model.define_operators({">>": chain}):
|
|||
|
||||
## Create new trainable components {#components}
|
||||
|
||||
In addition to [swapping out](#swap-architectures) default models in built-in
|
||||
In addition to [swapping out](#swap-architectures) layers in existing
|
||||
components, you can also implement an entirely new,
|
||||
[trainable](/usage/processing-pipelines#trainable-components) pipeline component
|
||||
from scratch. This can be done by creating a new class inheriting from
|
||||
|
@ -523,20 +523,28 @@ overview of the `TrainablePipe` methods used by
|
|||
This section outlines an example use-case of implementing a **novel relation
|
||||
extraction component** from scratch. We'll implement a binary relation
|
||||
extraction method that determines whether or not **two entities** in a document
|
||||
are related, and if so, what type of relation. We'll allow multiple types of
|
||||
relations between two such entities (multi-label setting). There are two major
|
||||
steps required:
|
||||
are related, and if so, what type of relation connects them. We allow multiple
|
||||
types of relations between two such entities (a multi-label setting). There are
|
||||
two major steps required:
|
||||
|
||||
1. Implement a [machine learning model](#component-rel-model) specific to this
|
||||
task. It will have to extract candidates from a [`Doc`](/api/doc) and predict
|
||||
a relation for the available candidate pairs.
|
||||
2. Implement a custom [pipeline component](#component-rel-pipe) powered by the
|
||||
machine learning model that sets annotations on the [`Doc`](/api/doc) passing
|
||||
through the pipeline.
|
||||
task. It will have to extract candidate relation instances from a
|
||||
[`Doc`](/api/doc) and predict the corresponding scores for each relation
|
||||
label.
|
||||
2. Implement a custom [pipeline component](#component-rel-pipe) - powered by the
|
||||
machine learning model from step 1 - that translates the predicted scores
|
||||
into annotations that are stored on the [`Doc`](/api/doc) objects as they
|
||||
pass through the `nlp` pipeline.
|
||||
|
||||
<!-- TODO: <Project id="tutorials/ner-relations">
|
||||
|
||||
</Project> -->
|
||||
<Project id="tutorials/rel_component">
|
||||
Run this example use-case by using our project template. It includes all the
|
||||
code to create the ML model and the pipeline component from scratch.
|
||||
It also contains two config files to train the model:
|
||||
one to run on CPU with a Tok2Vec layer, and one for the GPU using a transformer.
|
||||
The project applies the relation extraction component to identify biomolecular
|
||||
interactions in a sample dataset, but you can easily swap in your own dataset
|
||||
for your experiments in any other domain.
|
||||
</Project>
|
||||
|
||||
#### Step 1: Implementing the Model {#component-rel-model}
|
||||
|
||||
|
@ -552,41 +560,17 @@ matrix** (~~Floats2d~~) of predictions:
|
|||
> for details.
|
||||
|
||||
```python
|
||||
### Register the model architecture
|
||||
@registry.architectures.register("rel_model.v1")
|
||||
### The model architecture
|
||||
@spacy.registry.architectures.register("rel_model.v1")
|
||||
def create_relation_model(...) -> Model[List[Doc], Floats2d]:
|
||||
model = ... # 👈 model will go here
|
||||
return model
|
||||
```
|
||||
|
||||
The first layer in this model will typically be an
|
||||
[embedding layer](/usage/embeddings-transformers) such as a
|
||||
[`Tok2Vec`](/api/tok2vec) component or a [`Transformer`](/api/transformer). This
|
||||
layer is assumed to be of type ~~Model[List[Doc], List[Floats2d]]~~ as it
|
||||
transforms each **document into a list of tokens**, with each token being
|
||||
represented by its embedding in the vector space.
|
||||
|
||||
Next, we need a method that **generates pairs of entities** that we want to
|
||||
classify as being related or not. As these candidate pairs are typically formed
|
||||
within one document, this function takes a [`Doc`](/api/doc) as input and
|
||||
outputs a `List` of `Span` tuples. For instance, a very straightforward
|
||||
implementation would be to just take any two entities from the same document:
|
||||
|
||||
```python
|
||||
### Simple candiate generation
|
||||
def get_candidates(doc: Doc) -> List[Tuple[Span, Span]]:
|
||||
candidates = []
|
||||
for ent1 in doc.ents:
|
||||
for ent2 in doc.ents:
|
||||
candidates.append((ent1, ent2))
|
||||
return candidates
|
||||
```
|
||||
|
||||
But we could also refine this further by **excluding relations** of an entity
|
||||
with itself, and posing a **maximum distance** (in number of tokens) between two
|
||||
entities. We register this function in the
|
||||
[`@misc` registry](/api/top-level#registry) so we can refer to it from the
|
||||
config, and easily swap it out for any other candidate generation function.
|
||||
We adapt a **modular approach** to the definition of this relation model, and
|
||||
define it as chaining two layers together: the first layer that generates an
|
||||
instance tensor from a given set of documents, and the second layer that
|
||||
transforms the instance tensor into a final tensor holding the predictions:
|
||||
|
||||
> #### config.cfg (excerpt)
|
||||
>
|
||||
|
@ -594,18 +578,159 @@ config, and easily swap it out for any other candidate generation function.
|
|||
> [model]
|
||||
> @architectures = "rel_model.v1"
|
||||
>
|
||||
> [model.tok2vec]
|
||||
> [model.create_instance_tensor]
|
||||
> # ...
|
||||
>
|
||||
> [model.get_candidates]
|
||||
> @misc = "rel_cand_generator.v1"
|
||||
> max_length = 20
|
||||
> [model.classification_layer]
|
||||
> # ...
|
||||
> ```
|
||||
|
||||
```python
|
||||
### Extended candidate generation {highlight="1,2,7,8"}
|
||||
@registry.misc.register("rel_cand_generator.v1")
|
||||
def create_candidate_indices(max_length: int) -> Callable[[Doc], List[Tuple[Span, Span]]]:
|
||||
### The model architecture {highlight="6"}
|
||||
@spacy.registry.architectures.register("rel_model.v1")
|
||||
def create_relation_model(
|
||||
create_instance_tensor: Model[List[Doc], Floats2d],
|
||||
classification_layer: Model[Floats2d, Floats2d],
|
||||
) -> Model[List[Doc], Floats2d]:
|
||||
model = chain(create_instance_tensor, classification_layer)
|
||||
return model
|
||||
```
|
||||
|
||||
The `classification_layer` could be something like a
|
||||
[Linear](https://thinc.ai/docs/api-layers#linear) layer followed by a
|
||||
[logistic](https://thinc.ai/docs/api-layers#logistic) activation function:
|
||||
|
||||
> #### config.cfg (excerpt)
|
||||
>
|
||||
> ```ini
|
||||
> [model.classification_layer]
|
||||
> @architectures = "rel_classification_layer.v1"
|
||||
> nI = null
|
||||
> nO = null
|
||||
> ```
|
||||
|
||||
```python
|
||||
### The classification layer
|
||||
@spacy.registry.architectures.register("rel_classification_layer.v1")
|
||||
def create_classification_layer(
|
||||
nO: int = None, nI: int = None
|
||||
) -> Model[Floats2d, Floats2d]:
|
||||
return chain(Linear(nO=nO, nI=nI), Logistic())
|
||||
```
|
||||
|
||||
The first layer that **creates the instance tensor** can be defined by
|
||||
implementing a
|
||||
[custom forward function](https://thinc.ai/docs/usage-models#weights-layers-forward)
|
||||
with an appropriate backpropagation callback. We also define an
|
||||
[initialization method](https://thinc.ai/docs/usage-models#weights-layers-init)
|
||||
that ensures that the layer is properly set up for training.
|
||||
|
||||
We omit some of the implementation details here, and refer to the
|
||||
[spaCy project](https://github.com/explosion/projects/tree/v3/tutorials/rel_component)
|
||||
that has the full implementation.
|
||||
|
||||
> #### config.cfg (excerpt)
|
||||
>
|
||||
> ```ini
|
||||
> [model.create_instance_tensor]
|
||||
> @architectures = "rel_instance_tensor.v1"
|
||||
>
|
||||
> [model.create_instance_tensor.tok2vec]
|
||||
> @architectures = "spacy.HashEmbedCNN.v1"
|
||||
> # ...
|
||||
>
|
||||
> [model.create_instance_tensor.pooling]
|
||||
> @layers = "reduce_mean.v1"
|
||||
>
|
||||
> [model.create_instance_tensor.get_instances]
|
||||
> # ...
|
||||
> ```
|
||||
|
||||
```python
|
||||
### The layer that creates the instance tensor
|
||||
@spacy.registry.architectures.register("rel_instance_tensor.v1")
|
||||
def create_tensors(
|
||||
tok2vec: Model[List[Doc], List[Floats2d]],
|
||||
pooling: Model[Ragged, Floats2d],
|
||||
get_instances: Callable[[Doc], List[Tuple[Span, Span]]],
|
||||
) -> Model[List[Doc], Floats2d]:
|
||||
|
||||
return Model(
|
||||
"instance_tensors",
|
||||
instance_forward,
|
||||
init=instance_init,
|
||||
layers=[tok2vec, pooling],
|
||||
refs={"tok2vec": tok2vec, "pooling": pooling},
|
||||
attrs={"get_instances": get_instances},
|
||||
)
|
||||
|
||||
|
||||
# The custom forward function
|
||||
def instance_forward(
|
||||
model: Model[List[Doc], Floats2d],
|
||||
docs: List[Doc],
|
||||
is_train: bool,
|
||||
) -> Tuple[Floats2d, Callable]:
|
||||
tok2vec = model.get_ref("tok2vec")
|
||||
tokvecs, bp_tokvecs = tok2vec(docs, is_train)
|
||||
get_instances = model.attrs["get_instances"]
|
||||
all_instances = [get_instances(doc) for doc in docs]
|
||||
pooling = model.get_ref("pooling")
|
||||
relations = ...
|
||||
|
||||
def backprop(d_relations: Floats2d) -> List[Doc]:
|
||||
d_tokvecs = ...
|
||||
return bp_tokvecs(d_tokvecs)
|
||||
|
||||
return relations, backprop
|
||||
|
||||
|
||||
# The custom initialization method
|
||||
def instance_init(
|
||||
model: Model,
|
||||
X: List[Doc] = None,
|
||||
Y: Floats2d = None,
|
||||
) -> Model:
|
||||
tok2vec = model.get_ref("tok2vec")
|
||||
tok2vec.initialize(X)
|
||||
return model
|
||||
|
||||
```
|
||||
|
||||
This custom layer uses an [embedding layer](/usage/embeddings-transformers) such
|
||||
as a [`Tok2Vec`](/api/tok2vec) component or a [`Transformer`](/api/transformer).
|
||||
This layer is assumed to be of type ~~Model[List[Doc], List[Floats2d]]~~ as it
|
||||
transforms each **document into a list of tokens**, with each token being
|
||||
represented by its embedding in the vector space.
|
||||
|
||||
The `pooling` layer will be applied to summarize the token vectors into **entity
|
||||
vectors**, as named entities (represented by ~~Span~~ objects) can consist of
|
||||
one or multiple tokens. For instance, the pooling layer could resort to
|
||||
calculating the average of all token vectors in an entity. Thinc provides
|
||||
several
|
||||
[built-in pooling operators](https://thinc.ai/docs/api-layers#reduction-ops) for
|
||||
this purpose.
|
||||
|
||||
Finally, we need a `get_instances` method that **generates pairs of entities**
|
||||
that we want to classify as being related or not. As these candidate pairs are
|
||||
typically formed within one document, this function takes a [`Doc`](/api/doc) as
|
||||
input and outputs a `List` of `Span` tuples. For instance, the following
|
||||
implementation takes any two entities from the same document, as long as they
|
||||
are within a **maximum distance** (in number of tokens) of eachother:
|
||||
|
||||
> #### config.cfg (excerpt)
|
||||
>
|
||||
> ```ini
|
||||
>
|
||||
> [model.create_instance_tensor.get_instances]
|
||||
> @misc = "rel_instance_generator.v1"
|
||||
> max_length = 100
|
||||
> ```
|
||||
|
||||
```python
|
||||
### Candidate generation
|
||||
@spacy.registry.misc.register("rel_instance_generator.v1")
|
||||
def create_instances(max_length: int) -> Callable[[Doc], List[Tuple[Span, Span]]]:
|
||||
def get_candidates(doc: "Doc") -> List[Tuple[Span, Span]]:
|
||||
candidates = []
|
||||
for ent1 in doc.ents:
|
||||
|
@ -617,45 +742,39 @@ def create_candidate_indices(max_length: int) -> Callable[[Doc], List[Tuple[Span
|
|||
return get_candidates
|
||||
```
|
||||
|
||||
Finally, we require a method that transforms the candidate entity pairs into a
|
||||
2D tensor using the specified [`Tok2Vec`](/api/tok2vec) or
|
||||
[`Transformer`](/api/transformer). The resulting ~~Floats2~~ object will then be
|
||||
processed by a final `output_layer` of the network. Putting all this together,
|
||||
we can define our relation model in a config file as such:
|
||||
This function in added to the [`@misc` registry](/api/top-level#registry) so we
|
||||
can refer to it from the config, and easily swap it out for any other candidate
|
||||
generation function.
|
||||
|
||||
```ini
|
||||
### config.cfg
|
||||
[model]
|
||||
@architectures = "rel_model.v1"
|
||||
# ...
|
||||
#### Intermezzo: define how to store the relations data {#component-rel-attribute}
|
||||
|
||||
[model.tok2vec]
|
||||
# ...
|
||||
> #### Example output
|
||||
>
|
||||
> ```python
|
||||
> doc = nlp("Amsterdam is the capital of the Netherlands.")
|
||||
> print("spans", [(e.start, e.text, e.label_) for e in doc.ents])
|
||||
> for value, rel_dict in doc._.rel.items():
|
||||
> print(f"{value}: {rel_dict}")
|
||||
>
|
||||
> # spans [(0, 'Amsterdam', 'LOC'), (6, 'Netherlands', 'LOC')]
|
||||
> # (0, 6): {'CAPITAL_OF': 0.89, 'LOCATED_IN': 0.75, 'UNRELATED': 0.002}
|
||||
> # (6, 0): {'CAPITAL_OF': 0.01, 'LOCATED_IN': 0.13, 'UNRELATED': 0.017}
|
||||
> ```
|
||||
|
||||
[model.get_candidates]
|
||||
@misc = "rel_cand_generator.v1"
|
||||
max_length = 20
|
||||
|
||||
[model.create_candidate_tensor]
|
||||
@misc = "rel_cand_tensor.v1"
|
||||
|
||||
[model.output_layer]
|
||||
@architectures = "rel_output_layer.v1"
|
||||
# ...
|
||||
```
|
||||
|
||||
<!-- TODO: link to project for implementation details -->
|
||||
<!-- TODO: maybe embed files from project that show the architectures? -->
|
||||
|
||||
When creating this model, we store the custom functions as
|
||||
[attributes](https://thinc.ai/docs/api-model#properties) and the sublayers as
|
||||
references, so we can access them easily:
|
||||
For our new relation extraction component, we will use a custom
|
||||
[extension attribute](/usage/processing-pipelines#custom-components-attributes)
|
||||
`doc._.rel` in which we store relation data. The attribute refers to a
|
||||
dictionary, keyed by the **start offsets of each entity** involved in the
|
||||
candidate relation. The values in the dictionary refer to another dictionary
|
||||
where relation labels are mapped to values between 0 and 1. We assume anything
|
||||
above 0.5 to be a `True` relation. The ~~Example~~ instances that we'll use as
|
||||
training data, will include their gold-standard relation annotations in
|
||||
`example.reference._.rel`.
|
||||
|
||||
```python
|
||||
tok2vec_layer = model.get_ref("tok2vec")
|
||||
output_layer = model.get_ref("output_layer")
|
||||
create_candidate_tensor = model.attrs["create_candidate_tensor"]
|
||||
get_candidates = model.attrs["get_candidates"]
|
||||
### Registering the extension attribute
|
||||
from spacy.tokens import Doc
|
||||
Doc.set_extension("rel", default={})
|
||||
```
|
||||
|
||||
#### Step 2: Implementing the pipeline component {#component-rel-pipe}
|
||||
|
@ -698,19 +817,44 @@ class RelationExtractor(TrainablePipe):
|
|||
...
|
||||
```
|
||||
|
||||
Before the model can be used, it needs to be
|
||||
[initialized](/usage/training#initialization). This function receives a callback
|
||||
to access the full **training data set**, or a representative sample. This data
|
||||
set can be used to deduce all **relevant labels**. Alternatively, a list of
|
||||
labels can be provided to `initialize`, or you can call
|
||||
`RelationExtractor.add_label` directly. The number of labels defines the output
|
||||
dimensionality of the network, and will be used to do
|
||||
Typically, the **constructor** defines the vocab, the Machine Learning model,
|
||||
and the name of this component. Additionally, this component, just like the
|
||||
`textcat` and the `tagger`, stores an **internal list of labels**. The ML model
|
||||
will predict scores for each label. We add convenience methods to easily
|
||||
retrieve and add to them.
|
||||
|
||||
```python
|
||||
### The constructor (continued)
|
||||
def __init__(self, vocab, model, name="rel"):
|
||||
"""Create a component instance."""
|
||||
# ...
|
||||
self.cfg = {"labels": []}
|
||||
|
||||
@property
|
||||
def labels(self) -> Tuple[str]:
|
||||
"""Returns the labels currently added to the component."""
|
||||
return tuple(self.cfg["labels"])
|
||||
|
||||
def add_label(self, label: str):
|
||||
"""Add a new label to the pipe."""
|
||||
self.cfg["labels"] = list(self.labels) + [label]
|
||||
```
|
||||
|
||||
After creation, the component needs to be
|
||||
[initialized](/usage/training#initialization). This method can define the
|
||||
relevant labels in two ways: explicitely by setting the `labels` argument in the
|
||||
[`initialize` block](/api/data-formats#config-initialize) of the config, or
|
||||
implicately by deducing them from the `get_examples` callback that generates the
|
||||
full **training data set**, or a representative sample.
|
||||
|
||||
The final number of labels defines the output dimensionality of the network, and
|
||||
will be used to do
|
||||
[shape inference](https://thinc.ai/docs/usage-models#validation) throughout the
|
||||
layers of the neural network. This is triggered by calling
|
||||
[`Model.initialize`](https://thinc.ai/api/model#initialize).
|
||||
|
||||
```python
|
||||
### The initialize method {highlight="12,18,22"}
|
||||
### The initialize method {highlight="12,15,18,22"}
|
||||
from itertools import islice
|
||||
|
||||
def initialize(
|
||||
|
@ -741,7 +885,7 @@ Typically, this happens when the pipeline is set up before training in
|
|||
[`spacy train`](/api/cli#training). After initialization, the pipeline component
|
||||
and its internal model can be trained and used to make predictions.
|
||||
|
||||
During training, the function [`update`](/api/pipe#update) is invoked which
|
||||
During training, the method [`update`](/api/pipe#update) is invoked which
|
||||
delegates to
|
||||
[`Model.begin_update`](https://thinc.ai/docs/api-model#begin_update) and a
|
||||
[`get_loss`](/api/pipe#get_loss) function that **calculates the loss** for a
|
||||
|
@ -761,18 +905,18 @@ def update(
|
|||
sgd: Optional[Optimizer] = None,
|
||||
losses: Optional[Dict[str, float]] = None,
|
||||
) -> Dict[str, float]:
|
||||
...
|
||||
docs = [ex.predicted for ex in examples]
|
||||
# ...
|
||||
docs = [eg.predicted for eg in examples]
|
||||
predictions, backprop = self.model.begin_update(docs)
|
||||
loss, gradient = self.get_loss(examples, predictions)
|
||||
backprop(gradient)
|
||||
losses[self.name] += loss
|
||||
...
|
||||
# ...
|
||||
return losses
|
||||
```
|
||||
|
||||
When the internal model is trained, the component can be used to make novel
|
||||
**predictions**. The [`predict`](/api/pipe#predict) function needs to be
|
||||
After training the model, the component can be used to make novel
|
||||
**predictions**. The [`predict`](/api/pipe#predict) method needs to be
|
||||
implemented for each subclass of `TrainablePipe`. In our case, we can simply
|
||||
delegate to the internal model's
|
||||
[predict](https://thinc.ai/docs/api-model#predict) function that takes a batch
|
||||
|
@ -788,42 +932,21 @@ def predict(self, docs: Iterable[Doc]) -> Floats2d:
|
|||
The final method that needs to be implemented, is
|
||||
[`set_annotations`](/api/pipe#set_annotations). This function takes the
|
||||
predictions, and modifies the given `Doc` object in place to store them. For our
|
||||
relation extraction component, we store the data as a dictionary in a custom
|
||||
[extension attribute](/usage/processing-pipelines#custom-components-attributes)
|
||||
`doc._.rel`. As keys, we represent the candidate pair by the **start offsets of
|
||||
each entity**, as this defines an entity pair uniquely within one document.
|
||||
relation extraction component, we store the data in the
|
||||
[custom attribute](#component-rel-attribute)`doc._.rel`.
|
||||
|
||||
To interpret the scores predicted by the relation extraction model correctly, we
|
||||
need to refer to the model's `get_candidates` function that defined which pairs
|
||||
need to refer to the model's `get_instances` function that defined which pairs
|
||||
of entities were relevant candidates, so that the predictions can be linked to
|
||||
those exact entities:
|
||||
|
||||
> #### Example output
|
||||
>
|
||||
> ```python
|
||||
> doc = nlp("Amsterdam is the capital of the Netherlands.")
|
||||
> print("spans", [(e.start, e.text, e.label_) for e in doc.ents])
|
||||
> for value, rel_dict in doc._.rel.items():
|
||||
> print(f"{value}: {rel_dict}")
|
||||
>
|
||||
> # spans [(0, 'Amsterdam', 'LOC'), (6, 'Netherlands', 'LOC')]
|
||||
> # (0, 6): {'CAPITAL_OF': 0.89, 'LOCATED_IN': 0.75, 'UNRELATED': 0.002}
|
||||
> # (6, 0): {'CAPITAL_OF': 0.01, 'LOCATED_IN': 0.13, 'UNRELATED': 0.017}
|
||||
> ```
|
||||
|
||||
```python
|
||||
### Registering the extension attribute
|
||||
from spacy.tokens import Doc
|
||||
Doc.set_extension("rel", default={})
|
||||
```
|
||||
|
||||
```python
|
||||
### The set_annotations method {highlight="5-6,10"}
|
||||
def set_annotations(self, docs: Iterable[Doc], predictions: Floats2d):
|
||||
c = 0
|
||||
get_candidates = self.model.attrs["get_candidates"]
|
||||
get_instances = self.model.attrs["get_instances"]
|
||||
for doc in docs:
|
||||
for (e1, e2) in get_candidates(doc):
|
||||
for (e1, e2) in get_instances(doc):
|
||||
offset = (e1.start, e2.start)
|
||||
if offset not in doc._.rel:
|
||||
doc._.rel[offset] = {}
|
||||
|
@ -837,15 +960,15 @@ Under the hood, when the pipe is applied to a document, it delegates to the
|
|||
|
||||
```python
|
||||
### The __call__ method
|
||||
def __call__(self, Doc doc):
|
||||
def __call__(self, doc: Doc):
|
||||
predictions = self.predict([doc])
|
||||
self.set_annotations([doc], predictions)
|
||||
return doc
|
||||
```
|
||||
|
||||
There is one more optional method to implement: [`score`](/api/pipe#score)
|
||||
calculates the performance of your component on a set of examples, and
|
||||
returns the results as a dictionary:
|
||||
calculates the performance of your component on a set of examples, and returns
|
||||
the results as a dictionary:
|
||||
|
||||
```python
|
||||
### The score method
|
||||
|
@ -861,8 +984,8 @@ def score(self, examples: Iterable[Example]) -> Dict[str, Any]:
|
|||
}
|
||||
```
|
||||
|
||||
This is particularly useful to see the scores on the development corpus
|
||||
when training the component with [`spacy train`](/api/cli#training).
|
||||
This is particularly useful for calculating relevant scores on the development
|
||||
corpus when training the component with [`spacy train`](/api/cli#training).
|
||||
|
||||
Once our `TrainablePipe` subclass is fully implemented, we can
|
||||
[register](/usage/processing-pipelines#custom-components-factories) the
|
||||
|
@ -879,14 +1002,8 @@ assigns it a name and lets you create the component with
|
|||
>
|
||||
> [components.relation_extractor.model]
|
||||
> @architectures = "rel_model.v1"
|
||||
>
|
||||
> [components.relation_extractor.model.tok2vec]
|
||||
> # ...
|
||||
>
|
||||
> [components.relation_extractor.model.get_candidates]
|
||||
> @misc = "rel_cand_generator.v1"
|
||||
> max_length = 20
|
||||
>
|
||||
> [training.score_weights]
|
||||
> rel_micro_p = 0.0
|
||||
> rel_micro_r = 0.0
|
||||
|
@ -924,6 +1041,12 @@ def make_relation_extractor(nlp, name, model):
|
|||
return RelationExtractor(nlp.vocab, model, name)
|
||||
```
|
||||
|
||||
<!-- TODO: <Project id="tutorials/ner-relations">
|
||||
|
||||
</Project> -->
|
||||
<Project id="tutorials/rel_component">
|
||||
Run this example use-case by using our project template. It includes all the
|
||||
code to create the ML model and the pipeline component from scratch.
|
||||
It contains two config files to train the model:
|
||||
one to run on CPU with a Tok2Vec layer, and one for the GPU using a transformer.
|
||||
The project applies the relation extraction component to identify biomolecular
|
||||
interactions, but you can easily swap in your own dataset for your experiments
|
||||
in any other domain.
|
||||
</Project>
|
||||
|
|
Loading…
Reference in New Issue
Block a user