mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-13 02:36:32 +03:00
Restore patches from nn-beam-parser to spacy/syntax
This commit is contained in:
parent
fe90dfc390
commit
c307a0ffb8
|
@ -6,6 +6,7 @@ from cpython.ref cimport PyObject, Py_INCREF, Py_XDECREF
|
|||
from thinc.extra.search cimport Beam
|
||||
from thinc.extra.search import MaxViolation
|
||||
from thinc.typedefs cimport hash_t, class_t
|
||||
from thinc.extra.search cimport MaxViolation
|
||||
|
||||
from .transition_system cimport TransitionSystem, Transition
|
||||
from .stateclass cimport StateClass
|
||||
|
@ -45,9 +46,10 @@ cdef class ParserBeam(object):
|
|||
cdef public object states
|
||||
cdef public object golds
|
||||
cdef public object beams
|
||||
cdef public object dones
|
||||
|
||||
def __init__(self, TransitionSystem moves, states, golds,
|
||||
int width=4, float density=0.001):
|
||||
int width, float density):
|
||||
self.moves = moves
|
||||
self.states = states
|
||||
self.golds = golds
|
||||
|
@ -61,6 +63,7 @@ cdef class ParserBeam(object):
|
|||
st = <StateClass>beam.at(i)
|
||||
st.c.offset = state.c.offset
|
||||
self.beams.append(beam)
|
||||
self.dones = [False] * len(self.beams)
|
||||
|
||||
def __dealloc__(self):
|
||||
if self.beams is not None:
|
||||
|
@ -70,7 +73,7 @@ cdef class ParserBeam(object):
|
|||
|
||||
@property
|
||||
def is_done(self):
|
||||
return all(b.is_done for b in self.beams)
|
||||
return all(b.is_done or self.dones[i] for i, b in enumerate(self.beams))
|
||||
|
||||
def __getitem__(self, i):
|
||||
return self.beams[i]
|
||||
|
@ -81,32 +84,42 @@ cdef class ParserBeam(object):
|
|||
def advance(self, scores, follow_gold=False):
|
||||
cdef Beam beam
|
||||
for i, beam in enumerate(self.beams):
|
||||
if beam.is_done or not scores[i].size:
|
||||
if beam.is_done or not scores[i].size or self.dones[i]:
|
||||
continue
|
||||
self._set_scores(beam, scores[i])
|
||||
if self.golds is not None:
|
||||
self._set_costs(beam, self.golds[i], follow_gold=follow_gold)
|
||||
if follow_gold:
|
||||
assert self.golds is not None
|
||||
beam.advance(_transition_state, NULL, <void*>self.moves.c)
|
||||
else:
|
||||
beam.advance(_transition_state, _hash_state, <void*>self.moves.c)
|
||||
beam.check_done(_check_final_state, NULL)
|
||||
if beam.is_done:
|
||||
if beam.is_done and self.golds is not None:
|
||||
for j in range(beam.size):
|
||||
if is_gold(<StateClass>beam.at(j), self.golds[i], self.moves.strings):
|
||||
beam._states[j].loss = 0.0
|
||||
elif beam._states[j].loss == 0.0:
|
||||
beam._states[j].loss = 1.0
|
||||
state = <StateClass>beam.at(j)
|
||||
if state.is_final():
|
||||
try:
|
||||
if self.moves.is_gold_parse(state, self.golds[i]):
|
||||
beam._states[j].loss = 0.0
|
||||
elif beam._states[j].loss == 0.0:
|
||||
beam._states[j].loss = 1.0
|
||||
except NotImplementedError:
|
||||
break
|
||||
|
||||
def _set_scores(self, Beam beam, float[:, ::1] scores):
|
||||
cdef float* c_scores = &scores[0, 0]
|
||||
for i in range(beam.size):
|
||||
cdef int nr_state = min(scores.shape[0], beam.size)
|
||||
cdef int nr_class = scores.shape[1]
|
||||
for i in range(nr_state):
|
||||
state = <StateClass>beam.at(i)
|
||||
if not state.is_final():
|
||||
for j in range(beam.nr_class):
|
||||
beam.scores[i][j] = c_scores[i * beam.nr_class + j]
|
||||
for j in range(nr_class):
|
||||
beam.scores[i][j] = c_scores[i * nr_class + j]
|
||||
self.moves.set_valid(beam.is_valid[i], state.c)
|
||||
else:
|
||||
for j in range(beam.nr_class):
|
||||
beam.scores[i][j] = 0
|
||||
beam.costs[i][j] = 0
|
||||
|
||||
def _set_costs(self, Beam beam, GoldParse gold, int follow_gold=False):
|
||||
for i in range(beam.size):
|
||||
|
@ -119,21 +132,6 @@ cdef class ParserBeam(object):
|
|||
beam.is_valid[i][j] = 0
|
||||
|
||||
|
||||
def is_gold(StateClass state, GoldParse gold, strings):
|
||||
predicted = set()
|
||||
truth = set()
|
||||
for i in range(gold.length):
|
||||
if gold.cand_to_gold[i] is None:
|
||||
continue
|
||||
if state.safe_get(i).dep:
|
||||
predicted.add((i, state.H(i), strings[state.safe_get(i).dep]))
|
||||
else:
|
||||
predicted.add((i, state.H(i), 'ROOT'))
|
||||
id_, word, tag, head, dep, ner = gold.orig_annot[gold.cand_to_gold[i]]
|
||||
truth.add((id_, head, dep))
|
||||
return truth == predicted
|
||||
|
||||
|
||||
def get_token_ids(states, int n_tokens):
|
||||
cdef StateClass state
|
||||
cdef np.ndarray ids = numpy.zeros((len(states), n_tokens),
|
||||
|
@ -150,9 +148,11 @@ def get_token_ids(states, int n_tokens):
|
|||
nr_update = 0
|
||||
def update_beam(TransitionSystem moves, int nr_feature, int max_steps,
|
||||
states, tokvecs, golds,
|
||||
state2vec, vec2scores, drop=0., sgd=None,
|
||||
losses=None, int width=4, float density=0.001):
|
||||
state2vec, vec2scores,
|
||||
int width, float density,
|
||||
sgd=None, losses=None, drop=0.):
|
||||
global nr_update
|
||||
cdef MaxViolation violn
|
||||
nr_update += 1
|
||||
pbeam = ParserBeam(moves, states, golds,
|
||||
width=width, density=density)
|
||||
|
@ -163,6 +163,8 @@ def update_beam(TransitionSystem moves, int nr_feature, int max_steps,
|
|||
backprops = []
|
||||
violns = [MaxViolation() for _ in range(len(states))]
|
||||
for t in range(max_steps):
|
||||
if pbeam.is_done and gbeam.is_done:
|
||||
break
|
||||
# The beam maps let us find the right row in the flattened scores
|
||||
# arrays for each state. States are identified by (example id, history).
|
||||
# We keep a different beam map for each step (since we'll have a flat
|
||||
|
@ -194,14 +196,17 @@ def update_beam(TransitionSystem moves, int nr_feature, int max_steps,
|
|||
# Track the "maximum violation", to use in the update.
|
||||
for i, violn in enumerate(violns):
|
||||
violn.check_crf(pbeam[i], gbeam[i])
|
||||
|
||||
# Only make updates if we have non-gold states
|
||||
histories = [((v.p_hist + v.g_hist) if v.p_hist else []) for v in violns]
|
||||
losses = [((v.p_probs + v.g_probs) if v.p_probs else []) for v in violns]
|
||||
states_d_scores = get_gradient(moves.n_moves, beam_maps,
|
||||
histories, losses)
|
||||
assert len(states_d_scores) == len(backprops), (len(states_d_scores), len(backprops))
|
||||
return states_d_scores, backprops
|
||||
histories = []
|
||||
losses = []
|
||||
for violn in violns:
|
||||
if violn.p_hist:
|
||||
histories.append(violn.p_hist + violn.g_hist)
|
||||
losses.append(violn.p_probs + violn.g_probs)
|
||||
else:
|
||||
histories.append([])
|
||||
losses.append([])
|
||||
states_d_scores = get_gradient(moves.n_moves, beam_maps, histories, losses)
|
||||
return states_d_scores, backprops[:len(states_d_scores)]
|
||||
|
||||
|
||||
def get_states(pbeams, gbeams, beam_map, nr_update):
|
||||
|
@ -214,12 +219,11 @@ def get_states(pbeams, gbeams, beam_map, nr_update):
|
|||
for eg_id, (pbeam, gbeam) in enumerate(zip(pbeams, gbeams)):
|
||||
p_indices.append([])
|
||||
g_indices.append([])
|
||||
if pbeam.loss > 0 and pbeam.min_score > gbeam.score:
|
||||
continue
|
||||
for i in range(pbeam.size):
|
||||
state = <StateClass>pbeam.at(i)
|
||||
if not state.is_final():
|
||||
key = tuple([eg_id] + pbeam.histories[i])
|
||||
assert key not in seen, (key, seen)
|
||||
seen[key] = len(states)
|
||||
p_indices[-1].append(len(states))
|
||||
states.append(state)
|
||||
|
@ -255,18 +259,27 @@ def get_gradient(nr_class, beam_maps, histories, losses):
|
|||
"""
|
||||
nr_step = len(beam_maps)
|
||||
grads = []
|
||||
for beam_map in beam_maps:
|
||||
if beam_map:
|
||||
grads.append(numpy.zeros((max(beam_map.values())+1, nr_class), dtype='f'))
|
||||
nr_step = 0
|
||||
for eg_id, hists in enumerate(histories):
|
||||
for loss, hist in zip(losses[eg_id], hists):
|
||||
if loss != 0.0 and not numpy.isnan(loss):
|
||||
nr_step = max(nr_step, len(hist))
|
||||
for i in range(nr_step):
|
||||
grads.append(numpy.zeros((max(beam_maps[i].values())+1, nr_class), dtype='f'))
|
||||
assert len(histories) == len(losses)
|
||||
for eg_id, hists in enumerate(histories):
|
||||
for loss, hist in zip(losses[eg_id], hists):
|
||||
if loss == 0.0 or numpy.isnan(loss):
|
||||
continue
|
||||
key = tuple([eg_id])
|
||||
# Adjust loss for length
|
||||
avg_loss = loss / len(hist)
|
||||
loss += avg_loss * (nr_step - len(hist))
|
||||
for j, clas in enumerate(hist):
|
||||
i = beam_maps[j][key]
|
||||
# In step j, at state i action clas
|
||||
# resulted in loss
|
||||
grads[j][i, clas] += loss / len(histories)
|
||||
grads[j][i, clas] += loss
|
||||
key = key + tuple([clas])
|
||||
return grads
|
||||
|
||||
|
|
|
@ -74,7 +74,16 @@ cdef cppclass StateC:
|
|||
free(this.shifted - PADDING)
|
||||
|
||||
void set_context_tokens(int* ids, int n) nogil:
|
||||
if n == 13:
|
||||
if n == 8:
|
||||
ids[0] = this.B(0)
|
||||
ids[1] = this.B(1)
|
||||
ids[2] = this.S(0)
|
||||
ids[3] = this.S(1)
|
||||
ids[4] = this.H(this.S(0))
|
||||
ids[5] = this.L(this.B(0), 1)
|
||||
ids[6] = this.L(this.S(0), 2)
|
||||
ids[7] = this.R(this.S(0), 1)
|
||||
elif n == 13:
|
||||
ids[0] = this.B(0)
|
||||
ids[1] = this.B(1)
|
||||
ids[2] = this.S(0)
|
||||
|
|
|
@ -351,6 +351,20 @@ cdef class ArcEager(TransitionSystem):
|
|||
def __get__(self):
|
||||
return (SHIFT, REDUCE, LEFT, RIGHT, BREAK)
|
||||
|
||||
def is_gold_parse(self, StateClass state, GoldParse gold):
|
||||
predicted = set()
|
||||
truth = set()
|
||||
for i in range(gold.length):
|
||||
if gold.cand_to_gold[i] is None:
|
||||
continue
|
||||
if state.safe_get(i).dep:
|
||||
predicted.add((i, state.H(i), self.strings[state.safe_get(i).dep]))
|
||||
else:
|
||||
predicted.add((i, state.H(i), 'ROOT'))
|
||||
id_, word, tag, head, dep, ner = gold.orig_annot[gold.cand_to_gold[i]]
|
||||
truth.add((id_, head, dep))
|
||||
return truth == predicted
|
||||
|
||||
def has_gold(self, GoldParse gold, start=0, end=None):
|
||||
end = end or len(gold.heads)
|
||||
if all([tag is None for tag in gold.heads[start:end]]):
|
||||
|
|
|
@ -34,7 +34,6 @@ from ._parse_features cimport CONTEXT_SIZE
|
|||
from ._parse_features cimport fill_context
|
||||
from .stateclass cimport StateClass
|
||||
from .parser cimport Parser
|
||||
from ._beam_utils import is_gold
|
||||
|
||||
|
||||
DEBUG = False
|
||||
|
@ -108,7 +107,7 @@ cdef class BeamParser(Parser):
|
|||
# The non-monotonic oracle makes it difficult to ensure final costs are
|
||||
# correct. Therefore do final correction
|
||||
for i in range(pred.size):
|
||||
if is_gold(<StateClass>pred.at(i), gold_parse, self.moves.strings):
|
||||
if self.moves.is_gold_parse(<StateClass>pred.at(i), gold_parse):
|
||||
pred._states[i].loss = 0.0
|
||||
elif pred._states[i].loss == 0.0:
|
||||
pred._states[i].loss = 1.0
|
||||
|
@ -214,7 +213,7 @@ def _check_train_integrity(Beam pred, Beam gold, GoldParse gold_parse, Transitio
|
|||
if not pred._states[i].is_done or pred._states[i].loss == 0:
|
||||
continue
|
||||
state = <StateClass>pred.at(i)
|
||||
if is_gold(state, gold_parse, moves.strings) == True:
|
||||
if moves.is_gold_parse(state, gold_parse) == True:
|
||||
for dep in gold_parse.orig_annot:
|
||||
print(dep[1], dep[3], dep[4])
|
||||
print("Cost", pred._states[i].loss)
|
||||
|
@ -228,7 +227,7 @@ def _check_train_integrity(Beam pred, Beam gold, GoldParse gold_parse, Transitio
|
|||
if not gold._states[i].is_done:
|
||||
continue
|
||||
state = <StateClass>gold.at(i)
|
||||
if is_gold(state, gold_parse, moves.strings) == False:
|
||||
if moves.is_gold(state, gold_parse) == False:
|
||||
print("Truth")
|
||||
for dep in gold_parse.orig_annot:
|
||||
print(dep[1], dep[3], dep[4])
|
||||
|
|
|
@ -38,6 +38,7 @@ from preshed.maps cimport map_get
|
|||
|
||||
from thinc.api import layerize, chain, noop, clone
|
||||
from thinc.neural import Model, Affine, ReLu, Maxout
|
||||
from thinc.neural._classes.batchnorm import BatchNorm as BN
|
||||
from thinc.neural._classes.selu import SELU
|
||||
from thinc.neural._classes.layernorm import LayerNorm
|
||||
from thinc.neural.ops import NumpyOps, CupyOps
|
||||
|
@ -66,7 +67,6 @@ from ..attrs cimport ID, TAG, DEP, ORTH, NORM, PREFIX, SUFFIX, TAG
|
|||
from . import _beam_utils
|
||||
|
||||
USE_FINE_TUNE = True
|
||||
BEAM_PARSE = True
|
||||
|
||||
def get_templates(*args, **kwargs):
|
||||
return []
|
||||
|
@ -258,7 +258,7 @@ cdef class Parser:
|
|||
|
||||
with Model.use_device('cpu'):
|
||||
upper = chain(
|
||||
clone(Residual(ReLu(hidden_width)), (depth-1)),
|
||||
clone(Maxout(hidden_width), (depth-1)),
|
||||
zero_init(Affine(nr_class, drop_factor=0.0))
|
||||
)
|
||||
# TODO: This is an unfortunate hack atm!
|
||||
|
@ -298,6 +298,10 @@ cdef class Parser:
|
|||
self.moves = self.TransitionSystem(self.vocab.strings, {})
|
||||
else:
|
||||
self.moves = moves
|
||||
if 'beam_width' not in cfg:
|
||||
cfg['beam_width'] = util.env_opt('beam_width', 1)
|
||||
if 'beam_density' not in cfg:
|
||||
cfg['beam_density'] = util.env_opt('beam_density', 0.0)
|
||||
self.cfg = cfg
|
||||
if 'actions' in self.cfg:
|
||||
for action, labels in self.cfg.get('actions', {}).items():
|
||||
|
@ -320,7 +324,7 @@ cdef class Parser:
|
|||
if beam_width is None:
|
||||
beam_width = self.cfg.get('beam_width', 1)
|
||||
if beam_density is None:
|
||||
beam_density = self.cfg.get('beam_density', 0.001)
|
||||
beam_density = self.cfg.get('beam_density', 0.0)
|
||||
cdef Beam beam
|
||||
if beam_width == 1:
|
||||
states = self.parse_batch([doc], [doc.tensor])
|
||||
|
@ -336,7 +340,7 @@ cdef class Parser:
|
|||
return output
|
||||
|
||||
def pipe(self, docs, int batch_size=1000, int n_threads=2,
|
||||
beam_width=1, beam_density=0.001):
|
||||
beam_width=None, beam_density=None):
|
||||
"""
|
||||
Process a stream of documents.
|
||||
|
||||
|
@ -348,8 +352,10 @@ cdef class Parser:
|
|||
The number of threads with which to work on the buffer in parallel.
|
||||
Yields (Doc): Documents, in order.
|
||||
"""
|
||||
if BEAM_PARSE:
|
||||
beam_width = 8
|
||||
if beam_width is None:
|
||||
beam_width = self.cfg.get('beam_width', 1)
|
||||
if beam_density is None:
|
||||
beam_density = self.cfg.get('beam_density', 0.0)
|
||||
cdef Doc doc
|
||||
cdef Beam beam
|
||||
for docs in cytoolz.partition_all(batch_size, docs):
|
||||
|
@ -411,7 +417,7 @@ cdef class Parser:
|
|||
st = next_step[i]
|
||||
st.set_context_tokens(&c_token_ids[i*nr_feat], nr_feat)
|
||||
self.moves.set_valid(&c_is_valid[i*nr_class], st)
|
||||
vectors = state2vec(token_ids[:next_step.size()])
|
||||
vectors = state2vec(token_ids[:next_step.size()])
|
||||
scores = vec2scores(vectors)
|
||||
c_scores = <float*>scores.data
|
||||
for i in range(next_step.size()):
|
||||
|
@ -427,7 +433,7 @@ cdef class Parser:
|
|||
next_step.push_back(st)
|
||||
return states
|
||||
|
||||
def beam_parse(self, docs, tokvecses, int beam_width=8, float beam_density=0.001):
|
||||
def beam_parse(self, docs, tokvecses, int beam_width=3, float beam_density=0.001):
|
||||
cdef Beam beam
|
||||
cdef np.ndarray scores
|
||||
cdef Doc doc
|
||||
|
@ -477,9 +483,10 @@ cdef class Parser:
|
|||
return beams
|
||||
|
||||
def update(self, docs_tokvecs, golds, drop=0., sgd=None, losses=None):
|
||||
if BEAM_PARSE:
|
||||
return self.update_beam(docs_tokvecs, golds, drop=drop, sgd=sgd,
|
||||
losses=losses)
|
||||
if self.cfg.get('beam_width', 1) >= 2 and numpy.random.random() >= 0.5:
|
||||
return self.update_beam(docs_tokvecs, golds,
|
||||
self.cfg['beam_width'], self.cfg['beam_density'],
|
||||
drop=drop, sgd=sgd, losses=losses)
|
||||
if losses is not None and self.name not in losses:
|
||||
losses[self.name] = 0.
|
||||
docs, tokvec_lists = docs_tokvecs
|
||||
|
@ -545,7 +552,12 @@ cdef class Parser:
|
|||
bp_my_tokvecs(d_tokvecs, sgd=sgd)
|
||||
return d_tokvecs
|
||||
|
||||
def update_beam(self, docs_tokvecs, golds, drop=0., sgd=None, losses=None):
|
||||
def update_beam(self, docs_tokvecs, golds, width=None, density=None,
|
||||
drop=0., sgd=None, losses=None):
|
||||
if width is None:
|
||||
width = self.cfg.get('beam_width', 2)
|
||||
if density is None:
|
||||
density = self.cfg.get('beam_density', 0.0)
|
||||
if losses is not None and self.name not in losses:
|
||||
losses[self.name] = 0.
|
||||
docs, tokvecs = docs_tokvecs
|
||||
|
@ -567,8 +579,8 @@ cdef class Parser:
|
|||
states_d_scores, backprops = _beam_utils.update_beam(self.moves, self.nr_feature, 500,
|
||||
states, tokvecs, golds,
|
||||
state2vec, vec2scores,
|
||||
drop, sgd, losses,
|
||||
width=8)
|
||||
width, density,
|
||||
sgd=sgd, drop=drop, losses=losses)
|
||||
backprop_lower = []
|
||||
for i, d_scores in enumerate(states_d_scores):
|
||||
if losses is not None:
|
||||
|
@ -634,9 +646,9 @@ cdef class Parser:
|
|||
for ids, d_vector, bp_vector in backprops:
|
||||
d_state_features = bp_vector(d_vector, sgd=sgd)
|
||||
mask = ids >= 0
|
||||
indices = xp.nonzero(mask)
|
||||
self.model[0].ops.scatter_add(d_tokvecs, ids[indices],
|
||||
d_state_features[indices])
|
||||
d_state_features *= mask.reshape(ids.shape + (1,))
|
||||
self.model[0].ops.scatter_add(d_tokvecs, ids * mask,
|
||||
d_state_features)
|
||||
|
||||
@property
|
||||
def move_names(self):
|
||||
|
@ -652,7 +664,7 @@ cdef class Parser:
|
|||
lower, stream, drop=dropout)
|
||||
return state2vec, upper
|
||||
|
||||
nr_feature = 13
|
||||
nr_feature = 8
|
||||
|
||||
def get_token_ids(self, states):
|
||||
cdef StateClass state
|
||||
|
|
|
@ -99,6 +99,9 @@ cdef class TransitionSystem:
|
|||
def preprocess_gold(self, GoldParse gold):
|
||||
raise NotImplementedError
|
||||
|
||||
def is_gold_parse(self, StateClass state, GoldParse gold):
|
||||
raise NotImplementedError
|
||||
|
||||
cdef Transition lookup_transition(self, object name) except *:
|
||||
raise NotImplementedError
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user